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Abstract  9 

Sand media filters are a key component of micro-irrigation systems since they help 10 

preventing emitter clogging, which greatly affects the system performance. Dissolved 11 

oxygen is an irrigation water quality parameter related to organic matter loading. Low 12 

values of dissolved oxygen can cause crop root hypoxia and, therefore, agronomic 13 

problems. Thus, an accurate prediction of dissolved oxygen values could be of great 14 

interest, especially if effluents are used in micro-irrigation systems. The aim of this 15 

study was to obtain a predictive model able to forecast the dissolved oxygen values at 16 

the outlets of sand media filters. In this study, a Gaussian process regression (GPR) 17 

model was used for predicting the output dissolved oxygen (DOo) from data 18 

corresponding to 547 filtration cycles of different sand filters using reclaimed effluent. 19 

This optimisation technique involves kernel parameter setting in the GPR training 20 

procedure, which significantly influences the regression accuracy. To this end, the 21 

height of the filter bed, filtration velocity and filter inlet values of the electrical 22 

conductivity, dissolved oxygen, pH, turbidity and water temperature were monitored 23 
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and analysed. The significance of each variable on filtration performance is presented 24 

and a model for forecasting the outlet dissolved oxygen obtained. Regression with 25 

optimal hyperparameters was performed and a coefficient of determination of 0.90 for 26 

DOo was obtained when this new predictive GPR–based model was applied to the 27 

experimental dataset. Agreement between experimental data and the model confirmed 28 

the good performance of the latter.  29 

  30 

Keywords: Gaussian process regression; Bayesian statistics; Machine learning 31 

techniques; Drip irrigation; Clogging; Effluents  32 

 33 

Nomenclature 34 

Abbreviations  35 

ANN Artificial neural network 

DE Differential evolution 

DO 

GPR 

Dissolved oxygen 

Gaussian process regression 

GEP Gene expression programming 

2R  Coefficient of determination 

RBF 

SCADA 

SE 

Radial basis function 

Supervisory control and data acquisition 

Squared-exponential 

SVM Support vector machine 

v Filtration velocity, m h-1 

Symbols  

DOi Dissolved oxygen at filter inlet, mg l-1 



3

DOo Dissolved oxygen at filter outlet, mg l-1

ij Kronecker delta function

Additive white noise

Length-scale  for the RBF kernel

2
f

Variance  for the RBF kernel

2
n

Gaussian noise variance

36

1. Introduction37

The substitution of conventional irrigation water by reclaimed effluents in areas of low38

water availability is a common management strategy despite of its potential pollution 39

and health hazards (Ait-Mouheb et al., 2018). Among the different irrigation techniques40

used, micro-irrigation shows several environmental and health advantages related 41

mainly to the reduced effluent exposure to humans and plants. However, one of the 42

most important disadvantages of applying effluents with micro-irrigation is emitter 43

clogging which can cause irrigation nonuniformity and system failure (Trooien & Hills, 44

2007). In order to avoid emitter clogging, micro-irrigation systems require effective45

filtration (Nakayama, Boman, & Pitts, 2007) and sand media filters are the standard for 46

the protection of micro-irrigation systems using effluents (Trooien & Hills, 2017).47

48

The level of dissolved oxygen (DO) decreases with the increased organic matter,49

commonly present in wastewaters. So, DO, which can be determined easier and quicker 50

using sensors, is an indicator of irrigation water quality. Low DO values in the irrigation 51

water cause root oxygen deficiency, leading to low yields (Bhattarai, Midmore, & 52

Pendergast, 2008) and low quality (Zhou, Zhou, Xu, Muhammad, & Li, 2019). Usually, 53
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DO increases through micro-irrigation systems, especially when water is released by the 54 

emitters (Maestre–Valero & Martínez-Álvarez, 2010). The DO increase is slight in sand 55 

media filters but it is considerably affected by the filter performance (Elbana, Ramírez 56 

de Cartagena, & Puig-Bargués, 2012; Solé–Torres, Puig–Bargués, Duran–Ros, Arbat, 57 

