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Abstract  

A self-organizing map (SOM) is a non-linear projection of a D-dimensional data set, where the 

distance among observations is approximately preserved on to a lower dimensional space. The 

SOM arranges multivariate data based on their similarity to each other by allowing pattern 

recognition leading to easier interpretation of higher dimensional data. The SOM algorithm allows 

for selection of different map topologies, distances and parameters, which determine how the data 

will be organized on the map. In the particular case of compositional data (such as elemental, 

mineralogical, or maceral abundance), the sample space is governed by Aitchison geometry and 

extra steps are required prior to their SOM analysis. Following the principle of working on log-

ratio coordinates, the simplicial operations and the Aitchison distance, which are appropriate 

elements for the SOM, are presented. With this structure developed, a SOM using Aitchison 

geometry is applied to properly interpret elemental data from combustion products (bottom ash, 

fly ash, and economizer fly ash) in a Wyoming coal-fired power plant. Results from this effort 
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provide knowledge about the differences between the ash composition in the coal combustion 

process. 

Keywords  

Aitchison distance · Coal Combustion Products · Isometric logratio · Proportions · Simplex  

1 Introduction 

Multivariate data visualization techniques have become very important given the increasing data 

dimensionality in scientific studies, such as concentration data for 40+ elements routinely provided 

during geochemical analysis and characterization. The self-organizing map (SOM), also known as 

Kohonen neural network or Kohenen map (Kohonen 2001), is a type of neural network that is used 

as a tool to reduce data set dimensions to be able to more easily interpret the relationships. The 

principal aim of SOM is to project a D-dimensional data set into a one or two-dimensional discrete 

map, and to perform this non-linear projection adaptively in a topologically consistent way. In a 

SOM, the proximity among samples in the input space (data set) is approximately preserved in the 

output space (map) but in a lower dimension that can be more easily interpreted (Kohonen 2001). 

It is possible to create maps using different topologies (rectangular or hexagonal), different 

distances or similarity measures (Euclidean distance, Aitchison distance, Manhattan distance, 

Tanimoto similarity, etc.) and different parameters, such as the learning rate and neighborhood 

size, which determine how the units will organize themselves in the output space. Although similar 

to cluster analysis techniques, a SOM allows for the exploration of different distances, we follow 

Everitt et al. (2011, p. 69) recommendation “…the choice of measure will be guided largely by the 

type of variables being used and the intuition of the investigator”. In the special case of 

compositional data (CoDa), data in which the variables consist of numeric measurements that are 

relative to one another (e.g., concentration, relative abundance, or distribution information) the 

Aitchison distance has been proven to be an appropriate measure for the geometry of the sample 

space. Palarea-Albaladejo et al. (2012) present a summary of the properties, advantages and 

difficulties of a number of different measures when they are used for CoDa.  
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CoDa conveys relative information expressed in the ratios between parts. These data are 

common in environmental and geochemical studies when the constituents and compounds are 

described in terms of their concentration in air (Jarauta-Bragulat et al. 2016), water (Olea et al. 

2018), or in terms of solids and other wastes (Edjabou et al. 2017). When one decides to analyze 

a data set X (n×D; rows×columns) using compositional methods, such as concentration data in 

coal combustion products, one is assuming that any observation x (a row of X) is a member of an 

equivalence class (Barceló-Vidal and Martín-Fernández 2016). That is, the information contained 

in x is the same as in k·x for any real scalar k>0, a property known as scale invariance (Aitchison 

2003). Importantly, CoDa occupy a quotient space (Barceló-Vidal and Martín-Fernández 2016). 

A representative of the quotient space is the D-part unit simplex 

S
D

={x∈ℝD xi⁄ >0; ∑ xi =K; i=1, …, D} which is governed by Aitchison geometry (Pawlowsky-

Glahn et al. 2015). In practice, for convenience, compositions are commonly expressed in terms 

of proportions (K=1), percentages (K=100) or parts per million (ppm; K=106). Following Barceló-

Vidal and Martín-Fernández (2016), a logarithmic isomorphism between the quotient spaces 

