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Abstract

Compositional data analysis requires selecting an orthonormal basis with

which to work on coordinates. In most cases this selection is based on a

data driven criterion. Principal component analysis provides bases that are,

in general, functions of all the original parts, each with a different weight

hindering their interpretation. For interpretative purposes, it would be bet-

ter to have each basis component as a ratio or balance of the geometric

means of two groups of parts, leaving irrelevant parts with a zero weight.

This is the role of principal balances, defined as a sequence of orthonor-

mal balances which successively maximize the explained variance in a data

set. The new algorithm to compute principal balances requires an exhaus-

tive search along all the possible sets of orthonormal balances. To reduce

computational time, the sets of possible partitions for up to 15 parts are

stored. Two other suboptimal, but feasible, algorithms are also introduced:

(i) a new search for balances following a constrained principal component

approach and (ii) the hierarchical cluster analysis of variables. The latter

is a new approach based on the relation between the variation matrix and

the Aitchison distance. The properties and performance of these three algo-

rithms are illustrated using a typical data set of geochemical compositions

and a simulation exercise.

Keywords

Aitchison norm · Cluster analysis · Compositions · Isometric logratio coor-

dinates · Principal component analysis · Simplex
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1 Introduction

Compositional data (CoDa) convey relative information expressed in the

ratios between parts. Typical examples of compositions appear in geochem-

istry and in environmetrics in the geosciences, but they are also found in

other fields such as chemometrics, budget expenses, time-use survey data,

genomics, and all omics in general. For convenience, compositions are com-

monly expressed in terms of proportions, percentages or parts per million

(ppm) (Aitchison 1986). When an analyst decides to analyze a data set X

(n×D) using compositional methods, they are assuming that the informa-

tion contained in any observation x (a row of X) is the same as in k · x,

for any real scalar k > 0. Based on this property, known as scale invariance

(Aitchison 1986), a composition can be defined as an equivalence class (Bar-

celó-Vidal and Mart́ın-Fernández 2016). According to this definition, the

general expression of a scale-invariant logratio is a log-contrast (Aitchison

1986)
D∑
i=1

ai lnxi = ln

(
D∏
i=1

xaii

)
,

D∑
i=1

ai = 0. (1)

A log-contrast is, in essence, a logratio of parts because for ai > 0 the cor-

responding part xi appears in the numerator, but if ai < 0 it appears in

the denominator, while for those parts that do not contribute to the lo-

gratio ai = 0 holds. Log-contrasts (Eq. (1)) have the same role as linear

combinations of real variables in classical statistics. Accordingly, princi-

pal component analysis (PCA) applied to CoDa and log-ratio basis should

both be based on log-contrasts. Note that ratios and logratios cannot be

computed when one of the parts is zero or missing. How to deal with this

difficulty, also known as the zero problem, has been described in numerous

articles. For the interested reader, a general description of this topic can be
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found in Palarea-Albaladejo and Mart́ın-Fernández (2015).

Using a log-contrast one can define new variables (e.g., a principal com-

ponent (PC)) where the information collected in the original variables is

combined. For the centered log-ratio (clr) variables (Aitchison 1986)

clrk(x) = ln
xk

(
∏
xi)

1/D
= lnxk − ln x, k = 1, . . . , D , (2)

where ln x denotes the average of the logarithms of components in x, the

log-contrast expression (Eq. (1)) verifies that aki = −1/D for i 6= k and

akk = 1−1/D. It holds that
∑D

k=1 clrk(x) = 0, indicating that the dimension

of the clr space is D − 1. To calculate PCs and balances, it holds that any

contrast for clr coefficients is equal to a log-contrast (Eq. (1)). That is, it

holds that
∑D

k=1 akclrk(x) =
∑D

k=1 ak lnxk. The inner product, distance and

norm can be defined via the clr variables (Pawlowsky-Glahn and Egozcue

2001). These metric elements are used to construct orthonormal log-ratio

bases (Egozcue et al. 2003).

Nowadays, there is general agreement that a statistical analysis of CoDa

should be performed on coordinates with respect to a log-ratio basis (Mateu-

Figueras et al. 2011). There is an infinite number of orthonormal bases

in the simplex and to perform an analysis of a data set the analyst must

make a choice. Sometimes, the basis can be chosen blindly or by using a

data driven criterion, such as PCA. Other times, the selection of a basis is

based on expert prior knowledge, possibly using a Sequential Binary Par-

tition (SBP) technique (Egozcue and Pawlowsky-Glahn 2005) to construct

an interpretable basis. The coordinates, called balances, may help the in-

terpretability of the results. Here an intermediate possibility is discussed.