Pujol, & Ramírez de Cartagena, 2019b). Thus, the development of accurate models for 58 

forecasting DO at filter outlets can be very useful for the appropriate management of 59 

both sand filter performance and irrigation water quality. Optimal efficiency of drip 60 

irrigation systems is required for implementing smart irrigation techniques which aim to 61 

provide optimum use of the water resources (Canales-Ide, Zubelzu & Rodríguez-62 

Sinobas, 2019).  63 

 64 

In this regard, advanced techniques such as artificial neural networks (ANN) (Puig–65 

Bargués, Duran-Ros, Arbat, Barragán, & Ramírez de Cartagena, 2012), gene expression 66 

programming (GEP) (Martí et al., 2013) and support vector machines (SVM) (García–67 

Nieto, García–Gonzalo, Arbat, Duran–Ros, Ramírez de Cartagena, & Puig–Bargués, 68 

2016) have been used for predicting the filtered volume and the value of dissolved 69 

oxygen at sand media filter outlets. Recently, other machine learning techniques such as 70 

gradient boosted regression have been applied to different aspects of the filter operation 71 

(García–Nieto et al. 2017, 2018). 72 

  73 

Thus, the application of an innovative methodology that combines a Gaussian process 74 

regression (GPR) approach (Rasmussen, 2003; Kuhn & Johnson, 2018; Ebden, 2015) 75 

with a metaheuristic optimisation algorithm Differential Evolution (DE) (Storn & Price, 76 

1997; Price, Storn, & Lampinen, 2005; Feoktistov, 2006; Chakraborty, 2008; Simon, 77 



5 

 

2013) to foretell the outlet dissolved oxygen in sand media filters used in 78 

microirrigation systems could be an interesting approach since this issue has not yet 79 

been yet addressed in previous investigations. GPR is a machine learning method 80 

developed on the basis of statistical and Bayesian theory. As a nonparametric regression 81 

method it can be considered a complex model with capability to model nonlinearities 82 

and variable interactions (Rasmussen, 2003; Ebden, 2015). When GPR is compared 83 

with other machine learning techniques, it has several advantages (Rasmussen & 84 

Williams, 2006): (1) it has an important generalisation capacity; (2) the hyperparameters 85 

in GPR can be self-adaptively calculated; and (3) the GPR outputs have clear 86 

probabilistic meaning. In this study, the DE method is applied to optimise the GPR 87 

hyperparameters. Previous researches show that GPR is an effective tool in many fields, 88 

such as irrigation mapping (Chen, Lu, Luo, Pokhrel, Deb, Huang, & Ran, 2018), wind 89 

engineering and industrial aerodynamics (Ma, Xu, & Chen, 2019), applied geophysics 90 

(Noori, Hassani, Javaherian, Amindavar, & Torabi, 2019), applied demography (Wu & 91 

Wang, 2018), psychology (Schulz, Speekenbrink, & Krause, 2018), mechanical 92 

engineering (Kong, Chen, & Li, 2018), environmental engineering (Liu, Yang, Huang, 93 

Wang, & Yoo, 2018), tracking and positioning (Ko, Klein, Fox, & Haehnelt, 2007a), 94 

deformation observation (Rogers & Girolami, 2016), system identification and control 95 

(Ko, Klein, Fox, & Haehnelt, 2007b) and so on. However, it has not been used for 96 

predicting micro-irrigation sand filter performance. 97 

 98 

The main objective of the this study was to predict the outlet dissolved oxygen (DOo) in 99 

sand media filters operating with reclaimed effluents by using Gaussian processes (GPs) 100 

in combination with the DE parameter optimisation technique. 101 
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The structure of this paper is organised as follows: section 2 introduces the experimental 102 

setup and variables involved in this study as well as the GPR method; section 3 103 

describes the results obtained with this model by comparing the GPR results with the 104 

experimental measurements, including the importance of the input variables and 105 

validating the efficacy of the proposed approach; and finally, section 4 concludes this 106 

study with a list of main findings. 107 

  108 

2. Materials and methods 109 

2.1. Experimental setup 110 

The experimental setup was composed of 3 media filters fed with the reclaimed effluent 111 

from the wastewater treatment plant of Celrà (Girona, Spain). Each filter had a different 112 

underdrain design: inserted domes (model FA-F2-188, Regaber, Parets del Vallès, 113 

