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Compositional data carry relative information. Hence, their statistical anal-1

ysis has to be performed on coordinates with respect to a log-ratio basis.2

Frequently, the modeler is required to back transform the estimates obtained3

with the modeling to have them in the original units such as euros, kg or4

mg/liter. Approaches for recovering original units need to be formally intro-5

duced and its properties explored. Here we formulate and analyze the proper-6

ties of two procedures: a simple approach consisting of adding a residual part7

to the composition and an approach based on the use of an auxiliary variable.8

Both procedures are illustrated using a geochemical data set where the original9

units are recovered when spatial models are applied.10

KEY WORDS: Aitchison geometry, Logratio, Percentages, Simplex, Spatial11

analysis.12

INTRODUCTION: THE PRACTICAL PROBLEM13

Compositional data (CoDa) conveys relative information that is meaningful14

when expressed in the form of ratios between parts. These data are common in15

environmental and geochemical studies when the constituents and compounds16

are described in terms of their concentration in air (Jarauta-Bragulat et al.17

2016), water (Olea et al. 2018), or in terms of solids and other wastes (Edjabou18

et al. 2017). When one decides to analyze a data set X (n×D; rows×columns)19

using compositional methods, such as weight (kg) of different materials in20

waste data, one is assuming that any observation x (a row of X) is a member21

of an equivalence class (Barceló-Vidal and Mart́ın-Fernández 2016). That is,22
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the relative information contained in x is the same as in k · C(x) for any real23

scalar k > 0 and C(·) the closure operation defined by24

C(x) =

(
x1∑
xj
,
x2∑
xj
, . . . ,

xD∑
xj

)
. (1)

This property is known as scale invariance (Aitchison 1986). Importantly,
CoDa occupy a quotient space (Barceló-Vidal and Mart́ın-Fernández 2016).
A representative of the quotient space is the D-part unit simplex SD =
{p ∈ RD : pj > 0, j = 1, . . . , D;

∑D
k=1 pk = 1}, that is, in practice,

for convenience, compositions are commonly expressed as a vector of pro-
portions p ∈ SD. Following Barceló-Vidal and Mart́ın-Fernández (2016), a
logarithmic isomorphism between the quotient spaces SD, which is governed
by Aitchison geometry (Pawlowsky-Glahn et al. 2015c), and the hyperplane

ZD = {z ∈ RD :
∑D

j=1 zj = 0} can be defined. Accordingly, a composition x
can be expressed in terms of the vector z = (ln(x1/g(x)), . . . , ln(xD/g(x))),
where g(x) is the geometric mean of x. The vectors z ∈ ZD, known as the
centered log-ratio (clr) vectors (Aitchison 1986), are in a hyperplane of dimen-
sion D − 1. The inner product, distance and norm in SD can be defined via
the clr variables (Barceló-Vidal and Mart́ın-Fernández 2016). These metric
elements are used to construct orthonormal log-ratio bases in SD. A compo-
sition x can be expressed in terms of its corresponding orthonormal log-ratio
(olr) coordinates y = olr(x) = (y1, . . . , yD−1) (Egozcue and Pawlowsky-Glahn
2019; Mart́ın-Fernández 2019), where, for example

yj =

√
D − j

D − j + 1
ln

xj

D−j

√∏D
k=j+1 xk

, j = 1, . . . , D − 1.

Ratios and logratios cannot be computed when one of the parts is zero or25

missing. Methods to deal with this problem have been described in numer-26

ous papers. Readers will find a general description in Palarea-Albaladejo and27

Mart́ın-Fernández (2015). Importantly, a composition x and any member of28

its equivalence class have the same log-ratio coordinates (Barceló-Vidal and29

Mart́ın-Fernández 2016). Conversely, given a vector of coordinates y = olr(x)30

one can easily recover the original composition x using the procedure31

x = (

D∑
j=1

xj) · C(olr−1(y)). (2)

The term C(olr−1(y)) is a vector of proportions p ∈ SD. The vector p takes32

the same value for all the members in an equivalence class. On the other33

hand, the term (
∑
xj) determines the particular composition x recovered using34

information based on its original units.35

It is generally agreed upon that a statistical analysis of CoDa has to be per-36

formed on coordinates with respect to a log-ratio basis (Mateu-Figueras et al.37

2011). In particular, the Aitchison distance da between two compositions x138
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and x2 can be calculated as the Euclidean distance de between their corre-39

sponding vectors of olr-coordinates: da(x1,x2) = de(olr(x1), olr(x2)). Anal-40

ogous definitions can be provided for the norm and scalar product, and for41

the log-ratio normal probability distribution (Mateu-Figueras et al. 2013).42

These basic elements are the basis of most statistical methods. Commonly,43

researchers apply statistical methods such as, among others, linear regression,44

time series, or cokriging, to get predictions or estimates. When the response45

variable is a composition, the statistical method provides the estimates ex-46

pressed in log-ratio coordinates. Frequently, the researcher requires back trans-47

forming these estimates to express them in the original units such as euros,48

kg, mg/liter or percentages. In the latter case, the modeler is dealing with49

non-closed subcompositions where the values are expressed in percentages or50

proportions. However, in all these cases, it is not possible to apply Eq. 2 to the51

estimates because in this case the term based on the original units is unknown.52