The main goal is to identify a complete orthonormal basis of the simplex
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such that the coordinates are balances approaching the properties of PCA

for CoDa (Aitchison 1983). The resulting procedures provide tools that

improve interpretability and can also be used for an intuitive dimension re-

duction. These goals have been discussed within the framework of PCA of

real multivariate data (Hotelling 1933; Jolliffe 2002).

PCA is an appealing technique when the PCs can be readily interpreted.

However, interpretation is not always simple, because the loadings are typ-

ically nonzero and PCs are linear combinations of all the original variables.

To solve this interpretation problem, different approaches have been pro-

posed, but all of them share the practical rule of thumb: the larger the

number of zero-loadings is, the easier the interpretation. Some of these ap-

proaches are based on rotating the PCs, as is done in factor analysis (Jolliffe

2002, Chapter 11), while others adapt variable selection techniques for PCA

(Jolliffe et al. 2003). Chipman and Gu (2005) introduce three types of in-

terpretable components as a result of an approximation of the PCs, while

Enki et al. (2013) apply cluster analysis to the original variables as the first

step to construct interpretable PCs. The drawback is that none of these ap-

proaches retains the three properties of PCA: uncorrelation, orthogonality

and optimal variance explanation (Jolliffe 2002).

This article aims to provide new algorithms for constructing principal

balances (PBs), that is, a complete basis of balances based on data informa-

tion showing similar properties to PCs. In Sect. 2, some basic CoDa con-

cepts are introduced to provide a new definition for PB. Section 3 provides

a new recursive algorithm to construct optimal PBs. Two different subop-

timal, but faster, approaches are introduced in Sect. 4: (i) a new searching

for balances following a constraint PC approach and (ii) the hierarchical

cluster analysis of variables. The latter consists of a new approach based
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on the relation between the log-ratio variances and the Aitchison distance.

A geochemical example is presented in Sect. 5, where all the techniques

introduced for the PBs are applied. A simple simulation exercise is also pro-

vided. Finally, in Sect. 6, some concluding remarks are presented. The new

techniques discussed in this article were programmed using the open source

R statistical programming language and software (R development core team

2015). The computer routines to implement the methods can be obtained

from www.compositionaldata.com.

2 Balances and principal balances

The expression of the coordinates, known as isometric log-ratio coordinates

(ilr), depends on the basis selected. When the ilr system of coordinates is

defined through an SPB (Egozcue and Pawlowsky-Glahn 2005, 2006), the

coordinates are proportional to a logratio of geometric means of the parts in

two disjoint groups. In the first step of an SBP, the complete composition

x = (x1, . . . , xD) is split into two groups of parts: one for the numerator

coded as +1, and the other for the denominator coded as −1. In the steps

that follow, each group is split into two groups coded with +1 and −1,

respectively, while those parts not in the original group are coded as 0.

That is, in step k, the rk parts (xn1 , . . . , xnrk
) in the first group are coded

as +1 and placed in the numerator, and the sk parts (xd1 , . . . , xdsk ) in the

second group will appear in the denominator and be coded as −1. As a

result, the coordinate ilrk(x) or k-th balance, is

ilrk(x) =

√
rk · sk
rk + sk

ln
(xn1 · · ·xnrk

)1/rk

(xd1 · · ·xdsk )1/sk
, k = 1, . . . , D − 1 , (3)

where the square root term is a factor for normalizing the coordinate.
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The log-contrast coefficients (Eq. (1)) for the k-th balance in a given

SBP are

aki =



1
rk

√
rk·sk
rk+sk

if xi appears in the numerator and

− 1
sk

√
rk·sk
rk+sk

if xi appears in the denominator,

0 otherwise.

(4)

The coefficients aki, i = 1, 2, . . . , D, are equal to the clr coefficients of the

k-th balancing element of the selected basis. The metric elements can also

be expressed in terms of ilr coordinates. For instance, the Aitchison dis-

tance satisfies da(x1,x2) = de(ilr(x1), ilr(x2)) regardless of the basis selected

(Palarea-Albaladejo et al. 2012).

While the geometric elements of the Aitchison geometry (Pawlowsky-

Glahn and Egozcue 2001) do not depend on the particular ilr coordinates

used to represent compositions, an adequate choice of the basis can favor an

easier interpretation of the results from a compositional analysis. A CoDa-

dendrogram (Pawlowsky-Glahn and Egozcue 2011) is a descriptive tool for

visualizing some univariate statistics of the ilr coordinates derived from an

SBP. Table 1 shows an example of the SBP for a typical geochemical data

set. The data set used contains 2,097 samples of the chemical elements

Ba,Ca, Fe,K,Mg, and Mn. The columns on the right show the corre-

sponding mean, variance, and the percentage of the total variance retained

by each balance. The total variance is equal to the sum of the values in the

column of variances (Pawlowsky-Glahn and Egozcue 2011).