S
D and ZD={z∈ℝD/ ∑ zi =0} can be defined and a composition x can be expressed in terms of the 

vector z= (ln (
x1

g(x)
) ,…,ln (

xD

g(x)
)), where g(x) is the geometrical mean of x. The vectors z∈ZD, 

known as the centered log-ratio (clr) vectors (Aitchison 1986), are in a hyperplane of dimension 

D-1. The inner product, distance and norm in S
D

 can be defined via the clr variables (Barceló-

Vidal and Martín-Fernández 2016). These metric elements are used to construct orthonormal log-

ratio bases in S
D

 and a composition x can be expressed in terms of its corresponding isometric log-

ratio (ilr) coordinates y= ilr(x)=(y1, …, yD-1) (Pawlowsky-Glahn et al. 2015), where, for example  

y
j
=√

D-j

D-j+1
 ln (

xj

√∏ xk
D
k=j+1

D-j
) , j= 1,…,  D-1.     (1) 

Note that ratios and logratios cannot be computed when one of the parts is zero or missing. 

Methods to deal with the zero problem have been described in numerous papers, and readers will 

find a general description in Palarea-Albaladejo and Martín-Fernández (2015). It is generally 

agreed upon that a statistical analysis of CoDa has to be performed on coordinates with respect to 

a log-ratio basis (Mateu-Figueras et al. 2011). In particular the Aitchison distance da between two 
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compositions x1 and x2 can be calculated as the Euclidean distance de between their corresponding 

vectors of ilr-coordinates: da(x1, x2)=de(ilr(x1), ilr(x2)). 

The main goal of this paper is to provide the methodological framework to perform SOM 

analysis to CoDa (CoDa-SOM). The techniques used in this work are introduced in Section 2, 

which is a refinement of an earlier formulation that was presented in Cortés and Palma (2013). A 

geochemical example is presented in Section 3, where all the techniques introduced are applied 

and the results are interpreted. Finally, in Section 4, some concluding remarks are presented. The 

programming of the techniques discussed in this article was carried out using the kohonen package 

of the open source R statistical programming language and software (Wehrens and Buydens 2007). 

2 Self-organizing maps for compositional data 

2.1 PCA and MDS versus SOM 

In addition to the SOM, there are many other well-known approaches for dimension reduction of 

data in a Real space, for which principal component analysis (PCA, Jolliffe 2002) and multi-

dimensional scaling (MDS, Cox and Cox 2001) are the most popular. Both PCA and MDS map 

the objects in a continuous output space; in contrast, the SOM uses a regular grid of nodes onto 

which samples are projected. In many cases, particularly for high-dimensional data sets, PCA 

requires more than two axes to reduce the dimension with a reasonably quality. Moreover, due its 

own design PCA might provide misleading interpretations when there are groups in the data 

(Martín-Fernández et al. 2015). Because of this, MDS and the SOM are more accurate because 

they start from an appropriate distance function for the input space, that is, a distance consistent 

with the geometry of the sample space of the data. MDS provides a two-dimensional continuous 

map of points where the Euclidean distance matrix approaches the original distance matrix in some 

optimal sense so that the distances in the output space can be interpreted as an estimate of the 

distances in the input space. However, the algorithm for MDS can present difficulties when local 

optima are present, which can be problematic when the sample size is large (Wehrens and Buydens 

2007). In contrast, the SOM is less rigid in terms of its data requirements; unlike PCA and MDS, 

the SOM does not require data to be available for every parameter for every sample (Dickson and 
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Giblin 2007). Moreover, the SOM algorithm is very simple and allows for a more flexible 

exploratory analysis (Kohonen 2001). 

2.2 Compositional data analysis formulation for SOM 

In this section, some basic concepts of the CoDa-SOM are introduced. Interested readers may 

consult Kohonen (2001) for an in-depth discussion of basic concepts. The stages of a CoDa-SOM 

can be summarized in the steps that follow. 

Step 0: Map definition in the output space: The user chooses the m number of nodes for the map 

in the discrete output space, the topology of which is formed by arranging the set of nodes in a 

grid. Although determining the number of empty nodes can be a trial and error process, Vesanto 

(2000) recommends m=5·√n, where n is the sample size. Despite a map with too many empty 

nodes may not seem useful, some empty nodes (e.g., nodes serving as a best matching unit for no 

samples at Step 2) are needed to facilitate cluster interpretation. In addition, there is no need for 

the dimensions of the map to match; frequently the map is rectangular and in some cases scaled to 

match the relative variance of the first two components from PCA of the sample set (Akinduko et 

al. 2016). For a two-dimensional map, the hexagonal topology, where each node has six 

neighborhoods, is the most popular option. Another common option is a rectangular grid, where 

each node is directly connected with four other nodes.  