Spain), arm collector (model FA1M, Lama, Gelves, Spain) and porous media (prototype 114 

designed by Bové et al. (2017) (see Fig. 1). 115 

 116 

Silica sand CA-07MS (Sibelco Minerales SA, Bilbao, Spain) with an effective diameter 117 

(De, size opening which will pass 10% of the sand) of 0.48 mm and a coefficient of 118 

uniformity (ratio of the sizes opening which will pass 60% and 10% of the sand 119 

through, respectively) of 1.73 was used as filtration media in the three filters. Media 120 

heights of 200 and 300 mm, were tested for each filter. 121 

 122 

Each of the three filters operated alone for 8 h per day each. Nominal filtration 123 

velocities 30 and 60 m h-1 were tested in each filter. Each combination of media height 124 

and filtration velocity was tested during 250 h. The filters were automatically 125 
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backwashed when the pressure loss across them reached 50 kPa for more than 1 min. 126 

The backwashing was carried out for 3 min with previously filtered effluent that was 127 

chlorinated for achieving 4 ppm target chlorine concentration. 128 

 129 

Filtered and backwashed effluent volumes, pressures across the filter and some effluent 130 

quality parameters before (pH, temperature, electrical conductivity, DO and turbidity) 131 

and after (only DO and turbidity) being filtered were measured and recorded every 132 

minute in a supervisory control and data acquisition system (SCADA) fully described 133 

by Solé-Torres et al. (2019a). Once the experiment started, the performance of the 134 

effluent quality sensors was assessed periodically by comparing its measurements with 135 

results obtained by manual sampling and, if necessary, they were calibrated following 136 

manufacturer recommendations. 137 

 138 

Fig. 1 - Picture of the experimental set-up with the three filter designs: (a) red: arm 139 

collector; (b) blue: inserted domes; and (c) green: porous media prototype. 140 

 141 

2.2. Variables involved in the model and materials tested  142 

The main objective of this study was to compute the outlet dissolved oxygen as a 143 

function of different experimentally measured parameters that the GPR–based model 144 

needs as input. The output variable was the outlet dissolved oxygen (DOo), which is an 145 

indicator of the quality of the filtered effluent and it is directly related to the organic 146 

load and the hypoxic risk of irrigation water.  147 

 148 
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The new predictive model used eight different operating variables commonly used for 149 

characterising sand media filter performance as input variables (see Table 1) (Puig-150 

Bargués et al., 2012). After removing samples with missing data from the initial 637 151 

samples, 547 satisfactory samples were obtained. 152 

 153 

Table 1 - Set of operation physical input variables used in this study and their names 154 

along with their mean and standard deviation. 155 

 156 

The operating input variables are as follows: 157 

 Filter: three filter designs (porous, dome and arm collector underdrains) as 158 

described in section 2.1. This is a categorical variable. 159 

 Height of the filter bed (mm): an operating variable for sand filters. Two 160 

different filter bed heights of 200 and 300 mm were tested for each filter. 161 

 Filtration velocity (m h-1): a operating variable related to filter operation. Two 162 

filtration velocities (30 and 60 m h-1) were tested for each filter since these 163 

follow within the common range of velocities suggested by the manufacturers.  164 

 Electrical conductivity ( S cm-1): a general measure of water quality related to 165 

salinity, which is a constraint in microirrigation (Tal, 2016).  166 

 Dissolved oxygen (mg l-1): a variable related to the ability of water to support 167 

aerobic processes. This is a common parameter used for both controlling the 168 

biological treatment in wastewater plants and measuring irrigation water quality.  169 

 pH: a measure of water acidity or alkalinity. 170 



9

Water temperature (ºC): temperature of the effluent at the filter inlet.171

Input turbidity (FNU): a key parameter for water quality that measures water 172

clarity, which depends on suspended solid load. 173

Filtered volume (m3): a measure of the volume of effluent filtered in each 174

filtration cycle.175

176

2.3. Gaussian process regression (GPR)177

GPRs are Bayesian state-of-the-art tools for discriminative machine learning (i.e., 178

regression, classification, and dimensionality reduction). GPs assume that a GP prior 179

governs the possible unobserved latent functions and the marginal likelihood of the 180

latent function. Thus, a priori observations shape this to produce posteriori probabilistic 181