The SBP is represented by dendrogram-type links between parts, as

shown in Fig. 1. The leaves of the dendrogram, represented by dotted

lines, correspond to the groups of parts formed by a unique element. The
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location of the mean of an ilr coordinate is determined by the intersection

of the horizontal segment with the vertical segment (variance). When these

intersections are not in the middle, this indicates a major contribution from

one of the groups of parts. Importantly, the variability of each balance is

associated with the length of the vertical bars. When the ilr coordinate has

a large variance, its vertical bar is long as, for example, in ilr3(x) and ilr4(x)

that accumulate nearly 71% of the total variance. The vertical axis on the

left shows the level of accumulated variance. At the top of the dendrogram

this is equal to the total variance 5.62.

In some situations, very few balances can explain a large proportion of

the total variability. The fact that a log-ratio basis is formed by balances

defined through an SBP, and not automatically following some criterion like

in PCA, motivated the definition of PBs introduced in Pawlowsky-Glahn et

al. (2011). The definition of constrained PCA (Jolliffe 2002; Chipman and

Gu 2005) allows for the original definition of the PBs to be redefined in the

following terms

Definition 1 (Principal balances) Let X = (X1, X2, . . . , XD) be a D-

part random composition and Xi, i = 1, 2, . . . , D, the random parts. Princi-

pal balances (PBs) are log-linear functions
∑D

i=1 aki lnXi, k = 1, 2, . . . , D−

1, such that the vectors ak = (ak1, . . . , akD) are constant and they maximize

the variances

var

[
D∑
i=1

aki lnXi

]
,

subject to

(a) (balance condition) for k = 1, 2, . . . , D−1, the coefficients aki take one

of the three values (−c1, 0, c2), for some strictly positive c1 and c2;
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(b) (zero sum and unit norm conditions) for k = 1, 2, . . . , D− 1, ak satis-

fies
∑D

i=1 aki = 0 and
∑D

i=1 a
2
ki = 1; and

(c) (orthogonality condition) for k = 2, 3, . . . , D − 1, ak is orthogonal to

the previous ak−1, ak−2 . . . , a1, that is

D∑
i=1

akia(k−`)i = 0 , ` = 1, 2, . . . , k − 1.

Importantly, the restrictions
∑D

i=1 a
2
ki = 1 and

∑D
i=1 aki = 0 force the

constants −c1 and c2 to take the values of the balancing elements (Eq. (4)).

That is, the log-linear functions are balances. With this definition and given

an n-sample of a D-part random composition, the first PB is the balance

with maximum sample variance and the k-th PB has the maximum variance

conditional to its balancing element being orthogonal to the previous (k−1)

balancing elements.

Remarkably, the possible solutions to the optimization problem stated

in Definition 1 are not unique. At a first glance, if ak is a solution, then −ak

is also a solution and the variances of both log-contrasts are equal for both

possibilities. It is simply a change in the orientation of the k-th element of

the basis. Moreover, as is the case for real space, other uncommon cases

might arise when the covariance matrix has eigenvalues with multiplicity

greater than one (Jolliffe 2002, p. 27).

An SBP has a tree structure and because of this the associated balances

are ordered by the particular sequence of the partition. PBs, however, are

ordered by the balance variances and not by the sequence of the partitions
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used. For instance, Table 1 and Fig. 1 correspond to the PBs of the afore-

mentioned CoDa set. The first PB is the ilr3(x) that was attained in the

third step of the partition. By analogy to PCA, the construction of PBs can

be viewed as an orthogonal linear transformation in the simplex, restricted

to transformations within the set of possible bases made of balances. It rep-

resents the data in a new coordinate system, such that the largest variance

of the data comes to lie on the first coordinate (called the first PB), the

second greatest variance on the second coordinate, and so on as stated in

Definition 1.

3 Exhaustive search for principal balances: a new

optimal algorithm

Computing PBs requires an exhaustive search along all the possible SBPs.

Given D parts, the number of different SBPs is equal to D!(D − 1)!/2D−1

(Podani 2000). This number increases dramatically with D. In fact, taking

D = 10 parts, the number of possible SBPs is 2.57×109, whereas for D = 80

it is 1.06× 10212. In this work, and to keep computational time reasonable,

the feasible combinations of codes {−1, 0,+1} for the different number of

parts, from D = 2 to D = 15, were generated. However, the same procedure

can be applied to generate the codes for higher dimensions. These sets of

codes, representing a partition, are generated once and saved in different files

so that they can be used when needed. It took, for example, 3.32 minutes

to generate the set of all partitions for D = 15 with a 2.4GHz Intel Core

i5 in a Mac-OS X (version 10.9.5) and the resulting file requires 1.45GB of

disk space.