In consequence, other different strategies must be explored. This communica-53

tion explores the advantages and disadvantages of two solutions to the units54

recovery problem.55

The work is organised as follows. In Section 2, two different approaches for56

recovering original units are formally introduced. In Section 3, we apply the57

approaches when the goal is the estimate of the expected value of a random58

composition. We illustrate the procedures using a geochemical data set. Section59

4 introduces how to recover the original units when using spatial models such60

as cokriging. Lastly, Section 5 concludes with some final remarks.61

All data analyses discussed in this work were done using the R statistical62

programming environment (R Core-Team 2019).63

TWO DIFFERENT APPROACHES FOR RECOVERING ORIGI-64

NAL UNITS65

Consider n realizations xi, i = 1, 2, . . . , n of a D-part random composition.
That is, consider a set of D-part compositions

X = {xij : i = 1, 2, . . . , n, j = 1, 2, . . . , D} ,

expressed in original units. Importantly, we assume that the units of compo-66

sitions in X are homogeneous. For instance, all values are percentages, ppm,67

mol/L, or µg/m3.68

Available methods for estimation will lead to results in closed form, that69

is, summing to unity, percent, or the like. Here we explore two different ap-70

proaches when the data are in some units that do not sum to a constant, like71

µg/L, or when one is dealing with a non-closed subcomposition.72

First approach: adding a residual part73

A pragmatic approach consists in imposing a total T to the composition and74

performing the estimation using an auxiliary part Res, namely the residual,75
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where Resi = T−
∑D

j=1 xij . The idea of considering the part Res in a compo-76

sitional analysis was used for the first time for different purposes in Buccianti77

et al. (2014) and Buccianti (2015). Note that Resi allows the recovery of the78

original units because it includes the term
∑D

j=1 xij with the information re-79

lated to the original units (Eq. 2).80

Figure 1 shows the complete procedure for recovering the original units of81

an estimate. The residual Res and the total T play a crucial role. Given a set82

X of D-part compositions, the procedure consists of the following steps:83

X*=(X, Res) 
Logratio Estimates 

Back transform 
p*E X*E= T· p*E= (XE, ResE)  

Y* 

Sum(p*E)= 1 

Y*E 
olr1 

olr2 

olr3 sum(X)< T 
COORDINATES ESTIMATES 

olr1 
olr2 

olr3 

RAW DATA 

Figure 1: Procedure diagram for recovering original units of a set X of D-part
compositions when adding a residual part Res, where X∗,p∗E ,X

∗
E ∈ SD+1

and Y∗,Y∗E ∈ RD. Background pictures represent the corresponding spaces
for D = 3.

1. Select a total T, T > maxi{
∑D

j=1 xij}, where i = 1, 2, . . . , n. For each84

sample compute the residual Resi = T −
∑D

j=1 xij , i = 1, 2, . . . , n. Con-85

sider the extended data set adding the residual part. That is, for i =86

1, 2, . . . , n, consider the (D+1)-composition x∗i = (xi1, xi2, . . . , xiD, Resi),87

where
∑D+1

j=1 xij = T.88

2. Express the extended compositions using log-ratio coordinates. That is, for
i = 1, 2, . . . , n, consider the D-vector

y∗i = (olr1(x∗i ), olr2(x∗i ), . . . , olrD(x∗i )).

3. Apply the statistical method to obtain the corresponding estimate yE
∗.89

4. Back transform the estimate to obtain the corresponding vector of propor-90

tions pE
∗ = (pE

∗
1, pE

∗
2, . . . , pE

∗
D, pE

∗
D+1). The part pE

∗
D+1 is the proportion91

estimated for the residual.92
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5. Multiply the vector of proportions pE
∗ by T to recover the original total:93

xE
∗ = T · pE

∗ . The parts (xE1, xE2, . . . , xED) are the estimated compo-94

sition expressed in original units.95

Importantly, when the statistical method allows to work on the simplex, steps96

2 to 4 can be replaced by: apply a simplicial method using raw data to obtain97

the estimated vector of proportions pE
∗. The procedure above describes the98

process for only one estimate but it can be easily extended by repetition to99

a number of estimates, for example, when obtaining the estimates in a linear100

regression model where the composition is the response variable then one has101

an estimate for each observation (row) of the data set.102

Second approach: using an auxiliary real variable103

A different approach results when using an auxiliary real variable related to the104

original units of the composition. Typical examples of these real variables are,105