Step 1: Initialization of weight vector of nodes: A D-component vector wj, j=1,..,m must be 

assigned to each node. The vector wj, which belongs to the simplex S
D

 in the case of CoDa, is 

commonly randomly generated from the input space but it can also be randomly selected from the 

data set or constructed using the scores from PCA (Akinduko et al. 2016) applied to clr-

transformed data.  

Step 2: Matching a sample with its best-matching unit (BMU): The BMU is chosen by randomly 

drawing a sample vector xi from the data set and finding the node with coordinates “k” in the 

output space where its weight vector wk is the most similar vector (BMU) along the output space. 

That is, the node that has the shortest distance to the selected sample vector xi. The most common 

distance measure used is the Euclidean distance, although in the case of compositional data sets, 
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Aitchison distance is the most appropriate, which is the Euclidean distance between the 

corresponding log-ratio coordinates. 

Step 3: Weight vectors updating: For CoDa, the SOM algorithm can be performed on coordinates 

with respect to a log-ratio basis (Mateu-Figueras et al. 2011). That is, the vector wk of the BMU 

and of its neighborhood vectors wj is modified in terms of the simplicial operations perturbation 

“” and powering “” (Aitchison 1986) 

wj
(t+1)= wj

(t)  (α(t)·N(t, k, j))(xiwj
(t)), 

and its expression on coordinates is 

vj
(t+1)= vj

(t) + α(t)·N(t, k, j)·(yi – vj
(t)),                (2) 

where vj= ilr(wj) and: 

– t ≥ 0 is an integer, the number of iterations made or the discrete-time coordinate; the 

function α(·), known as the learning-rate factor (0 < α(·) < 1), should initially have 

reasonably high values (close to unity), thereafter decreasing monotonically. It serves 

as a weight for the magnitude that the BMU and the neighborhood nodes are modified, 

and decreases with each iteration (i.e., the magnitude of the updating the vectors 

decreases with time). Although Kohonen (2001) states that “An accurate time function 

is not important”, he suggested that the most recommended functions are exponential, 

inversely proportional to t, or linear.  Wehrens and Buydens (2007) programmed the 

latter option of Kohonen (2001) to  α(t)= α0·(1–t/αr), where α0 and αr are parameters; 

and  

– the function N(·), called the neighborhood function, is a smoothing kernel defined over 

the grid points. This factor regulates the rate at which the size of the neighborhood is 

impacted by diminishing the distance between the BMU “k” and its neighborhoods “j” 

(i.e., the function describes the rate at which the neighborhood size around each BMU 

shrinks with each iteration). A popular choice is the Gaussian kernel N(t, k, j)=exp(–

de(k, j)2/(2σ2(t))), where σ(t)= σ0·exp(–t/σr) and  σ0 and σr are parameters. Note that 

here the Euclidean distance is applied between two elements of the output space, 

usually R2. 
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The results in the SOM are invariant under change of basis. Indeed, because a change of 

orthonormal coordinates system is a linear transformation (rotation), the new log-ratio coordinates 

are y*j = A·yj, where At·A=I, and I is the identity matrix. When applied to Eq. (2)  

v*j
(t+1)= v*j

(t) + α(t)·N(t, k, j)·(y*i – v*j
(t)), 

A·vj
(t+1)= A·vj

(t) + α(t)·N(t, k, j)·(A·yi – A·vj
(t)), 

vj
(t+1)= vj

(t) + α(t)·N(t, k, j)·(yi – vj
(t)). 

This property is of critical importance because it allows the analyst to select the log-ratio 

orthonormal basis to improve the interpretation of the results. In addition, the property shows that 

the CoDa-SOM is perfectly compatible with other techniques such as the principal balances 

algorithm (Martín-Fernández et al 2018b) that allow for the selection of log-ratio coordinates 

taking into account the variability of the data set. 