In order to present the exhaustive search algorithm, the concepts of
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parent, child, and top partitions are introduced. Given one partition of D

parts called the current partition, a parent partition is a partition which can

be followed by the current partition. For example, let (0,−1,+1, 0,−1,−1)

be the current partition with D = 6. Up to a change of signs, the possible

parent partitions are (+1,−1,−1, 0,−1,−1), (0,−1,−1,+1,−1,−1), and

(+1,−1,−1,+1,−1,−1). On the other hand, a child partition is a partition

which can follow the current partition. In this case, up to a change of

signs, the child partitions of (0,−1,+1, 0,−1,−1) are (0,+1, 0, 0,−1,−1),

(0,−1, 0, 0,+1,−1), and (0,−1, 0, 0,−1,+1). In the CoDa-dendrogram both

parent and child partitions are, respectively, up and down on a consecutive

level of the current partition. A top partition is a partition which does

not contain zeros. In the previous example (+1,−1,−1,+1,−1,−1) is a

top partition, that is, the D parts are split into two groups and this would

appear at the top of the CoDa-dendrogram.

Let X be a CoDa (n,D)-set. The algorithm to find the PBs of X is

Step 0: initialize d = D

Step 1: Optimal current partition procedure

- load the file of all possible partitions of size d

- find the partition which has a balance with the maximum sample

variance within all possible d-partitions and add this partition to

a list of chosen partitions

- set r = number of parts marked +1 in the current partition and s =

number of parts marked −1

Step 2: Optimal child partition procedure
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- split the data set according to the parts marked +1 or −1 in the

current partition found in Step 1

- if r > 1 take the parts marked with +1 and go to Step 1 (recursive

algorithm) with d = r

- if s > 1 take the parts marked with −1 in the current partition found

in Step 1 and go to Step 1 (recursive algorithm) with d = s

Step 3: Optimal parent partition procedure

- do-while loop: while there is a zero in the current partition, mark

the non-zero parts with −1, load the file of all possible parent

partitions, find the parent partition that maximizes the variance

of the corresponding balance, add the selected parent partition

to a list of parent partitions and chosen partitions, at the end a

top partition is found

- do-for loop: for all the partitions in the list of parent partitions, take

the parts marked with +1 and go to Step 1 with d equal to the

number of selected parts

Step 4: sort the chosen partitions in decreasing order of variance of their

corresponding balances.

Figure 2 shows an example (D = 8) that illustrates the sequence followed

by the algorithm to construct the PBs. First, take d = 8 in Step 0. In Step 1

the maximum variance associated with the partition (+1,+1,+1,−1,−1, 0, 0, 0)

was found and labelled as the First PB. According to the parts marked +1

or −1, in Step 2 this partition is split into two partitions. The recursive algo-

rithm applied to the parts marked with +1 found that the optimal child par-

tition is (+1,−1, 0, 0, 0, 0, 0, 0) (labelled 2), whose optimal parent partition
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is (−1,−1,+1, 0, 0, 0, 0, 0) (labelled 3). The recursive algorithm applied to

the parts marked with −1 in the First PB found that (0, 0, 0,+1,−1, 0, 0, 0)

is the optimal child partition (labelled 4). The list of consecutive opti-

mal parent partitions of the First PB found in Step 3 is formed by the

partition (−1,−1,−1,−1,−1,+1,+1, 0) (labelled 5) and the top partition

(−1,−1,−1,−1,−1,−1,−1,+1) (labelled 6). When the parts marked with

+1 in these parent partitions are sent to Step 1 the optimal child parti-

tion was found to be (0, 0, 0, 0, 0,+1,−1, 0) (labelled 7). Once the SPB is

completed the partitions are then sorted according to the variance of their

corresponding ilr-coordinates.

When this algorithm was applied to the geochemical data example de-

scribed in Table 1, it took 0.08 seconds to provide the SBP in Table 1

(unsorted) and represented in Fig. 1. The PCA of CoDa, that is, the PCA

applied to the clr-variables (Aitchison 1983), gives the loadings

PC1 = (−0.06,−0.30, 0.89,−0.11,−0.28,−0.14),

PC2 = (−0.08,−0.07,−0.02,−0.46,−0.23,+0.85).

These two PCs retain 77% of the variance. The balances

ilr3(x) = (0,−0.29, 0.87, 0,−0.29,−0.29) and

ilr4(x) = (0,−0.41, 0, 0,−0.41, 0.82)

exhibit a similar performance in both loadings and accumulated variance

(Table 1). This same harmony between the PBs and PCs was also found in

the analysis of other data sets. Table 2 shows a summary for four typical

examples of geochemical compositions with differing numbers of parts (D)

and sample sizes (n). For the sake of simplicity, the descriptions of these
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examples, which are similar to the example given in Section 5.1, have not

been provided.