among others, variables based on the sum of the composition (
∑D

j=1 xj), the106

sum of any subcomposition of the composition (i.e., x3 +x6), or the geometric107

mean ((
∏D

j=1 xj)
1/D). In general, let t be an auxiliary real variable based on108

the original units, that is, one can assume that there exists a function f where109

t = f(x).110

The complete procedure for recovering the original units using an auxiliary111

variable is shown in Fig. 2. The relation t = f(x) allows to recover the original112

units. Given a set X of D-part compositions, the procedure consists of the113

following steps:114

X*=(X, t) Y*=(olr(X), t*) 
olr1 

olr2 

t* 

COORDINATES ESTIMATES 

olr1 
olr2 

t* 

RAW DATA 

Y*E=(olr(X)E, t*E) 

Back transform 
(pE, tE) tE= f(XE)  

Sum(pE)= 1 

Figure 2: Procedure diagram for recovering original units of a set X of D-part
compositions when using an auxiliary real variable t, where pE ∈ SD and
Y∗,Y∗E ∈ RD. Background pictures represent the corresponding spaces for
D = 3.
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1. For i = 1, 2, . . . , n compute ti = f(xi) and create the vector x∗i = (xi1, xi2, . . . , xiD, ti).115

2. Express the extended vector using appropriate coordinates y∗i , for i =116

1, 2, . . . , n. The composition xi is expressed using olr coordinates. The co-117

ordinates of the auxiliary variable are the most appropriate for its sam-118

ple space. For example, when ti =
∑D

j=1 xij a simple logarithm is used119

t∗i = ln(
∑D

j=1 xij).120

3. Apply the statistical method to obtain the corresponding estimate yE
∗.121

4. Back transform the estimate to obtain the corresponding vector of propor-122

tions pE and the value of the auxiliary variable tE . The value tE informs123

about the original units of the composition.124

5. Finally, use the function t = f(x) to recover the original units vector125

(xE1,xE2, . . . ,xED) for the composition estimated. For example, when t =126

x3 + x6, using pE, tE , and the relation p3 + p6 = (x3 + x6)/(
∑
xj), one127

calculates the estimate of the total
∑
xEj to obtain the composition in128

original units xE = (
∑
xEj) · pE.129

Pawlowsky-Glahn et al. (2015b) present a practical example of this procedure.130

Importantly, steps 2 to 4 can be removed from the procedure when the statis-131

tical method is able to provide the estimates pE working on raw data, that is,132

when it is not required to work on log-ratio coordinates. One example of this133

situation is the center of a CoDa set.134

ESTIMATING THE EXPECTED VALUE OF A RANDOM COM-135

POSITION: THE CENTER136

The simplest case where one is dealing with estimates is when the expected137

value of a random composition is analyzed. In this analysis, the expected value138

is estimated by calculating the center of the data set available (Pawlowsky-139

Glahn et al. 2015c). Let X = {xij : i = 1, 2, . . . , n, j = 1, 2, . . . , D} be a data140

set, the sample center is defined as141

g = cen (X) = C

( n∏
i=1

xi1

)1/n

,

(
n∏

i=1

xi2

)1/n

, . . . ,

(
n∏

i=1

xiD

)1/n
 ,

the closure of the columnwise geometric mean. Remarkably, the sample center142

g can be obtained by back transforming the columnwise arithmetic mean of143

the log-ratio coordinates (Pawlowsky-Glahn et al. 2015c). The question that144

automatically arises is the advantages and disadvantages of the two approaches145

introduced above when expressing the estimate of the expected value in orig-146

inal units.147

How to obtain the center by adding a residual part?148

According the definition of center given above, it is not necessary to work on149

coordinates to obtain the estimate of the expected value of a random compo-150

sition. In consequence, the procedure consists of the following steps:151
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1. Select a total T, T > maxi{
∑D

j=1 xij}. Compute the residual Resi = T−152 ∑D
j=1 xij , i = 1, 2, . . . , n and create the composition (xi1, xi2, . . . , xiD, Resi).153

2. Compute the non-closed geometric mean of each part of the extended data154

set, that is, the geometric mean columnwise:155

G∗ = (Gx1, Gx2, . . . , GxD, Gr)

=

( n∏
i=1

xi1

)1/n

,

(
n∏

i=1

xi2

)1/n

, . . . ,

(
n∏

i=1

xiD

)1/n

,

(
n∏

i=1

Resi

)1/n
 .

3. Apply the closure operation to G∗:

g∗ =

(
Gx1
SG

,
Gx2
SG

, . . . ,
GxD
SG

,
Gr

SG

)
· T ,

where SG =
(∑D

j=1Gxj

)
+Gr, T is the closure constant, and, in this case,156

pE
∗ = g∗/T.157

4. Consider only the parts corresponding to the original composition to make
the estimate of the center of x on the original units:

xE = cen (X) =

(
Gx1
SG

,
Gx2
SG

, . . . ,
GxD
SG

)
· T .