Step 4: Iteration: The process is repeated from Step 2 until either the maps stop changing 

significantly or a fixed number of iterations is reached. Kohonen (2001) recommends “A rule of 

thumb is that, for good statistical accuracy, the number of steps must be at least 500 times the 

number of network units.” In contrast, Wehrens and Buydens (2007) propose 100 as the number 

of iterations, that is, the number of times the data set will be presented to the map. Regardless of 

the exact number of iterations performed, the size of the neighborhood and the learning-rate factor 

both decrease with each iteration, allowing for a more stable structure to develop. 

The unsupervised SOM can be extended to a supervised version for classification problems 

(Melssen et al. 2006). In the supervised CoDa-SOM a fused distance (dFused), from both 

composition and categorical variables, is proposed for step 2. Following Wehrens and Buydens 

(2007), we propose a distance based on a weighted combination of the distances between the 

compositions (da) and a distance between the corresponding categories or classes (dc) 

dFused(xi,wi)= ∂(t)·da(xi,wi)+(1- ∂(t))·dc(xi,wi), 

where the parameter ∂(t) regulates the relative weight between the distances, decreasing linearly 

in time. Initially, the distance between the compositional part will dominate the determination of 
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the BMU. At the end, both distances da and dc contribute equally to the determination of the BMU 

(Wehrens and Buydens 2007). 

2.3 A simple example for CoDa-SOM 

To illustrate the performance of an unsupervised SOM for CoDa, the results of a one-dimensional 

SOM for a typical environmental data set in S3 are shown in Figure 1. The data (Aitchison 1986), 

comprised of 39 samples, contain information on sediment grain size distribution [sand, silt, clay] 

as a function of depth in an Arctic lake. The parameters for the SOM algorithm used the default 

values provided in Wehrens and Buydens (2007). Figure 1(a) shows the evolution along the 

iterations of the distance, on average, between the samples and their BMUs. The convergence of 

the algorithm is achieved after 50 iterations when the mean distance stabilizes. The samples are 

represented by circles in the Fig 1(b), where the squares represent the final value of the nine weight 

vectors. The few nodes that are present are enough to fit the trend of the data set reasonably well. 

The labels for the nodes show the average of the depth of the samples assigned to each BTU. At 

the first glance, the ternary diagram suggests that the sand percentage diminishes with depth. The 

linear regression model, which is described in Aitchison (2008), fits the composition using the log-

transformation of the depth as predictor using the direction [sand, silt, clay]=[4.6%, 23.89%, 

71.51%] where the proportion of the variability explained, that is, the R-squared (Egozcue et al 

2012) is 71%. Using this model one obtains the predicted composition [7.90, 52.59%, 39.50%] for 

depth= 61.7, which is reasonably consistent with the composition [6.73%, 49.64%, 43.63%] in the 

corresponding node created by the CoDa-SOM (Fig. 1). 

(a) 
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Fig 1 Results of the SOM for a CoDa in S3 (Aitchison 1986): (a) error function evolution using 

Aitchison distance; (b) data set (circles) and weight vectors of BTU (squares) for a one-

dimensional SOM with nine nodes in a ternary diagram. Labels assigned to the BTU denote the 

average of the depth of the corresponding assigned samples. 

 

3 The Wyoming coal power plant case study 

3.1 The data and some previous analysis   

The United States produces more than 50 million tons of coal combustion products (CCPs) per 

year, which contain a wide variety of potentially hazardous trace elements. Improper CCP 

management has led to deleterious environmental impacts, such as those linked to large coal spills 

near Eden, North Carolina in 2014 and Kingston, Tennessee in 2008, partly due to their trace 

element load (Ruhl et al. 2009). Moreover, knowledge about elemental abundances in CCPs is 

needed to investigate possible health effects or potential mineral sources for certain critical 

elements, such as rare earth elements (Kolker et al. 2017). To understand the occurrence and 

abundance of elements within CCPs and to examine elemental redistribution during coal 

combustion, the U.S. Geological Survey collected pulverized coal and CCPs from several coal 

burning power plants (Affolter et al. 2011). Here we focus on results from a single power plant in 