4 Suboptimal (but faster) algorithms to construct

principal balances

4.1 Current algorithms

Table 2 shows that the computation time for the optimal algorithm increases

quickly with the dimension of the data set. Suboptimal strategies can then

be appropriate to simplify the previous algorithm. Here the word subopti-

mal means that the accumulated variance explained by the first balances

will be lower than or equal to the variance for the optimal algorithm. A

number of approaches have already been proposed to solve this problem.

Pawlowsky-Glahn et al. (2011) introduced three algorithms: the maximum

explained variance hierarchical balances, the angular proximity to PCs, and

the hierarchical clustering of components. The first algorithm tries to sim-

plify the exhaustive search by constraining it to a hierarchy of balances.

It starts by searching for the full-balance (a balance that contains all the

parts) that maximizes the retained variance. It consists of splitting the full

composition into two sets of parts (numerator and denominator) that are

recursively treated as the initial full composition. The angular proximity

algorithm, in its first step, consists of finding the full-balance closest to

one, but not necessarily the first, PC. After this, the algorithm recursively

continues for the set of parts in the numerator and in the denominator.

These two algorithms are far from being efficient (Mert et al. 2015) and

so should not be considered. On the other hand, the third proposal, that

uses the Ward clustering method to cluster the parts of the composition,

14



does provide better results (Mert et al. 2015). However, the SBPs con-

structed by this algorithm will always have the largest variance in the first

balance that includes all the parts (full-balance). Other methods designed to

provide directions as simple as possible to interpret have comparable draw-

backs. For example, Jolliffe (2002) describes how rotating PCs produces a

redistribution among the rotated PCs of the explained variance causing a

loss of dominant information, while both truncating the PC loadings and

the constrained PCs approach give directions that approximate the PCs,

although these are not exactly orthogonal and are not uncorrelated. The

SCoT (Simplified Component Technique) and SCoTLASS (Least Shrink-

age and Selection Operator) methods have tuning parameters chosen as a

compromise between simplicity and variance explanation capability (Witten

et al. 2011). Mert et al. (2015) introduce an algorithm to construct sparse

PBs (SPB) for high-dimensional CoDa that is basically an adaptation of the

algorithm implemented in Witten et al. (2011), that is, it is connected with

the variable selection method introduced by Jolliffe et al. (2003). Because

the algorithm is designed for high-dimensional data it focuses on dimension

reduction, that is, the algorithm does not provide a complete log-ratio basis.

Importantly, the authors remark that “...we want to ensure that different

balances relate to different parts.” and that, “The SPB method results in

balances which involve non-overlapping groups of variables...”. On the other

hand, for dimension reduction purposes, the algorithm shows a remarkable

reduction in the consumption of computational time. The authors acknowl-

edge that their algorithm “...makes use of suboptimal projections ... to the

clr hyperplane ...”, and that in its construction of PBs, “... the nearest bal-

ances to the resulting clr vectors are constructed [...] simply compute the

arithmetic mean from the positive/negative entries ...”. These two strategies
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for designing interpretable dimension reduction algorithms are far from the

recommended procedure in Chipman and Gu (2005).

In this work, two different suboptimal approaches for constructing PBs

are presented. One is a new approach based on the information provided

by the PCs and the other revisits Ward’s clustering method for parts. The

latter is a new approach based on the relation between the variation matrix

and the Aitchison distance. Both suboptimal approaches offer an appealing

connection to the definition of balances.

4.2 Using principal component loadings: new constrained

PCs algorithm

A number of studies have been proposed to build interpretable PCs through

a simplification of the loading vectors of the original PCs both within the real

space framework (Chipman and Gu 2005; Jolliffe 2002; Jolliffe et al. 2003;

Witten et al. 2011; Cox and Arnold 2016), and within the CoDa framework

(Gallo et al. 2016; Mert et al. 2015). As a rule of thumb, simplifying a

loadings vector means considering only the most important loadings and

removing (force to zero) the rest and measuring the importance of a load-

ing, for example by its magnitude. Consequently, the number of original

variables or parts associated with each PC is reduced, making the rela-

tion more interpretable. Here, among the several proposals for simplifica-

tion, the constrained PC approach introduced by Chipman and Gu (2005)