Steps 4 and 5 can be replaced by: first, consider the log-ratio coordinates of158

the samples (including the residual) and compute the arithmetic mean of these159

coordinates; second, back transform the vector of arithmetic means and apply160

the closure operation with the closure constant T.161

Four important remarks follow:162

I. Consider two different totals T1 and T2. Following the procedure above
the two estimates of the center for a part xk in x using each of the two
totals are, respectively,

Gxk
SG1

· T1 and
Gxk
SG2

· T2 .

Note that the factors T1

SG1
and T2

SG2
are different (see Appendix A for a163

detailed proof). Consequently, the two expressions in the original units164

of the estimate are different, and the procedure is not invariant under a165

change of the total.166

II. The factor T
SG tends to 1 when the total T tends towards infinity (Appendix167

A). In that case, the estimate of the center g∗ approaches the non-closed168

geometric mean G∗.169

III. Let xN be the random composition obtained by adding a new part to x.
That is, xN = (x1, x2, . . . , xD, xD+1) and x = (x1, x2, . . . , xD). Consider

a total T, T > maxi{
∑D+1

j=1 xij}. Let Res be the residual part for x, and
ResN the residual part for xN ; thus ResN = Res − xD+1. Let xk be a
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single common part in xN and x, that is, k = 1, 2, . . . , D. Following the
procedure above the two estimates of the center for the part xk in x and
xN are, respectively,

Gxk
SG
· T and

Gxk(∑D+1
j=1 Gxj

)
+Gr∗

· T .

Note that the factors 1
SG and 1

(
∑D+1

j=1
Gxj)+Gr∗

are different because the170

geometric mean is a non-linear operator, that is, despite ResN = Res −171

xD+1, its geometric mean Gr∗ is not equal to the subtraction of geometric172

means Gr−GxD+1. Consequently, the two expressions in the original units173

of the estimate are different, and the procedure is not invariant under the174

change of the subcomposition where the part is included.175

IV. Although the procedure gives expressions in the original units of the center176

which are not invariant under change of total or change of subcomposition,177

all of them are in the same equivalence class. Thus, the common subcom-178

position xE–the composition xE
∗ without the residual part–expressed in179

any log-ratio coordinates (i.e., alr, clr and any olr) are invariant and equal180

to the log-ratio coordinates of the corresponding subcomposition of G∗.181

That is, the closed subcomposition is exactly the same regardless of the182

total selected.183

Estimating the expected value using the multiplicative total184

A different approach results when using the concept of multiplicative total185

of a composition. Let x be a D-part composition and m = (
∏D

j=1 xj)
1/D

186

its geometric mean. The value mD informs about the multiplicative total of187

the composition. Importantly, the additive total of a vector is equal to its188

arithmetic mean multiplied by D, the number of parts. That is, the arithmetic189

mean gives information about the additive total. Analogously, the geometric190

mean gives information about its multiplicative total. Note that the sum of the191

vector x/(
∑D

j=1 xj) equals to one, while the vector x/m has a multiplicative192

total equal to one. Therefore, given two arbitrary positive values T and M, the193

vectors (x/
∑D

j=1 xj) · T and (x/m) ·M have additive total T and geometric194

mean M, respectively.195

The procedure to estimate the center in original units consists of the fol-196

lowing steps:197

1. Compute the geometric mean of each part of the data set:

G =

( n∏
i=1

xi1

)1/n

,

(
n∏

i=1

xi2

)1/n

, . . . ,

(
n∏

i=1

xiD

)1/n
 .

Consider the notation G = (Gx1, Gx2, . . . , GxD).198
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2. Apply the closure operation to G to obtain a closed geometric mean or
center of the data set:

g =

(
Gx1∑D
j=1Gxj

,
Gx2∑D
j=1Gxj

, . . . ,
GxD∑D
j=1Gxj

)
.

Here pE = g. That is, it plays the role of the estimate.199

3. For each sample compute the row-wise geometric mean:

mi =

 D∏
j=1

xij

1/D

, i = 1, 2, . . . , n .

Here ti = mi. That is, it plays the role of the auxiliary variable.200

4. Compute the geometric mean of these geometric means:

M =

(
n∏

i=1

mi

)1/n

.

This value informs about the average of the row-wise geometric mean in201

the data set, and it plays the role of the estimate tE = M.202

5. Let mg be the geometric mean of the closed geometric mean g. Scale ac-
cordingly the closed geometric mean g to obtain the estimate of the center
in the original units:

cen (X) =

(
Gx1∑D
j=1Gxj

,
Gx2∑D
j=1Gxj

, . . . ,
GxD∑D
j=1Gxj

)
· M

mg
.