estimates. Consequently, the joint distribution of training and test data is a 182

multidimensional GP, and the predicted distribution is estimated by conditioning based 183

on training data (Camps–Valls, 2016; Witten, Frank, Hall, & Pal, 2016). 184

185

To fix ideas, a Gaussian distribution is a probability distribution that explains the 186

random variables including vectors and scalars. On the one hand, this kind of 187

distribution is stated exactly through its mean and covariance: 2,x NN , . On the 188

other hand, a GP can be seen as a generalisation of the Gaussian probability distribution 189

and it applies over functions. From the functional space point of view, a GP is an 190

ensemble of random variables, that is to say, any finite number having a joint Gaussian 191

distribution.192

193
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2.3.1. The fundamentals of GPR194

Let us assume that , / 1,2,...,i iD y i Nx depicts the training dataset of the 195

Gaussian approach and the feature vectors n
ix comprises the extracted features or 196

the merged features and the pertinent segregation parameters. The observed target 197

values iy reproduce the outlet dissolved oxygen measured in a filtration process, 198

respectively. 1

N
i î

X x depicts the input matrix of training dataset, 199

1

N
i i

yy symbolises the output vector. A GP f x defines a priori over functions, 200

which can be converted into a posteriori over functions once some data is obtained.  A 201

GP can be fully stated exactly by using its mean function m x and covariance function 202

,k x x . In this way, the Gaussian process is indicated as (Rasmussen & Williams, 203

2006; Marsland, 2014; Witten, Frank, Hall, & Pal, 2016):204

, ,f GP m kmGPx x x x (1)

so that205

,
T

m E f

k E f m f m

x x

x x x x x x

(2)

The mean function m x depicts the anticipated value of the function f x at the input 206

point x . The covariance function ,k x x can be taken into account as a measurement 207

of the confidence level for m x , and it is required that ,k be a positive definite 208

kernel. In general, the mean function is set to be zero for notation simplicity, but this is 209

also reasonable if there is no a priori knowledge about the mean variable, as is the case 210

in this study.211
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The choice of the covariance function is critical for the GP. It describes the assumptions 212

about the latent regression model and, therefore, is also referred to as the prior213

(Schneider & Ertel, 2010). In this research, the affine mean function and squared-214

exponential (SE) covariance function are expressed as follows (Shi & Choi, 2011; 215

Witten, Frank, Hall, & Pal, 2016; Kuhn & Johnson, 2018):216

2
2

SE 2, exp
2fk
l

x x
x x

(3)

being l the characteristic length-scale and 2
f the signal variance. The parameter 217

selection of the SE covariance function has a direct effect on the performance of the GP. 218

Here, l controls the horizontal scale over which the function changes, and 2
f controls 219

the vertical scale of the function.220

221

The function values f x are not achievable in most applications. In practice, only the 222

noisy observations are available and they are given by:223

fy x (4)

so that is the additive white noise. Besides, suppose that Gaussian noise is 224

independent and identically distributed such that 20, nN 20, nN 0,N , where n is the 225

standard deviation of this noise. Any finite number of the observed values can also 226

constitute an individual Gaussian process as given by (Witten, Frank, Hall, & Pal, 2016; 227

Vidales, 2019):228

2 2, , 0, ,n ij n ijGP m k GP ky x x x x xGP mGP (5)

where ij is the Kronecker delta function described as:229
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1 if
0 otherwiseij

i j
230

The purpose of the GPR model is to foretell the function value *f and its variance 231

*cov f given the new test point *x . In this sense, *X depicts the input matrix of test 232

dataset and *N the size of test dataset. Taking into account the definition of GP, the 233

observed values and the function values at new test points obey a joint Gaussian 234

previous distribution which can be expressed as:235

2 *

* * * *

, ,
0,

, ,

nK X X I K X X
N

K X X K X X

y
f

N 0
KKKK

0,0
(6)

where:236

,K X X : is the covariance matrix of training dataset;237

* *,K X X : is the covariance matrix of test dataset;238

*,K X X : depicts the covariance matrix obtained from the training and test 239

dataset. Furthermore * *, ,
T

K X X K X X .240

Since y and *f are jointly distributed, it is possible to condition the prior on the 241

observations (6) and determine how likely are predictions for *f . This can be expressed 242

as:243

* * * *, , ,covX X Nf y f f*f *,cN (7)

where244

1* * * * 2, , , , nE X X K X X K X X If f y y (8)
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1* * * * 2 *cov , , , ,nK X X K X X K X X I K X Xf  (9) 