was followed because it is consistent with Definition 1. Let γ1,γ2, · · · ,γD

be the directions of the PCs of the clr-transformed data (Eq. (2)). Let

α1,α2, · · · ,αD be the corresponding simplified PCs, that is, the clr coeffi-

cients in Eq. (4). Following Chipman and Gu (2005), the components αij

of the i-th vector αi only take values −c1, 0, and c2, such that α′i · αi = 1
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and α′i · 1 = 0. Chipman and Gu (2005) describe each vector αi as “...a

difference of the average of one set of variables and the average of another

set of variables, called a contrast”. That is, a log-contrast when applied

to log-transformed variables (Definition 1). Given the PC γi , the best

simplification αi minimizes the angle arcos(γ ′i · αi), that is, it maximizes

the inner product γ ′i · αi. The search algorithm (Chipman and Gu 2005)

starts by identifying the largest positive and negative coefficients of γi and

sets, respectively, the corresponding elements of αi to ±
√

2/2 (Eq. (4)).

All the other elements of αi are forced to zero. This procedure is re-

peated from three to D coefficients selected by absolute magnitude. Among

these D − 1 possible elements αi, the closest to γi is its best simplifica-

tion. For example, for γ1 = (−0.06,−0.30, 0.89,−0.11,−0.28,−0.14) the

first PC of the data set in Table 1, the five candidates for simplification

are the balances (0,−1, 1, 0, 0, 0), (0 − 1, 1, 0,−1, 0), (0,−1, 1, 0,−1,−1),

(0 − 1, 1,−1,−1,−1), and (−1,−1, 1,−1,−1,−1) accordingly normalized

(Eq. (3)). In this case, the closest balance, that is the balance with the

smallest angle, is α1 = (0,−0.22, 0.89,−0.22,−0.22,−0.22) with an angle of

10.55 degrees.

In essence, the constrained PCs approach is based on a restriction re-

laxation similar to the strategy commonly used in some operation research

techniques. In fact, the calculation of the PCs directions γ1,γ2, · · · ,γD is

equivalent to relaxing the constraint aki ∈ {−c1, 0, c2}, i = 1, . . . , D, in Def-

inition 1. Afterwards, the corresponding best simplification is constructed.

Consequently, calculating the PCs and the posterior search algorithm of

the balances is very straightforward. With the objective of optimizing the

exhaustive searching, Steps 1 and 3 of the optimal algorithm to find approx-

imate PBs using these techniques were replaced. That is, instead of loading
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the files of all possible partitions and parents of partitions, the constrained

PCs were calculated respectively. As Step 1 is mainly responsible for con-

suming computational time, reducing it is very relevant. Indeed, the four

data sets analyzed with the new algorithm (Table 2) take 0.028, 0.033, 0.026,

and 0.124 seconds, respectively. The price paid for this time reduction is a

decrease in the variance explained: the three first PBs obtained using this

new algorithm for each of the four data sets in Table 2 explain, respectively,

85%, 64%, 84% and 61% of the total variance.

4.3 Using hierarchical clustering methods for parts: a new

approach to the Ward method for parts

Another different approach to constructing interpretable PCs is based on

cluster techniques (Enki et al. 2013). Following Pawlowsky-Glahn et al.

(2011) any hierarchical clustering of parts may be applied to create a den-

drogram that can be used to construct an SBP. The hierarchical algorithms

can be agglomerative or divisive, and amongst the agglomerative algorithms,

perhaps the most commonly used are the linkage techniques (single, com-

plete, average, centroid) and the Ward clustering method (Everitt et al.

2011). Each method is based on a measure of proximity or similarity be-

tween the elements and a particular rule for merging the groups. The prop-

erties and the performance of a method depend on the proximity and the

rule selected. In all cases the clustering proceeds hierarchically, each being

obtained by merging two clusters from the previous level.

Following Izenman (2008), a clustering method for variables generally

uses a measure of proximity based on dependence measures, also known

as measures of association or correlation. These measures provide some

reasonable information of the closeness between two variables, that is, large
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correlation means that the two variables are close, and two variables for

which the correlation is small are considered to be at a large distance from

each other (Enki et al. 2013). Indeed, Izenman (2008, p. 439) shows that if

the two variables are previously standardized (zero mean and unit variance),

the squared Euclidean distance between the variables is proportional to one

minus the Pearson correlation coefficient.