Note that the geometric mean of cen (X) is equal to M.203

Three important remarks follow:204

I. Note that205

cen (X) = (Gx1, Gx2, . . . , GxD) · M

mg · (
∑D

j=1Gxj)

= (Gx1, Gx2, . . . , GxD) · M(∏D
j=1

Gxj∑D

k=1
Gxk

)1/D

· (
∑D

j=1Gxj)

= (Gx1, Gx2, . . . , GxD) · M(∏D
j=1Gxj

)1/D

= (Gx1, Gx2, . . . , GxD) ·

(∏n
i=1

(∏D
j=1 xij

)1/D)1/n

(∏D
j=1Gxj

)1/D
= (Gx1, Gx2, . . . , GxD) .

That is, the estimate of the center expressed in original units is equal to206

the non-closed geometric mean vector.207
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II. Pawlowsky-Glahn et al. (2015a) studied the properties of the T-space de-208

fined by a composition and a total. They state that D-1 olr coordinates yi209

together with the coordinates of a multiplicative total mD
i lead to the same210

distances among individuals as in the space of the logarithms of absolute211

values. Following Coenders et al. (2017), the coordinates of the value mi is212

associated to the projection of vector ln(xi) to the unit normalized vector213

(1/
√
D)1D, where 1D is the D-vector (1, 1, . . . , 1). This vector is orthogo-214

nal to the space of log-ratio coordinates, forming an orthonormal basis of215

the complete real space RD. Let U be a D×D matrix where the first D-1216

columns are the vectors of an olr basis and the last column is the vector217

(1/
√
D)1D. It holds218

(yim
∗
i ) = ln(xi) ·U and ln(xi) = (yim

∗
i ) ·U−1, (3)

where UT ·U = ID and UT = U−1, being ID the D ×D identity matrix,219

and m∗i the coordinates of mi (m∗i =
√
D ln(mi)). That is, the U matrix is220

an orthonormal change of basis from ln(xi) into the RD space (Coenders221

et al. 2017).222

According this approach, the procedure above to estimate the center in
original units is equivalent to: first, olr-transform the compositional data
set; next, extend the data set of log-ratio coordinates by adding the log-
score of the geometric mean

√
D · ln(mi), i = 1, 2, . . . , n , to each vector

of olr-coordinates; compute the arithmetic mean of the extended data set;
back transform the vector of arithmetic means. Where the back transfor-
mation simply consists of a change of basis and the exponential function
(Eq. 3):

xE = exp((yEm
∗
E) ·U−1).

III. The procedure provides an estimate of the center that is invariant under223

change of subcompositions, where the part is included.224

Example: center of a compositional data set225

The Meuse data set (Rikken and Rijn 1993) is included in the “gstat” R-
package (Graler et al. 2016). The data set gives locations (in meters) and
topsoil heavy metal concentrations (in ppm), along with a number of soil and
landscape variables at n = 155 observation locations, collected in a flood plain
of the river Meuse, near the village of Stein (NL). Heavy metal concentrations
of (Cd,Cu, Pb, Zn) have been measured in composite samples of an area of
approximately 15 m × 15 m. Table 1 shows the values in original units (ppm)
of the estimates for the center of the Meuse data set. Because the maximum
value of the sum for the samples in the 4-part subcomposition (Cd,Cu, Pb, Zn)
is 2630, the sequence of 10 different totals considered is

T = {2650, 3150, 3650, 4150, 4650, 5150, 5650, 104, 105, 106} .
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For this sequence the procedure consisting of adding a residual part is applied226

to the 3-part subcomposition (Cu, Pb, Zn) as well as to the 4-part subcompo-227

sition (Cd,Cu, Pb, Zn). Also, the procedure based on the multiplicative total228

is applied to this subcomposition. Table 1 shows that, as expected, the expres-229

sion in original units of the 3-part subcomposition (Cu, Pb, Zn) is different230

when the total changes, and also when one uses the 4-part subcomposition.231

In addition, when the residual part increases, the other four parts diminish,232

approaching the results obtained using the multiplicative total.233

Table 1: Values in original units (ppm) of the estimates for the center of Meuse
data set. (3-sub = 3-part subcomposition; 4-sub = 4-part subcomposition)

Total Subcomp. Cd Cu Pb Zn Resid
2650 3-sub 38.90 135.81 399.40 2075.89

4-sub 1.95 39.02 136.23 400.64 2072.16
3150 3-sub 37.61 131.31 386.18 2594.90

4-sub 1.88 37.65 131.44 386.54 2592.49
3650 3-sub 37.06 129.40 380.55 3102.99

4-sub 1.85 37.09 129.49 380.81 3100.77
4150 3-sub 36.72 128.20 377.01 3608.07

4-sub 1.84 36.74 128.27 377.22 3605.94
4650 3-sub 36.48 127.36 374.55 4111.62

4-sub 1.82 36.49 127.42 374.72 4109.55
5150 3-sub 36.30 126.73 372.72 4614.25

4-sub 1.82 36.31 126.78 372.86 4612.22
5650 3-sub 36.16 126.25 371.30 5116.29

4-sub 1.81 36.17 126.30 371.43 5114.29
104 3-sub 35.62 124.36 365.73 9474.29

4-sub 1.78 35.62 124.38 365.79 9472.42
105 3-sub 35.10 122.55 360.41 99481.94

4-sub 1.76 35.10 122.55 360.42 99480.17
106 3-sub 35.05 122.39 359.93 999482.62

4-sub 1.75 35.05 122.39 359.94 999480.87
Mult. total 4-sub 1.75 35.05 122.37 359.88