The subsequent distribution can be used for the forecast of new test input points. 245 

Indeed, *f  is the predicted output value of the GPR model for test point. Additionally, 246 

confidence interval (CI) of the predicted output value can be calculated through the 247 

variance *cov f . For instance, the 95% CI can be determined by 248 

* * * *2 cov , 2 covf f f f . As a consequence, the GPR model not only 249 

supplies the predicted values but also furnishes the confidence level of the predicted 250 

results. 251 

 252 

Finally, the GPR model is a nonparametric model since the predicted outputs rely only 253 

on the inputs and the observed values y . In this way, parameters , ,f nl  are 254 

termed the hyperparameters of the GPR model. 255 

 256 

2.3.2. Hyperparameter estimation 257 

In order to carry out this study, the dataset was divided into a training set with 80% of 258 

the data, and a testing set with the remainder 20% of the data. A model was constructed 259 

and optimised with the training data. It was then tested with the test dataset and the 260 

optimisation of the parameters was performed with the help of the differential evolution 261 

(DE) technique. 262 

 263 

The predictive performance of GPR model depends exclusively on the suitability of the 264 

chosen kernel. To estimate the kernel hyperparameters, an exhaustive search over a 265 
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discrete grid of values can be used, but this can be quite slow. The most usual method 266

considers an empirical Bayes approach that maximises the marginal likelihood. That is, 267

the optimal hyperparameters are achieved by maximising the log marginal likelihood. 268

The marginal likelihood P Xy is obtained, using Bayes’ rule, as:269

,P X P f X P f X dfy y (10)

The term marginal likelihood refers to the marginalisation over the function values f . 270

Since 0, ( , )K X Xy ((0, , the log marginal likelihood can be written as:271

11 1log ( ) log log 2
2 2 2y y

Np X K Kyu y y u u1 11) log log 21 11 N) log) log11 11) log) log) log1 logloglog
(11)

where 2 , ( , )y nK K I K K X X   and uu is the determinant. In this expression, the 272

first term is a data-fit term, the second term (always positive), and subtracted from it, is 273

a model complexity penalty, and the last term is simply a normalisation constant. This 274

expression therefore shows that the criterion of maximum marginal likelihood avoids 275

the problem of over-fitting because if two models are explaining the observed data with276

the simplest one being chosen (Murphy, 2012; Witten, Frank, Hall, & Pal, 2016).277

278

Following parameter initialisation, the optimal hyperparameters 279

arg max log ,p Xy can be calculated using any standard evolutionary280

optimiser. In this study, the metaheuristic optimisation algorithm, denominated the DE 281

algorithm (Storn & Price, 1997; Price, Storn, & Lampinen, 2005; Feoktistov, 2006; 282

Simon, 2013), was used. The process is shown in Fig. 2.283

284

Fig. 2 – GPR Model selection using the DE optimisation technique.285
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2.4. The goodness–of–fit of this approach 286 

Eight predicting variables were used (see section 2.2) to construct the new GPR–based 287 

model. The output predicted variable was the outlet dissolved oxygen. To predict the 288 

outlet dissolved oxygen from other input operating parameters, it is necessary to choose 289 

the model that best fits the experimental data. To determine the goodness–of–fit, the 290 

criterion considered here was the coefficient of determination 2R (Picard & Cook, 1984; 291 

Freedman, Pisani, & Purves, 2007). A dataset takes values it , each of which has an 292 

associated modelled value iy . The former are usually termed the observed values and 293 

the latter often referred to as the predicted values. The dataset variability is measured 294 

through different sums of squares as follows (Freedman, Pisani, & Purves, 2007): 295 

 
n

i
itot ttSS

1

2 : the total sum of squares, proportional to the sample variance. 296 

 
n

i
ireg tySS

1

2 : the regression sum of squares, also termed the explained 297 

sum of squares. 298 

 
n

i
iierr ytSS

1

2 : the residual sum of squares. 299 

Note that in the previous sums, t is the mean of the n observed data: 300 

n

i
itn

t
1

1
 

(12) 