In CoDa analysis, variability (second order moments) can be expressed

in several forms (Pawlowsky-Glahn et al. 2015). One of the more practical

being the variation matrix (Aitchison 1986); which can also be used to define

association measures between two parts of a composition across a sample

(Lovell et al. 2015). Let Xr and Xs be two parts, that is, two columns of a

data set X (n×D), with sample size n and D parts. If Var(ln(Xr/Xs)) is

exactly zero, the ratio Xr/Xs is constant. Then, the two parts involved are

proportional (Lovell et al. 2015). This work states, for the first time, that

the entries of the variation matrix Var(ln(Xr/Xs)) can also be expressed in

terms of the Aitchison distance between parts. Indeed, the columns of X can

be considered as compositions in an n-part simplex. The i-th component of

the clr transformation of Xr is lnxir − ln Xr, where ln Xr is the average of

the logarithms lnxir along the column Xr. This is equivalent to considering

X> as a compositional data set and then taking clr transformation. This

leads to

Var

(
ln

(
Xr

Xs

))
=

1

n

n∑
i=1

(
(lnxir − lnxis)− (ln Xr − ln Xs)

)2
=

1

n

n∑
i=1

(
(lnxir − ln Xr)− (lnxis − ln Xs)

)2
=

1

n
d2
a(Xr,Xs) ,

(5)

where the last term is an Aitchison distance in the n-part simplex, that is
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an Aitchison distance between parts. In terms of the corresponding balance

(Eq. (3)), this expression is

Var

(√
2

2
· ln
(

Xr

Xs

))
=

1

2n
· d2

a(Xr,Xs) .

Importantly, for a sample of size n, the matrix of the squared Aitchison

distances between variables is the matrix of log-ratio variances, that is, the

variation matrix (Aitchison 1986) multiplied by n.

The differences between the linkage techniques are due to the different

ways of defining distance between a part and a group containing several

parts, or between two groups of parts. Discussing the properties of each

method is beyond the scope of this article. The Ward method is used here

because of its interpretation in terms of balances. In general terms, the Ward

clustering method involves merging clusters with the most similar centroids

(mean vectors). The method measures this similarity defining the distance

between two clusters, A and B, as the increase of the within cluster sum of

squares when they are merged. This increase is equal to

nA · nB
nA + nB

d2
e(A,B),

where nA, nB are, respectively, the number of objects in each cluster, and

A,B stand for the centroids. In our case, the centroid of a cluster formed by

the r parts Xn1,Xn2, . . . ,Xnr is the geometric mean Gn = (Xn1 · · ·Xnr)
1/r.

Consequently, the squared distance between the two clusters Xn1,Xn2, . . . ,Xnr
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and Xd1,Xd2, . . . ,Xds is proportional to the variance of the balance,

Var

(√
r · s
r + s

ln

(
Gn

Gd

))
=

r · s
r + s

Var

(
ln

(
Gn

Gd

))
=

r · s
r + s

· 1

n
d2
a(Gn,Gd)

=
r · s
r + s

· 1

n
d2
e(clr(Gn), clr(Gd)),

where clr(Gn) and clr(Gd) are the centroids of the clr-transformed parts in

each group. Given that the factor 1/n is common to all the entries in the

distance matrix, the levels of hierarchy in the clustering are proportional to

the variance of the corresponding balance. The clustering algorithm starts

detecting the smallest entry in the variation matrix (matrix of log-ratio

variances), and the corresponding parts are merged to form a group. The

geometric mean of both columns (centroid of the group) is calculated and

the variation matrix is updated. The algorithm iteratively continues merg-

ing groups of parts according to the smallest variance of the corresponding

balance. The final stage consists of fusing the last two remaining groups

into one, which gives the balance with the largest variance.

Applied to the four simple data sets in Table 2, the performance of this

algorithm, with regards to the explained variance, is mostly better than the

algorithm using the constrained PCs. Note too, that it is also very similar

to the optimal algorithm: only in the third example is the percentage of

explained variance lower, dropping from 85% to 82%. On the other hand,

the decrease in computation time is now very relevant because it took, re-

spectively, 0.003, 0.003, 0.002 and 0.006 seconds.

Figure 3 shows the CoDa-dendrogram provided by the constrained PCs

algorithm while Fig. 4 shows the Ward clustering method. By definition of

the hierarchical clustering method, the SBP constructed will have the largest
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variance in the first balance (full-balance) that includes all the parts. On

the other hand, the constrained PCs algorithm can find an SBP where the

largest variance is in an intermediate balance (not full-balance) in harmony

with the optimal algorithm (Fig. 1). However, the Ward method enhances

the proportionality between groups of parts. For example, the closest parts,

Ca and Mg, detected by the optimal algorithm, are also found with the

clustering method, but are not detected by the constrained PCs algorithm.

5 Examples

5.1 Aar Massif data

By means of illustration, the methods presented here are applied to char-

acterize a data set of the geochemical composition of glacial sediment from

a granodioritic-gneissic source rock (Aar Massif, CH) (Tolosana-Delgado

and von Eynatten 2010; von Eynatten et al. 2012). This data set contains

measurements of 10 major oxides and 16 trace elements from 87 samples

of differing grain sizes. To keep representations simple, only the major ele-

ments converted to oxides (Al2O3, CaO, Fe2O3t, K2O, MgO, MnO, Na2O,

P2O5, SiO2, TiO2) were retained.