Residual versus multiplicative total234

The results shown in the previous sections suggest an analysis of the relation
between the residual part and the multiplicative total of a composition. Let x
be a D-part composition and mD =

∏D
j=1 xj its multiplicative total. Let T be

a fixed total and Res = T−
∑D

j=1 xj the corresponding residual part. Once one
has defined a particular orthonormal basis to get the olr coordinates of x, one
can assume that the variable added by the residual part in the first procedure

is the last olr variable
√

D
D+1 · ln

Res
m , whereas in the second procedure the

variable added by the multiplicative total is
√
D · lnm. At this point, one can

assume that T is fixed but as large as we need, that is, the residual Res is as
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large as we need. In consequence, for each sample, it holds that (Appendix B):√
D

D + 1
· ln Res

m
≈
√

D

D + 1
· ln T−

√
D

D + 1
· lnm.

Let a =
√

D
D+1 · ln T and b = −

√
1

D+1 be two constants. For a large T it holds235

that the log-ratio coordinate of the residual part is approximately a linear236

transformation of the log-score of the multiplicative total: a+b·
√
D ·lnm. This237

linear relationship suggests that, when the total is “large”, the results provided238

by any equivariant method applied to the set of log-ratio coordinates including239

a residual part will be related to the results obtained using the multiplicative240

total. Note that the results shown in Table 1 confirm this idea. Because the241

estimation of the mean using log-ratio coordinates is an equivariant method,242

the center obtained for a large T approaches the center using the multiplicative243

total.244

SPATIAL ANALYSIS245

Method for regionalised compositions246

The general case of spatial interpolation can be summarized by the expression247

YE(s) =

n∑
i=1

λ(si) ·Y(si), with

n∑
i=1

λ(si) = 1, (4)

where YE(s) is a vector of estimates, λ(si) is a scalar “weight”, and Y(si) is248

a vector of observations at location si in a spatial domain D, i = 1, 2, . . . , n.249

Observe that the estimate YE(s) is a weighted arithmetic mean. For the CoDa250

case, consider a D-part regionalised composition X (si) observed at locations251

si in the spatial domain, i = 1, 2, . . . , n and the compositional geostatistics252

workflow summarized as follows (Tolosana-Delgado et al. 2019):253

1. Express the compositions X (si), i = 1, 2, . . . , n in one of the log-ratio254

scores Y (si).255

2. Compute variation-variograms of Y.256

3. Fit a valid model, such as the linear model of coregionalization.257

4. Apply cokriging to the log-ratio scores at the nodes of a suitable chosen258

grid.259

5. Back transform the predicted values.260

These available methods for estimation/interpolation of regionalised compo-261

sitions like X will lead to results in closed form, that is, summing to unity,262

percent, or the like, which can be a problem or not desired result when the data263

are in some units, like µg/liter, or data are a non-closed subcomposition ex-264

pressed in proportions, percentages or ppm. That is, the compositions X (si),265

i = 1, 2, . . . , n, in their original units do not sum to a constant. To solve this266

problem one can use one of the two approaches proposed: add a residual part or267
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use an auxiliary variable. Importantly, in both approaches the log-ratio scores268

vector Y (si) will be replaced by the extended vector of coordinates Y∗ (si) to269

compute the variograms and fit a model. In order to avoid an influence of the270

variogram modeling in our study about the two approaches, we replace these271

points (steps 2 and 3) by an interpolation method based on the geographical272

distance. That is, we consider the scalar weight λ(si) is proportional to the273

inverse of the geographical distance between locations s and si, i = 1, 2, . . . , n.274

In consequence, in both approaches the expression to calculate the estimates275

is276

Y∗E(s) =

n∑
i=1

λ(si) ·Y∗(si), where λ(si) =

1
de(s,si)∑n

k=1
1

de(s,sk)

, (5)

and Y∗(si) is respectively obtained by adding the residual part or using the277

auxiliary variable selected. The estimated value in original units XE(s) is278

respectively obtained following the schemes in Fig. 1 and Fig. 2.279

Example: maps using original units280

Table 2 shows the main quantiles and the geometric mean of the Meuse data281

set. In this table, the geometric mean is the non-closed geometric mean vector282