Taking into account the above sums, the coefficient of determination is defined via: 301 

2 1 err

tot

SSR
SS

 
(13) 
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Thus, a coefficient of determination value of 1.0 indicates that the regression curve fits 302

the data perfectly.303

304

The value of R2 was calculated using the optimised model with the testing dataset. The 305

module Gpy from the Gaussian process framework found in Python (Gpy, 2014; 306

Martin, 2018), along with the DE technique (Storn & Price, 1997; Price, Storn, & 307

Lampinen, 2005; Simon, 2013) were used to construct the final regression model.308

309

It is well known that the GPR technique depends strongly on the following 310

hyperparameters (Friedman & Roosen, 1995; Aggarwal, 2015; Larose, 2015; Witten, 311

Frank, Hall, & Pal, 2016; Tan, Steinbach, Karpatne, & Kumar, 2018):312

Variance ( 2
f ):the signal variance that controls the vertical scale of the kernel 313

function.314

Lengthscale ( ):the characteristic length-scale that controls the horizontal scale 315

over which the kernel function changes.316

Gaussian noise variance (
2
n ): if is the additive white noise and the Gaussian 317

noise is independent and identically distributed such that 
20, nN 20, nN 0,N

, then 
2
n318

is the variance of this noise. 319

1. A novel GPR–based model was constructed selecting as the dependent variable 320

the outlet dissolved oxygen from the other eight remaining variables which were 321

designated as input variables in the granular filters (Tien, 2012; Bové, Arbat, 322
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Duran–Ros, Pujol, Velayos, Ramírez de Cartagena, & Puig–Bargués, 2015) and323

studying their effect in order to optimise calculation by analysing 2R .324

325

As previously mentioned, this GPR technique is greatly dependent on the326

hyperparameters: variance ( 2 ); lengthscale ( ) and the Gaussian noise variance ( 2
n ). 327

The traditional way of performing hyperparameter optimisation has been grid search, or 328

a parameter sweep, which is simply an exhaustive searching through a manually 329

specified subset of the hyperparameter space of a learning algorithm. In this study, the 330

metaheuristic optimisation algorithm, the DE algorithm (Storn & Price, 1997; Price, 331

Storn, & Lampinen, 2005; Feoktistov, 2006; Simon, 2013) was used for 332

multidimensional real-valued functions but it did not use the gradient of the problem 333

being optimised, thus the DE did not require the optimisation problem to be 334

differentiable, as is required by classic optimisation methods such as the gradient 335

descent and quasi-Newton methods. Like other algorithms in this evolutionary category, 336

the DE maintains a population of candidate solutions, which are recombined and 337

mutated to produce new individuals which are chosen according to the value of their 338

performance function (Storn & Price, 1997). What characterises DE is the use of test 339

vectors, which compete with individuals in the current population in order to survive.340

341

Additionally, the importance of the variables was studied. As categorical variables are 342

present, the chosen method depends on removing a variable, evaluating the new model 343

performance and comparing it with the performance of the full model. The greater the 344

decrease in the goodness-of-fit parameter, the greater the importance of the removed 345

independent variable.346
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3. Results and discussion347

As stated earlier, the outlet dissolved oxygen was used as output dependent variable of 348

the proposed GPR–based model. The prediction performed from the independent 349

variables (Tien, 2012) was satisfactory.350

Table 2 shows the optimal hyperparameters of the best fitted GPR–based model found 351

with the DE technique. The objective function value, in this case the marginal 352

likelihood was optimised to a value of 239 using the DE technique using the training 353

set.354

355

Table 2 - Optimal hyperparameters of the best fitted GPR–based model found with the 356

DE technique: variance 2
f and lengthscale for the RBF kernel, the Gaussian noise 357

variance 2
n for the optimised models for the training set.358

359

Taking into account the results achieved, the GPR technique in combination with the 360

