

HHS Public Access

Author manuscript *J Am Coll Cardiol.* Author manuscript; available in PMC 2018 June 20.

Published in final edited form as:

J Am Coll Cardiol. 2017 June 20; 69(24): 3007–3009. doi:10.1016/j.jacc.2017.04.029.

Lafora disease is an inherited metabolic cardiomyopathy

María Villalba-Orero, DVM, PhD^{1,#}, Gentzane Sánchez-Elexpuru, MSc^{2,#}, Marina López-Olañeta, MLT¹, Oscar Campuzano, PhD^{3,4}, Elisabet Bello-Arroyo, MSc¹, Pablo García-Pavía, MD, PhD^{1,5,6,7}, José M Serratosa, MD, PhD², Ramón Brugada, MD, PhD^{3,4,8}, Marina Sánchez, PhD², and Enrique Lara-Pezzi, PhD^{1,7,9,*}

¹Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain

²Laboratory of Neurology, IIS-Jiménez Díaz Foundation and Biomedical Research Network Center on Rare Diseases (CIBERER), Madrid, Spain

³Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain

⁴Medical Sciences Department, School of Medicine, Girona, Spain

⁵Heart Failure and Inherited Cardiac Diseases Unit. Department of Cardiology. Puerta de Hierro University Hospital, Madrid, Spain

⁶Centro de Investigacion Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain

⁷Francisco de Vitoria University, Madrid, Spain

⁸Familial Cardiac Disease Unit, Hospital Josep Trueta, Girona, Spain

⁹National Heart & Lung Institute, Imperial College London, UK

Inherited metabolic storage cardiomyopathies, often clinically misdiagnosed, comprise a small, but important, fraction of patients genotyped with clinical suspicion of hypertrophic cardiomyopathy (HCM, 1%). Overall, glycogen metabolism disorders affect energy homeostasis primarily in skeletal muscle, heart, liver, and, less frequently, the central nervous system. These rare diseases are quite variable regarding age of onset, symptoms, morbidity and mortality. Typical pathologic vacuoles containing glycogen or intermediary metabolites altering cardiac structure and function are usually described in Pompe's, Danon's and Fabry's diseases as well as in patients with mutations in *PRKAG2*, the regulatory γ subunit of AMP-activated protein kinase. In affected patients, these multisystem disorders may cause left ventricular hypertrophy that could accompany neuromuscular deficits, liver and/or kidney dysfunction and abnormalities of the peripheral central nervous system (1, 2).

^{*}Address for correspondence: Dr. Enrique Lara-Pezzi, Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Melchor Fernández Almagro, 3, 28029 Madrid, Spain. Tel.: +34-914531200, ext. 3309. Fax: +34-914531304. elara@cnic.es.

[#]These authors contributed equally to this work

The authors have no relationships relevant to the contents of this paper to disclose

Villalba-Orero et al.

Lafora disease (LD) is a rare neurodegenerative disease (<5/1,000,000) mainly present in Mediterranean countries and consanguineous regions, although its exact prevalence is unknown. It manifests during adolescence with neurological symptoms that eventually lead patients to a vegetative state and premature death. There is no treatment available, apart from antiepileptic drugs and palliative support. LD is caused by mutations in laforin (*EPM2A*) or malin (*EPM2B*), which are key regulators of glycogen metabolism. LD patients show abnormal glycogen deposits called Lafora bodies, in brain, skeletal muscle, skin, liver and also in the heart. The accumulation of Lafora bodies as a result of laforin or malin deficiency has recently led some authors to consider Lafora disease as a new member of the family of glycogen storage diseases (3). Although rhythm disturbances and heart failure have been reported in some Lafora disease patients (4), the consequences of laforin or malin loss for cardiac function over time have not been explored.