Wyoming, USA, utilizing subbituminous (Fruitland Formation) pulverized coal. The pulverized 

feed coal was collected just before it entered the boiler and CCPs that were representative of that 

feed coal were collected based on plant operating conditions and estimations of the length of time 

it would take the pulverized coal (PC) to reach the collection points: bottom ash (BA) collected 

from the boiler, economizer fly ash (EFA) captured at the economizer unit, and fly ash (FA) 

collected from an electrostatic precipitator. Affolter et al. (2011), Swanson et al. (2013), and 

Martín-Fernández et al. (2018a) provide more details of the sampling process and the analytical 

methodologies used to determine oxide and elemental compositions. In total, five full sets of 15 

samples were collected from the plant, including of feed coal, PC, BA, EFA, and FA. Following 

Martín-Fernández et al. (2018a), feed coal was not included in this current study as it was not 

introduced into the boiler. Each sample includes the proportions of 10 major elements expressed 
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as percent oxides (Al2O3, CaO, Fe2O3, K2O, MgO, Na2O, P2O5, SiO2, SO3, TiO2) and 30 minor and 

trace-elements in ppm (As, Ba, Be, Bi, Cd, Cl, Co, Cr, Cs, Cu, Ga, Ge, Hg, Li, Mn, Mo, Nb, Ni, 

Pb, Rb, Sb, Sc, Se, Sr, Th, Tl, U, V, Y, Zn). Because the focus was on the change of elemental 

composition during the combustion process, following Martín-Fernández et al. (2018a), we 

focused on a paired analysis between the compositions of two consecutive sampling points: BA 

with respect to PC; EFA compared to BA; and FA compared to EFA. For simplicity we denote 

Xj/Xk for the paired-data set obtained (perturbation differences). For instance, XFA/XEFA represents 

the paired-data for the comparison between the multivariate compositions in FA with respect to 

EFA. As a consequence, our data set is formed of three full sets of 15 perturbations difference (5 

sets x 3 perturbation differences per set).  

Martín-Fernández et al. (2018a) confirm that, on average, the three perturbation difference sets are 

different from the neutral perturbation: for any two consecutive sampling points the compositions 

of the ash “before” and “after” are, on average, significantly different. This current study extends 

the analysis of Martín-Fernández et al. (2018a) and demonstrates that there are differences among 

the three perturbations difference sets that show that there are differences among the variation of 

the CCP compositions in the sampling points. The results from CoDa-SOM provide information 

to characterize the combustion process in the points BA, EFA, and FA.  

 

3.2 A separate analysis for the major, minor and trace elements? 

Major, minor, and trace elements typically are separately interpreted because of the large 

differences between their abundances. However, because the data sets analyzed in this study are 

formed of perturbation differences, the scale of all the elements is similar. Because the SOM are 

based on distances as a measure of similarity, we analyzed the Aitchison distances of the dataset 

under three different conditions: the full composition (major, minor and trace elements), major-

only elements, and minor and trace elements only. Table 1 summarizes the corresponding 

Aitchison distance matrices for the three conditions. 

Table 1 Basic statistics for the Aitchison distance matrix for the perturbation differences: full 

composition (all elements); major elements; and minor and trace elements.  
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 minimum Q1 median Q3 maximum 

Full composition 0.96 4.24 12.13 13.33 17.72 

Major elements 0.04 1.20 3.10 6.19 9.30 

Minor and trace elements 0.85 4.09 10.55 11.97 17.53 

 

Consistently, the Aitchison distances of the subcompositions formed by perturbation differences 

of the major elements and of the minor and trace elements are lower than those of the full 

composition. Notably, the values for the minor and trace elements are more similar to the values 

for the full composition than those of the major elements. This relationship was expected because 

the minor and trace element subcomposition is formed by 30 parts of the 40 parts that constitute 

the full composition. 