DE meta-heuristic optimisation method was able to build models with a high 361

performance for estimating the outlet dissolved oxygen in micro-irrigation sand filters 362

fed with effluents using the test set. Indeed, the coefficient of determination (R2) of the 363

fitted GPR model was of 0.9023 with a correlation coefficient of 0.9499 for the outlet 364

dissolved oxygen.365

366

A graphical representation of the terms that formed the best fitted GPR–based model for 367

the outlet dissolved oxygen (DOo) is shown below in Figs. 3 and 4. The first order 368

terms, that is, the variations of the dependent variable when all the variables but one are 369
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constant (its median value) is shown in Fig 3. The graphs suggest that the variable DOi 370 

is the main influence for the variations in DOi, while other variables as pH and 371 

temperature do not significantly affect this variable as these curves are almost constant. 372 

The same effect can be shown in the surfaces that represent the second order 373 

relationships, that is, leaving all the independent variables constant but two. Again, it 374 

can be seen that the main influence in rapid change of output variable was due to the 375 

DOi.  376 

 377 

Fig. 3 - First-order terms for some of the independent variables for the dependent 378 

variable output dissolved oxygen (DOo). 379 

 380 

Fig. 4 - Second-order terms of some of the independent variables for the dependent 381 

variable output dissolved oxygen (DOo). 382 

 383 

The significance rankings for the input variables predicting the outlet dissolved oxygen 384 

(output variable) in this complex nonlinear study are shown in Table 3 and Fig. 5. As 385 

there are some categorical variables such as the filter type involved, the method where 386 

discarding one independent variable from the model at a time and taking into account 387 

the decrease in goodness-of-fit, in this case, the marginal likelihoods, is shown in Table 388 

3. The result is, that for the GPR model, the most significant variable in DOo prediction 389 

is the DOi, followed by (in order) the type of filter, water temperature, height of the 390 

filter bed, pH, velocity, turbidity, and electrical conductivity. 391 

 392 
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Table 3 - Log marginal likelihood variation value between the full model and the model 393 

without the variable for the outlet dissolved oxygen (DOo) model. 394 

 395 

Fig. 5 - Relative relevance of the variables in the GPR model for the outlet dissolved 396 

oxygen (DOo). 397 

 398 

As it could be anticipated, DOo was highly dependent on DOi since organic pollutants 399 

are retained across filter media and chlorination of filter backwashing water reduced 400 

microorganisms level, and therefore less oxygen is consumed and dissolved oxygen 401 

could increase. However, DO removal depended also on media particle size (Elbana, 402 

Ramírez de Cartagena, & Puig-Bargués, 2012) and on the interaction between filter type 403 

and filtration velocity, considering input inlet DO as a co-variable (Solé–Torres, Puig–404 

Bargués, Duran–Ros, Arbat, Pujol, & Ramírez de Cartagena, 2019b). The filter type had 405 

also a contribution on the results since different underdrain designs affect backwashing 406 

performance and frequency (Burt, 2010), which is directly related to DO removal 407 

(Enciso-Medina, Multer, & Lamm, 2011; Elbana, Ramírez de Cartagena, & Puig-408 

Bargués, 2012). The third parameter is temperature, but this is also logical since DO 409 

values are temperature dependent. 410 

 411 

The importance of DOi for estimating DOo has been previously observed by Martí et al. 412 

(2013) and García–Nieto et al. (2016), working with different types of models. Martí et 413 

al. (2013) observed that pH, EC and pressure loss, but not temperature, García–Nieto et 414 

al. (2016) found that inlet turbidity and pressure loss were also considered as influential 415 
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parameters for predicting DOo. Thus, the results highlight the importance of correctly 416 

assessing the performance of each prediction model. 417 

  418 

In conclusion, this research was able to estimate the outlet dissolved oxygen (output 419 

variable) in agreement with the actual experimental values observed using the GPR–420 

based model with accuracy as well as success. Indeed, Fig. 6 shows the comparison 421 

among the DOo values observed and those predicted by using the GPR model with the 422 

testing set. The values predicted by the model using the samples of the testing dataset 423 

show a very good agreement with the observed values. As it can be seen, predicted 424 

values are very close to the observed values or within the 95% confidence interval. This 425 

is to be expected since the coefficient of determination was equal to 0.90. Therefore, in 426 

order to achieve the best effective approach in this regression problem it is mandatory 427 