To address this question, we blindly assessed cardiac function and remodeling in two previously described mouse models of LD, lacking either laforin $(Epm2a^{-/-})$ or malin $(Epm2b^{-/-})$, which show evident neurological abnormalities beginning at 8–10 months of age (5). Experiments were conducted in accordance with the guidelines of the Institutional Animal Welfare Committee. Echocardiography analysis, performed in two separate groups of mice at 8–10 months of age and at 14–16 months of age under light anesthesia, revealed that laforin and malin knockout mice develop cardiac hypertrophy and marked systolic dysfunction by 14–16 months of age, showed by an increased end-diastolic left ventricle walls thickness and normalized cardiac mass, and a decreased left ventricle ejection fraction (Table 1). Histological assessment showed abundant glycogen aggregates inside the cardiomyocytes, including typical Lafora bodies, and increased cardiac weight (heart weight to tibial length ratio) and BNP expression, confirming the presence of cardiac hypertrophy and dysfunction (Table 1).

These pathological features resemble the inherited metabolic cardiomyopathies of human multisystem glycogen-storage disorders caused by mutations in genes regulating glycogen metabolism. Overall, our results strongly suggest that cardiac studies should be systematically performed in patients with LD, that laforin and malin deficiency should be considered part of the genetic spectrum of metabolic HCM, and that HCM patients with an unknown underlying genetic cause might benefit from genetic screening of laforin and malin genes, especially if neurological symptoms are also present.

Acknowledgments

Funding

This work was supported by grants from the Spanish Ministry of Economy and Competitiveness (SAF2015-65722-R to E.L-P and SAF2014-59594-R to J.M.S), Autonomous Community of Madrid (2010-BMD2321, FIBROTEAM Consortium), European Union's FP7 (CardioNeT-ITN-289600, CardioNext-ITN-608027), the Spanish Carlos III Institute of Health (CPII14/00027 to E.L-P, PI13/00865 to M.P.S and RD12/0042/066 to P.G.-P. and E.L-P) and the National Institute of Neurological Disorders And Stroke of the National Institutes of Health (P01NS097197 to M.S.). This work was also supported by the Plan Estatal de I+D+I 2013-2016 – European Regional Development Fund (FEDER) "A way of making Europe", Spain. The CNIC is supported by the Spanish Ministry of Economy and Competitiveness (MINECO) and the Pro-CNIC Foundation, and is a Severo Ochoa Center of Excellence (MINECO award SEV-2015-0505). GSE is supported by a fellowship from the Fundacion Conchita Rabago.

JAm Coll Cardiol. Author manuscript; available in PMC 2018 June 20.

References

- Gazzerro E, Andreu AL, Bruno C. Neuromuscular disorders of glycogen metabolism. Curr Neurol Neurosci Rep. 2013; 13:333. [PubMed: 23335027]
- 2. Maron BJ, Maron MS, Semsarian C. Genetics of hypertrophic cardiomyopathy after 20 years: Clinical perspectives. J Am Coll Cardiol. 2012; 60:705–715. [PubMed: 22796258]
- Romá-Mateo C, Aguado C, García-Giménez JL, Knecht E, Sanz P, Pallardó FV. Oxidative stress, a new hallmark in the pathophysiology of Lafora progressive myoclonus epilepsy. Free Radic Biol Med. 2015; 88:30–41. [PubMed: 25680286]
- 4. Wick R, Byard RW. Mechanisms of unexpected and/or sudden death in Lafora disease. Forensic Sci Int. 2006; 163:144–147. [PubMed: 16326059]
- Criado O, Aguado C, Gayarre J, et al. Lafora bodies and neurological defects in malin-deficient mice correlate with impaired autophagy. Hum Mol Genet. 2012; 21:1521–33. [PubMed: 22186026]

Villalba-Orero et al.

Table 1

Cardiac parameters in wild type mice compared to laforin and malin knockout mice.