 

Table 2 Pearson correlation coefficient (r) and mean square error (mse) between the Aitchison 

distance matrices for the perturbation differences: full composition (all elements); major elements; 

and minor and trace elements. 

 r mse 

Full composition vs Major elements 0.748 51.07 

Full composition vs Minor and trace elements 0.981 1.96 

Major elements vs Minor and trace elements 0.612 39.75 

 

The Pearson correlation coefficient between the corresponding distances (Table 2) is used to 

describe how similar are two distance matrices (Sokal and Rohlf 1962). Table 2 suggests a similar 

relationship to the Aitchison distance statistics (Table 1) between the distance matrices. Indeed, 

the correlation between the Aitchison distance of the perturbation differences for full composition 

and the minor and trace elements is equal to 0.981, where it is equal to 0.748 for the major elements 

with the full composition. The correlation coefficient between the two subcompositions is only 

0.612 (Table 2). In addition, the square error mean between the corresponding distance matrices 

exhibits the same behavior. This error is 51.07 for the matrices of the full composition and the 

major elements, but much smaller (1.96) for the minor and trace elements. The mean square error 
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between the matrices of the two subcompositions is equal to 39.75, suggesting notable differences 

between major elements and the minor- and trace elements. All these indices suggest that SOM 

applied to the full composition will be very similar to the SOM for the minor and trace elements. 

In consequence, for geological interpretation purposes, it is worth analyzing the major elements 

separately. This conclusion also applies to other statistical techniques using distances, such as 

cluster analysis or MDS. 

3.3 Results of from application of CoDa-SOM 

Both data sets (major elements vs. minor and trace elements) are formed by 45 perturbation 

differences and the categorical variable that informs the sampling points BA, EFA, and FA. 

Wehrens and Buydens (2007) introduce the SOM for supervised pattern recognition to model the 

categorical variable as a dependent variable for which predictions can be obtained (as opposed to 

unsupervised approaches wherein categorical or data information on group association are 

excluded, even if known). Figure 2 shows the resulting supervised SOM for a hexagonal topology 

with 36 nodes (6 x 6). Default values of the program (Wehrens and Buydens 2007) were used for 

all other parameters In both cases, the convergence of the algorithm is achieved in 50 or less 

iterations as indicated by stabilization of the mean distances, following a pattern similar to Fig 1a. 

The labels “PC-BA”, “BA-EFA”, and “EFA-FA” indicate that this node is the BMU of a 

perturbation difference in the corresponding sampling point. Positions within a node in a SOM are 

without meaning, they simply indicate that the BMU was determined from multiple perturbation 

differences. Intuitively these perturbations capture the changes in chemical composition during 

coal combustion and the myriad processes which occur in the flue gas. The BMU for both major 

oxides (Fig. 2a) and minor and trace elements (Fig. 2b) form non-overlapping groups. The colors 

gray (PC-BA), pink (BA-EFA) and green (EFA-FA) indicate the predicted group for the node and 

were assigned strictly, because a supervised SOM algorithm was performed. The predictions 

define clear borders between the three groups, suggesting that the chemical processes occurring 

between the different stages in the power plant are distinct. The majority of the nodes close to the 

borders do not correspond to any BMU, suggesting that these nodes are transitional nodes between 

groups. This clear separation between the groups was corroborated with a leave-one-out cross-

validation procedure where the resulting misclassification error rate was respectively 2.22% and 

0% for the major oxides and for the minor and trace elements, respectively. These results are fully 
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comparable with linear discriminant analysis misclassification rates of 0% and 4.44%, 

respectively, reported by Vasighi and Kompany-Zareh (2013). 

(a) 

 

(b) 

 

Fig 2 SOM for the Wyoming coal power plant case study: BMU codes for the perturbation 

differences in the sampling points: bottom ash (PC-BA); economic fly ash (BA-EFA); and fly ash 

(EFA-FA). Colors gray, pink and green represent respectively the assigned group PC-BA, BA-

EFA, and EFA-FA: (a) major oxides; (b) minor and trace-elements 
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Figure 3 shows the value of the ilr-coordinates (Eq. (1)) for the nodes in the major oxides data set 

(Fig. 3a) and in the minor and trace elements (Fig. 3b), separately for the same SOMs shown in 

Figure 2. Much like PCA (but unlike cluster analysis and MDS), information can be gleaned from 

a single SOM about both the relationships between the samples and the variables. For each node 

of Fig. 3a, a line plot was created showing the value of the nine ilr-coordinates created from the 