(Table 1).283

Table 2: Basic statistics of Meuse data set (in ppm)

Cd Cu Pb Zn
Minimum 0.2 14.0 37.0 113.0

Q1 0.8 23.0 72.5 198.0
Median 2.1 31.0 123.0 326.0

Geomean 1.8 35.1 122.4 359.9
Q3 3.9 49.5 207.0 674.5

Maximum 18.1 128.0 654.0 1839.0

The values of the statistics suggest, for the four parts, a right skewed distri-284

bution, which is common for geochemical elements. Note that all the values285

in Table 2 are expressed in ppm but the ranges of the parts are very different,286

with Cd being the part taking the smallest values and Zn the largest values. In287

particular, the minimum of Zn is approximately 500 hundred times the min-288

imum of Cd. For this 4-part composition (Cd,Cu, Pb, Zn) we will show the289

results for the element Cu using a kriging method based on the inverse of the290

geographical distance (in meters) between locations with both approaches pro-291

posed and comparing the results for the 3-part subcomposition (Cu, Pb, Zn).292

Analogous results were obtained when the part analyzed was Cd, Pb, and Zn.293

Figure 3 shows the maps with the concentration estimated for element Cu294

using the 4-part composition. Following the same procedure as in previous295

section, the approach consisting of adding a residual part was applied for the296
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sequence of totals T = {2650, 3150, 3650, 4150, 4650, 5150, 5650, 104, 105, 106}.297

Figures 3(a-c) show the results for T = 2650, 4650, 106. The maps state dif-298

ferences between the estimates, where the values decrease when the total T299

increases. No relevant differences are detected when the map for T = 106 (Fig.300

3c) is compared to the map using the multiplicative total (Fig. 3d). This sim-301

ilarity agrees with the performance analyzed for the estimation of the centre302

of a random composition.303
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Figure 3: Map of Meuse data set: concentration estimated in element Cu for
the 4-part composition (Cd,Cu, Pb, Zn). The approach used is: (a) residual
part with T= 2650; (b) residual part with T= 4650; (c) residual part with
T= 106; (d) multiplicative total. The data set gives locations (in meters) and
topsoil heavy metal concentrations (in ppm).

To analyze the error of the estimates in original units one can consider304

the absolute error |Cuobs−Cuest|, where |Cu∗| are respectively the values ob-305

served and estimated for the element Cu in one location. When one wants to306

calculate the accumulated error for all the data, it is preferable to consider the307
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relative error |Cuobs−Cuest

Cuobs
|. Moreover, when the estimated value approaches308

the observed, the relative error approaches the logratio | ln Cuest

Cuobs
|. This term309

can be interpreted as a measure of the contribution of element Cu to the per-310

turbation difference vector between the observed and estimated composition311

(Mart́ın-Fernández et al. 2015, 2019). Table 3 shows the log-ratio accumulated312

error. This error is calculated using the log-ratio expression for the cases of the313

3-part and 4-part composition for some selected totals T and the multiplica-314

tive total. The accumulated error is very large suggesting that the cokriging315

method applied provides poor results in this case. The difference between er-316

rors is very small when the results for the 3-part and 4-part are compared.317

Moreover, in both cases, the error diminishes when the total T increases and318

tends towards the error provided by the multiplicative total approach. This319

behavior is shown in Fig. 4. The difference Cu4 − Cu3 (in ppm) between es-320

timates for part Cu using the 4-part and the 3-part composition decreases321

and approaches to zero when total T tends towards 106. The values of the322

differences are positive indicating that the estimates provided by the 4-part323

composition are greater than the estimates for the 3-part composition. This324

effect is related to the third remark in previous section for the estimation of325

the center of a data set where the subcompositional coherence for the residual326

approach is explored and it is also stated in Table 1.327

Table 3: Log-ratio accumulated error for estimates of Cu using different totals
T and the multiplicative total with the 3-part or the 4-part composition. (3-sub
= 3-part subcomposition; 4-sub = 4-part subcomposition.)

Total T
Composition 2650 3150 4650 105 106 Multiplic.

3-sub 63.37 62.27 61.37 60.37 60.33 60.33
4-sub 63.49 62.30 61.38 60.37 60.33 60.33

CONCLUSIONS AND FINAL REMARKS328

When the purpose is to recover the original units in a compositional analy-329

sis it is necessary to add more information to the relative information pro-330

vided by the olr coordinates of the original D-part composition. Two different331

approaches for units recovery in compositional analysis have been explored:332

adding a residual part and using an auxiliary variable. The approach to add333

a residual part is the simplest technique and it can be considered the most334

intuitive approach for CoDa originally expressed in proportions, percentages335

or ppm. However, we have found that adding a residual part presents undesir-336

able properties that a modeler should be take into account. In particular, the337

estimates in original units obtained using the residual approach:338

– depend on the total T considered;339
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Figure 4: Box plots for the difference in ppm for the estimates of part Cu using
4-part and 3-part compositions when the residual approach is applied for 10
totals, from T=2650 to T=106.