WT $Fmu2a^{-1}$ $Fmu2a^{-1}$ $Fmu2a^{-1}$ $Emu2b^{-1}$ $Emu2b^{-1}$ $Emu2b^{-1}$ $SAAA$ $SAAA$ $SAAA$ $SAAA$ $Saaba$ $Samba$ $Emu2b^{-1}$ $Emu2b^{-1}$ $Emu2b^{-1}$ $Emu2b^{-1}$ $VAWb$ (mm) 09 ± 0.1 10 ± 0.1 1.0 ± 0.2		8	8–10 months of age	fage		14–16 months of age	f age
SAX M-mode cehocardiography data SAX M-mode cehocardiography data 5.11 1.0±0.1 1.0±0.1 0.8±0.2 1.1±0.1 1.1±0.1 1.1±0.1 1.3±0.1 1.3±0.2 1.5±0.2 1.1±0.1 1.5±0.1 1.3±0.1 1.5±0.2 1.5±0.2 2.9±0.8 3.1±0.5 2.8±0.5 3.0±0.6 3.4±0.3 0.8±0.0 0.9±0.1 0.9±0.1 0.9±0.1 1.1±0.1 1.0±0.2 1.2±0.2 1.2±0.2 0.8±0.1 1.1±0.1 1.0±0.2 1.2±0.2 1.2±0.2 1.1±0.2 1.1±0.1 1.0±0.2 3.5±0.7 3.8±0.6 3.4±0.3 3.4±0.3 1.0±0.2 3.8±0.5 3.0±0.6 1.1±0.2 1.3±0.2 1.0±0.2 3.8±0.5 3.0±0.6 1.1±0.1 1.2±0.2 3.0±10 2.8±5 3.2±8 2.3±5 2.3±5 1.0±0.2 3.8±0.5 3.0±0.6 3.4±1.6 4.4±1.2 1.0±0.2 3.8±0.6 3.8±1.6 4.4±1.2 4.5±0.7 1.0±0.1 3.8±0.6 3.8±1.6 3.4±1.6 4.5±0.7		ΜT	$Epm2a^{-/-}$	$Epm2b^{-/-}$	ΤW	$Epm2a^{-/-}$	$Epm2b^{-/-}$
		SAX	M-mode ech	ocardiograph	y data		
	LVAWd (mm)	0.9 ± 0.1	1.0 ± 0.1	1.0 ± 0.1	0.8 ± 0.2	$1.1{\pm}0.1^{*{**}}$	1.0 ± 0.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LVAWs (mm)	1.3 ± 0.1	1.5 ± 0.1	1.3 ± 0.1	1.3 ± 0.2	$1.5 {\pm} 0.2$	$1.4{\pm}0.1$
	LVIDd (mm)	$4.1 {\pm} 0.5$	4.3 ± 0.5	$3.7{\pm}.03$	4.2 ± 0.4	$4.4{\pm}0.3$	4.3 ± 0.5
0.8 ± 0.0 0.9 ± 0.1 0.9 ± 0.1 0.9 ± 0.1 0.8 ± 0.1 I.1 ± 0.1 1.0 ± 0.2 1.2 ± 0.2 1.2 ± 0.2 1.2 ± 0.2 1.3 ± 0.2 1.0 ± 2.0 1.2 ± 0.2 1.2 ± 0.2 1.0 ± 0.2 1.3 ± 0.2 1.0 ± 2.0 3.8 ± 0.5 3.8 ± 0.5 3.8 ± 0.5 3.0 ± 0.4 3.7 ± 0.7 3.0 ± 10 28 ± 5 25 ± 8 29 ± 5 23 ± 5 3.0 ± 10 28 ± 10 28 ± 10 12 1.1 12 12 12 1.1 28 ± 10 28 ± 10 28 ± 10 2.1 36 ± 0 11 12 1.1 36 ± 0 28 ± 10 28 ± 16 2.1 36 ± 0 30 ± 13 44 ± 12 2.2 55 ± 6 58 \pm 12 47 ± 7 2.2 55 ± 6 58 \pm 12 47 ± 7 2.2 55 ± 6 58 \pm 12 47 ± 7 2.2 55 ± 6 58 \pm 12 47 \pm 7 2.2 5 5 5 47 \pm 7 2.2 5 5 5	LVIDs (mm)	2.9 ± 0.8	$3.1{\pm}0.5$	2.8 ± 0.5	3.0 ± 0.5	$3.4{\pm}0.3$	$3.4{\pm}0.5$
	LVPWd (mm)	0.8 ± 0.0	0.9 ± 0.1	$0.9{\pm}0.2$	$0.8{\pm}0.1$	$1.1{\pm}0.1$	$1.0\pm0.1^{***}$
	LVPWs (mm)	1.0 ± 0.2	1.2 ± 0.2	1.2 ± 0.2	1.0 ± 0.2	$1.3{\pm}0.2^{*}$	1.2 ± 0.2
ad mass (mg/g) 3.5 ± 0.7 3.8 ± 0.5 3.0 ± 0.4 3.7 ± 0.7 4.5 ± 0.7 * 30 ± 10 28 ± 5 20 ± 0.4 3.7 ± 0.7 4.5 ± 0.7 * 30 ± 10 28 ± 5 25 ± 6 211 12 LAX two-dimensional echocardiography data 11 12 LAX two-dimensional echocardiography data 44 ± 12 * 5 ± 0 5 ± 10 30 ± 13 4 ± 16 59 ± 6 53 ± 9 28 ± 10 30 ± 13 4 ± 12 * 59 ± 6 53 ± 9 55 ± 6 58 ± 12 47 ± 7 * 59 ± 6 53 ± 9 55 ± 6 58 ± 12 47 ± 7 * 66 6 11 12 12 60 6 6 11 12 60 6 6 11 12 60 6 6 11 12 60 6 6 11 12 60 6 6 11 12 60 6 6 6 6 60 10	LV mass (mg)	104 ± 20	128 ± 19	$104{\pm}14$	105 ± 20	164±25 *** #	152±32 ***_##