the use of a GPR model with a DE optimisation technique.  428 

 429 

Fig. 6 - Observed and predicted DOo values, taking into account the confidence interval, 430 

by using the GPR–based model with the testing set ( 2 0.9023R ). 431 

 432 

4. Conclusions 433 

Taking into account the experimental observations and numerical predictions, the main 434 

findings of this study can be summarised as follows: 435 

 Firstly, the development of novel data-driven diagnostic techniques is very 436 

useful to predict the DOo from the experimental measurements. In this sense, the 437 
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new GPR–based method used here is useful to evaluate the outlet dissolved 438 

oxygen in sand media filters used in microirrigation systems.  439 

 Secondly, the assumption that the outlet dissolved oxygen diagnosis can be 440 

accurately modelled by using a hybrid GPR–based model in granular filters was 441 

confirmed.  442 

 Thirdly, a reasonable coefficient of determination (0.9023) was obtained when 443 

this GPR–based model was applied to the experimental dataset corresponding to 444 

the DOo. 445 

 Fourthly, the significance order of the input variables involved in the prediction 446 

of the outlet dissolved oxygen in sand media filters was set. This is one of the 447 

main findings in this work. Specifically, input variable dissolved oxygen (DOi) 448 

could be considered the most influential parameter in the prediction of the DOo. 449 

In this regard, it is also important to highlight the influential role of the type of 450 

filter in the dependent variable outlet dissolved oxygen. 451 

 Finally, the influence of the hyperparameters setting of the GPR approach on the 452 

DOo regression performance was set up.  453 

In summary, this methodology could be applied to other filtration processes with similar 454 

or distinct filter media types with success, but it is always necessary to take into account 455 

the characteristics of each filter and experiment. Consequently, an effective GPR–based 456 

model is a good practical solution to the problem of the determining DOo in the sand 457 

media filters usually used in microirrigation systems. 458 

 459 

 460 
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Fig. 1 - Picture of the experimental set-up with the three filter designs: (a) red: arm 

collector; (b) blue: inserted domes; and (c) green: a porous media prototype. 
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Fig. 2 – GPR Model selection using the DE optimisation technique. 

 



 
 
 

 

Fig. 3 - First-order terms for some of the independent variables for the dependent 

variable output dissolved oxygen (DOo). 



 
 

 

 

 

 

Fig. 4 - Second-order terms of some of the independent variables for the dependent 

variable output dissolved oxygen (DOo). 



 

 

 

 

 
Fig. 5 - Relative relevance of the variables in the GPR model for the outlet dissolved 

oxygen (DOo). 



 

 

 

 

 

 

 

Fig. 6 - Observed and predicted DOo values, taking into account the confidence interval, 

by using the GPR–based model with the testing set ( 2 0.9023R ). 

 

 

 

 



Table 1 - Set of operation physical input variables used in this study and their names 

along with their means and standard deviations.

Input variables Name of the 
variable Mean Standard 

deviation
Filter media type Filter -- --
Height of the filter bed (mm) H 256.31 49.601
Filtration velocity (m h-1) v 49.909 14.174
Electrical conductivity ( S cm-1) CEi 2575.6 497.68
Input dissolved oxygen (mg l-1) DOi 3.3529 0.9860
pH pHi 7.3526 0.2229
Input turbidity (FNU) Turbi 6.1029 2.5898
Water temperature (ºC) Ti 20.002 3.3486

Table 2 - Optimal hyperparameters of the best fitted GPR–based model found with the 

DE technique: variance 2
f and length-scale for the RBF kernel, the Gaussian noise 

variance 2
n , and the corresponding objective function value for the optimized models 

for the training set. 

Output 
variable

2
f

2
n Objective 

function value
DOo 1.57 1.97 0.0636 239

Table



 

 

 

Table 3 - Log marginal likelihood variation value between the full model and the model 

without the variable for the DOo model. 

Variable Likelihood variation 
Input dissolved Oxygen (mg l-1) 589.62 
Filter 123.51 
Water temperature (ºC)  37.77 
Height (mm) 332.1 
pH 32.45 
Velocity (m h-1) 17.31 
Input turbidity (FNU) 15.96 
Electrical Conductivity (μS cm-1) 8.25 

 