– depend on the number of parts forming the composition; and340

– approach the estimates obtained using the multiplicative total when the341

total T tends towards infinity.342

On the other side, exploring the approach using an auxiliary variable, we found343

that the most sensible option is the information provided by the geometric344

mean of the composition, that is, the variable called multiplicative total. We345

have stated that the set formed by the olr coordinates of the composition and346

the log-score of the multiplicative total are appropriate to obtain estimates347

in original units, being invariant regardless the number of parts forming the348

composition. This approach, being equivalent to work with the log-transformed349

data, has the advantage of providing knowledge about the relative (olr coordi-350

nates) and the absolute information (multiplicative total), information which351

remains hidden otherwise. However, when only one part has been measured (D352

= 1) this approach is inapplicable because there are no multiple proportions353

to generate auxiliary variables.354

Importantly, both approaches provide the same estimates expressed in olr355

coordinates. In other words, the relative information in the estimates is the356

same regardless the approach used, the total T considered and the number of357

parts forming the composition. Only the absolute information of the estimates358

depends on the approach used. In this sense we recommend to use the approach359
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based on the multiplicative total because it splits the estimates into the olr360

coordinates of the composition (relative information) and the score of the361

geometric mean (absolute information).362
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APPENDIX A429

Let f(T ) be the function

f(T ) =
T∑D

j=1Gxj +Gr
,

then it holds430

– f(T) > 1, for any total T. To prove this property one can use the well-
known inequality between the geometric and arithmetic means

D∑
j=1

Gxj +Gr ≤
D∑

j=1

(
1

n

n∑
i=1

xij

)
+

1

n

n∑
i=1

Resi,
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where the equality holds only for a constant series, which is not the case
in our context. Therefore,

D∑
j=1

Gxj +Gr <
1

n

n∑
i=1

 D∑
j=1

xij +Resi

 = T.

– limT−>+∞ f(T) = 1. For any T > 0, the expression

f(T) =
T∑D

j=1Gxj +Gr
=

T∑D
j=1Gxj +

(∏n
i=1

(
T−

∑D
j=1 xij

))1/n ,
is equal to

f(T) =
1∑D

j=1
Gxj

T +

(∏n
i=1

(
1−

∑D

j=1
xij

T

))1/n
,

where limT−>+∞

∑D

j=1
Gxj

T = 0 and limT−>+∞

∑D

j=1
xij

T = 0.431

– f(T) is a monotonically decreasing function. To prove this behaviour one
can prove that the function g(T) = 1/f(T) is a monotonically increasing
function. The derivative function g′(T) is equal to

g′(T) =

1
n

(∏n
i=1

(
T−

∑D
j=1 xij

))1/n(∑n
i=1

1

T−
∑D

j=1
xij

)
T

T2
−

∑D
j=1Gxj +

(∏n
i=1

(
T−

∑D
j=1 xij

))1/n
T2

,

where using the inequality between the geometric and arithmetic mean it
holds

g′(T) >

1
n

(∏n
i=1

(
T−

∑D
j=1 xij

))1/n(∑n
i=1

1

T−
∑D

j=1
xij

)
T− T

T2
=

=

1
n

(∏n
i=1

(
T−

∑D
j=1 xij

))1/n(∑n
i=1

1

T−
∑D

j=1
xij

)
− 1

T

Because the term
∏n

i=1

(
T−

∑D
j=1 xij

)1/n
is the geometric mean of the432

residuals and the term 1
n

(∑n
i=1

1

T−
∑D

j=1
xij

)
is the inverse of the harmonic433

mean of the residuals, the sign of the numerator is positive. Therefore434

g′(T) > 0.435
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APPENDIX B436

Let T be a total fixed but as large as we need, like a “big T”. In consequence, for
i = 1, 2, · · · , n, the residual Resi is as large as we need, that is T >>

∑D
j=1 xij .

For i = 1, 2, · · · , n, it holds that√
D

D + 1
· ln Resi

mi
=

√
D

D + 1
· lnResi −

√
D

D + 1
· lnmi =

=

√
D

D + 1
· ln

T−
D∑

j=1

xj

−√ D

D + 1
· lnmi =

=

√
D

D + 1
· ln

(
T ·

(
1−

∑D
j=1 xij

T

))
−
√

D

D + 1
· lnmi =

√
D

D + 1
· ln T +

√
D

D + 1
· ln

(
1−

∑D
j=1 xij

T

)
−
√

D

D + 1
· lnmi.

In consequence, because T >>
∑D

j=1 xij , it holds that√
D

D + 1
· ln Resi

mi
≈
√

D

D + 1
· ln T−

√
D

D + 1
· lnmi.