30 ± 10 28 ± 5 25 ± 8 29 ± 5 23 ± 5 5 6 6 11 12 LAX two-dimensional echocardiography data 12 12 LAX two-dimensional echocardiography data 44 ± 16 84 ± 16 8 ± 20 78 ± 12 61 ± 20 70 ± 19 84 ± 16 8 ± 20 78 ± 12 61 ± 20 70 ± 13 44 ± 12 * 5 ± 6 53 ± 9 55 ± 6 58 ± 12 47 ± 7 * 5 6 6 11 12 75 6 6 11 12 77 5 6 6 11 12 68 11 12 120 120 610 10 10 10 10 610 100 100 100 100 610 100 100 100 100 610 100 100 100 100 800 100 100 100 100	LV normalized mass (mg/g)	3.5 ± 0.7	$3.8 {\pm} 0.5$	$3.0{\pm}0.4$	3.7 ± 0.7	4.5±0.7 *	5.2±1.4 **_ ###
5 6 11 12 LAX two-dimensional echocarchiography data LAX two-dimensional echocarchiography data 44 ± 16 68 ± 20 78 ± 12 61 ± 20 70 ± 19 84 ± 16 88 ± 10 36 ± 9 28 ± 10 30 ± 13 44 ± 12 * 29 ± 6 53 ± 9 55 ± 6 58 ± 12 47 ± 7 * 5 6 6 11 12 $Taximetric and histological analysis 120,0 11\pm0,1** (mg/mm) 1\pm0,2 23\pm0,6*** (no (fold induction)) 1\pm0,2 2.33\pm0,6*** tes area (µm2) -10\pm129 67\pm255*** $	LVFS (%)	30 ± 10	28±5	25±8	29±5	23±5	21±4 *
LAX two-dimensional echocardiography data LAX two-dimensional echocardiography data 68 ± 20 78 ± 12 61 ± 20 70 ± 19 84 ± 16 68 ± 20 38 ± 10 30 ± 13 41 ± 12 * 59 ± 6 53 ± 9 58 ± 10 30 ± 12 28 ± 10 30 ± 13 58 ± 10 30 ± 12 47 ± 12 * 5 6 6 11 12 $Tavimetric and histological analysis 11\pm0.1 12 (mg/mm) 1\pm0.2 2.33\pm0.6 **** 10.9\pm0.6 (no (fold induction)) 1\pm0.2 2.33\pm0.6 **** 419\pm129 tes area (µm2) -419\pm129 -419\pm129 -414 $	z	S	9	9	=	12	12
		LAXtwo	-dimensional	echocardiog	raphy data		
	LVVold (µl)	68±20	78±12	61±20	70±19	84±16	75±16
	LVVols (µL)	28 ± 10	36±9	28 ± 10	30±13	44 ± 12	44±15
5 6 6 11 12 <i>Gravimetric and histological analysis Gravimetric and histological analysis</i> (mg/mm) 0.9 ± 0.0 1.1 ± 0.1 ** (mg/mm) 0.9 ± 0.0 1.1 ± 0.1 ** *** (on (fold induction) 1 ± 0.2 2.33 ± 0.6 *** *** (tes area (µm ²) 419 ± 129 675 ± 255 **** ***	LVEF (%)	59±6	53±9	55±6	58±12	47±7 *	43±8 **
Gravimetric and histological analysis (mg/mm) 0.9 ± 0.0 1.1 ± 0.1 ** ion (fold induction) 1 ± 0.2 2.33 ± 0.6 *** tes area (µm ²) 419 ± 129 675 ± 255 *** - +++ -	Z	S	9	9	11	12	12
(mg/mm) 0.9 ± 0.0 $1.1\pm0.1^{**}$ ion (fold induction) 1 ± 0.2 $2.33\pm0.6^{***}$ des area (µm ²) 419 ± 129 $675\pm255^{***}$		Grav	imetric and h.	istological an	alysis		
ion (fold induction) 1 ± 0.2 2.33\pm 0.6 *** Ates area (μ m ²) 419 ± 129 675\pm 255 ***	HW/TLenth (mg/mm)				0.0 ± 0.0	1.1 ± 0.1	1.1 ±0.1 **
rtes area (μ m ²) 419±129 675±255 *** - +++	BNP expression (fold induction)				1 ± 0.2	2.33±0.6	2.28±1.0 ***
+++	Cardiomyocytes area (μm^2)				419±129	675±255 ***	521±174 ***
	PAS positive					+ + +	+ + +