10 major elements (Martín-Fernández et al 2018a), ordered in the same order of the columns in 

the data matrix (ilr1, ilr2, ilr3, ilr4, ilr5, ilr6, ilr7, ilr8, ilr9). The nodes of the group PC-BA have large 

negative values in the coordinates ilr2, ilr7, and ilr9, and positive in ilr8. The group BA-EFA shows 

large positive values in ilr2. In contrast, ilr5 and ilr8 are the coordinates with the highest negative 

values for the group EFA-FA. In Fig. 3b, the differences between the patterns of the lines for the 

three groups are relevant. For example, the group BA-EFA (pink color) has a different pattern 

from the group PC-BA (gray color) because the former takes high values in the first coordinates 

and values close to zero in the rest. In contrast, the nodes of the latter group have high values 

(positive and negative) for several coordinates. The group BA-EFA is noted for its high negative 

values in a few ilr-coordinates. To complete the interpretations these plots can be produced using 

the raw data of the perturbation differences, by applying inverse of the ilr transformation. 

 

(a) 

 

(b) 
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Fig 3 SOM for the Wyoming coal power plant case study: ilr-coordinates of the codes. The colors 

gray, green and pink represent the predicted group PC-BA, BA-EFA, and FA-EFA, respectively: 

(a) major oxides; (b) minor and trace-elements 

Figure 4 shows the back-transformed raw values (in proportions) of the nodes for the major oxides 

(Fig. 4a) and the minor and trace-elements (Fig. 4b). The line plots show the value of the parts 

ordered in the same order of the columns in the data matrix: (Al2O3, CaO, Fe2O3, K2O, MgO, 

Na2O, P2O5, SiO2, SO3, TiO2) and (As, Ba, Be, Bi, Cd, Cl, Co, Cr, Cs, Cu, Ga, Ge, Hg, Li, Mn, 

Mo, Nb, Ni, Pb, Rb, Sb, Sc, Se, Sr, Th, Tl, U, V, Y, Zn). This plot can be helpful to improve the 

interpretation of the ilr-coordinates plot because one can analyse which parts are responsible of 

the characterization of the ratios. For example, examination of Fig. 4a suggests that relative to the 

other major oxides, the abundance of SO3 changed more between EFA and FA (green nodes) than 

any other chemical constituent, suggesting a reduction in the stability of SO3 between those points 

in the plant. The line plots of the nodes in the groups PC-BA and BA-EFA have similar shapes 

with some relevant differences. For example, the perturbation difference for Fe2O3 has higher 

values in the group PC-BA than for the other groups. This is likely because iron has relatively high 

melting (~1500 oC) and boiling points (~2900 oC) thus it is enriched in the bottom ash relative to 

the pulverized coal. The most relevant feature in Fig 4b is that the perturbation differences for 

group BA-EFA in the major elements have very small values, close to the neutral element (1/30), 

whereas the other two groups take high values in the first chemical elements. This finding suggests 

that the coal in the boiler goes through a substantial re-distribution of the elements during 
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combustion (PC-BA), with those major elements that are most mobile (i.e., SO3) being fractionated 

into the flue gas and those that are difficult to mobilize being concentrated in the bottom ash (e.g., 

Al2O3, Fe2O3, TiO2). Once the flue gas leaves the boiler and travels through the economizer (BA-

EFA; pink nodes) there appears to be little substantial change in the major element composition of 

the particles, minus the most volatile major elements (Na2O and SO3), as most perturbation values 

are near zero for the major element subset. Conversely, in the SOM for the trace element results, 

we can see that the trace element distributions are more impacted for this perturbation, as shown 

by the prevalence of high values for several constituents (Fig. 4b). In the final stage (EFA-FA; 

green nodes) between the economizer and the electrostatic precipitation (the device which captures 

the fly ash), there appears to be an additional redistribution of the major and trace elements. The 

assignment of the samples to the nodes and their relative position (indicated in Figs. 2a and 2b) 

also provides information about patterns and trends in the chemical data (indicated in Figs. 4a and 

4b). For instance, in the EFA-FA perturbation (pink nodes) of the major elements, samples with 

BMU in the left half of the SOM show little difference in the relative composition of Na2O, while 

those to the right show substantial differences in the relative abundance of Na2O (Figs. 2a and 4a). 