J Am Coll Cardiol. Author manuscript; available in PMC 2018 June 20.

Author Manuscript

z

SAX, short axis view; LAX, long axis view; LVAWd, end-diastolic left ventricle anterior wall; LVIDs, end-diastolic left ventricle; LVIDs, end-systolic left shortening; LVVold, end-diastolic left ventricle volume; LVVols, end-systolic left ventricle volume; LVEF, left ventricle ejection fraction; HW, heart weight; TL, tibial length; PAS, Periodic Acid-Schiff ventricle internal diameter, LVPWd: end-diastolic left ventricle posterior wall; LVPWs, end-systolic left ventricle posterior wall; LVmass, left ventricle cardiac mass; LVFS, left ventricle fractional staining in heart sections; N, number of mice. Data are presented as mean±SD.

* P<0.05, ** P<0.01, *** P<0.001 Epm2a-/- vs WT and Epm2b-/- vs WT;

[#]P<0.05,

##_P<0.01,

JAm Coll Cardiol. Author manuscript; available in PMC 2018 June 20.

P<0.001 Epm2a-/- and Epm2b-/- 8-10m vs Epm2a-/-and Epm2b-/- 14-16m, respectively, using a two-way ANOVA test with Bonferroni correction, or a Student t test for HW/TL, cardiomyocytes area and BNP expression.