A nearly opposite relationship with respect to SO3 is observed along the same trend suggesting an 

inverse relationship between Na and S as the flue gas moves between the economizer and the 

electrostatic precipitators. Similar interpretations can be made for the other constituents and other 

samples.  

  

(a) 
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(b) 

 

 

Fig 4 SOM for the Wyoming coal power plant case study: raw values for the perturbation 

differences of the codes. Gray, green and pink colors represent the predicted groups PC-BA, EFA-

BA, and FA-EFA, respectively: (a) major oxides; (b) minor and trace-elements 

Beyond this simple case study, one can consider the exceptionally flexible ways the SOMs could 

be adapted for variations of this study. For instance, one can map new samples to pre-existing 

SOM (Wehrens and Buydens 2007). Consider a scenario where power plant personnel changed 
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the operating conditions of the plant (e.g., combustion temperature, cooling rates of flue gas, etc.) 

and they were interested in how that affected the distribution of the trace elements. Coal and coal 

combustion products collected and analyzed under the new operating condition, could be mapped 

to the BMU in the pre-existing SOMs. Comparison of where the new samples plot in the SOM in 

comparison to the original sample set (e.g., Figs. 2a and 2b) and the values for the specific 

perturbations (Figs. 4a and 4b) can provide information on changes in chemical speciation within 

the boiler. To simulate this situation, we selected five samples from the minor and trace elements 

in the original data set. We artificially contaminated these samples in all the sampling points adding 

a random number (between -3 and +3) of standard deviations in each ilr-variable. As a result, we 

generated 15 new samples (five in each sampling point) adding random noise to its counterpart 

original samples. Figure 5 shows how these new samples are mapped in the original SOM. The 

color gray, green and pink represent respectively the predicted group PC-BA, BA-EFA, and EFA-

FA for the nodes using the original data (Fig. 2b). The labels bottom ash (PC-BA), economic fly 

ash (BA-EFA), and fly ash (EFA-FA) correspond to the BMU for the 15 perturbation differences 

of the new data set in the sampling points. SOM is able to show that, as expected, the random noise 

added to the original samples caused some of the new samples to move from one BMU to a 

different BMU suggesting that the new samples have a different perturbation differences 

distribution and perhaps become more like samples from different categories. Alternatively, if 

some of the data for a subset of samples was missing or lost, it can still be utilized (Dickson and 

Giblin 2007), as long as a distance or similarly measurement (e.g., Aitchison distance) can be 

calculated for each data point and the nodes, such than a BMU can be assigned. This simple 

behavior makes SOM extremely useful in situations where the analysis of every sample for every 

constituent is cost prohibitive or when constructing a database of multiple samples that have 

analyzed with different methodologies.  
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Fig 5 SOM for the minor and trace elements in the Wyoming coal power plant case study with 15 

new samples generated by adding random noise to pre-existing data and mapping them to the 

original SOM. Colors gray, pink and green represent, respectively, the predicted group PC-BA, 

BA-EFA, and EFA-FA using the original data set. BMU codes for the five perturbation differences 

of the new data set in the sampling points: bottom ash (PC-BA); economic fly ash (BA-EFA); and 

fly ash (EFA-FA) 

4 Conclusions 

A collection of techniques is proposed to create a methodology for application of the SOM to 

compositional data. The Aitchison distance is an appropriate measure to find the BMU of a sample. 

The simplicial operations perturbation and powering allow for the construction of the SOM in a 

topologically consistent way. Following the principle of working on coordinates, the SOM 

algorithm can be applied using the classical elements: Euclidean distance and basic operations. 

Importantly, the interpretation of the maps should be given in terms of the log-ratio coordinates 

and complemented with the maps in terms of the raw data. These features have been illustrated in 

the analysis of CCPs that are residuals to be treated according its composition, with relevant 

importance of the minor and trace elements. The supervised SOM applied to the coal ashes data 

set provided a characterization of the changes in the composition of the CCPs. Moreover, we 

demonstrated the ability to map new data onto the original SOM, allowing for non-linear 

discrimination or other analyses involves change in operating conditions of the plant. Thus, beyond 
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basic understand on element distribution during coal combustion, this interpretation is relevant 

understanding potential changes related to design and coal combustion plant management 
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