In practice, the analyst would start the analysis with an exploratory

study using the representation of the compositional (covariance) biplot (Fig.

5). The compositional biplot is a PCA of the centered clr-transformed data

(Eq. (2)) used to represent the variables and the samples simultaneously

in a graph. Intuitively, an SBP approaching PBs can be constructed by

examining the biplot in Fig. 5. A first partition can be identified as

the variables whose rays point towards the extremes of the long link ap-

proximately parallel to the first axis. A first group is marked with +1
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(Al2O3, CaO,K2O,Na2O,SiO2) and the group of parts (Fe2O3t,MgO,

MnO,P2O5, T iO2) marked with −1. To form the second PB, one of the two

groups has to be split into two. For example, the group of positive parts

could be split into CaO versus (Al2O3,K2O,Na2O,SiO2). Afterwards, one

could continue with, for example, (Al2O3,K2O) versus (Na2O,SiO2) or any

other possibility selected by using knowledge about the problem being stud-

ied. To proceed here, the group of negative parts (Fe2O3t,MgO,MnO,P2O5,

T iO2) is split analogously. Despite the fact that this exploratory and subjec-

tive procedure for constructing PBs might be useful, it does not guarantee

a reasonable approximation to the PCs, that is, a sequential maximum ex-

planation of variance. On the other hand, the three algorithms introduced

in this article are procedures to construct PBs based on numerical criteria.

In Table 3, a PCA of the clr-transformed data (Eq. (2)) yields load-

ings and contributions to variance displayed (labelled “PCi”). These results

serve as a reference with which to compare the three methods: optimal

principal balances (O), constrained principal components (C) and Ward hi-

erarchical clustering (W). The PBs are ordered according to the percentage

of variance explained. For example, PB2 for method O was the sixth balance

constructed (O6). For a better interpretation, the values equal to zero are

reported as blanks in Table 3. In terms of the computational consumption

time, note that the results correspond to the (aforementioned) third example

in Table 2.

The methods O and C construct the same first PB. Both PB1 identify

two main groups: felsic elements (Al2O3,K2O,Na2O,SiO2) versus mafic el-

ements (Fe2O3,MgO,MnO,P2O5, T iO2) and omit the element CaO, which

has the lowest loading (0.08) in PC1. Because method W must construct

a first PB using the full composition it cannot leave out the element CaO.
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Method W assigns this element to the mafic elements, suggesting an asso-

ciation through apatite, calcium phosphate. On the other hand, method W

achieves the best approximation for the second PC. Indeed, its PB2 opposes

elements CaO and P2O5 to the mafic parts, similar to PC2 including the

element K2O and assigning a different sign to the element TiO2. Method C

assigns the correct sign to the element TiO2, whereas it is not included by

method O in the second PB. Neither methods O or C include the element

CaO. The three methods construct the same third PB: (Al2O3,K2O) versus

(Na2O,SiO2). Except for the loading of the element TiO2, this PB collects

the largest loadings of the third PC. These types of relations between the

loadings of the PCs and the PBs can be described until the last PC where the

groups of parts highlights the relation between the element Fe2O3 and the

elements (MgO,MnO). However, sometimes the order of the PBs does not

coincide with the most similar PC. For example, for methods O and W PB6

suggests the relation between the element TiO2 and other mafic parts that

is partially shown by PC5. In addition to the large variance explained by the

two or three first PBs, the analysis of their corresponding loadings (Table

3) corroborates that these methods provide a reasonable approximation to

PCs. Figure 6 shows the dendrogram associated to each method of con-

structing PBs. The structure of the SBP associated to the three methods

is very similar because all of them separate the felsic and mafic elements

exhibiting the largest variability. However, methods O and C differ from

method W in the treatment of the element CaO because they separate this

element from the felsic and mafic elements, while method W assigns it to

the mafic elements. Despite all the methods assigning the element TiO2 to

the mafic element, method O is different because it assigns the element as

the last step in forming the group of mafic elements.

24



In Table 3 it can be appreciated that non-zero loadings corresponding

to a balance (sub-tables O, C, W) only admit two values that are different,

in contrast to PCs for which the condition is that the loadings add to zero

and the sum of their squares add to one. Therefore, the variance retained

by the first PBs will always be less than or equal to the variance explained

by the corresponding PCs. In this example this holds only for the two first

balances. The first PC explains 71.22% of the variance, whereas methods

O and C retain 64.15%, and with only 58.63% method W is the worst

approximation. On the other hand, the 19.05% explained by PC2 is better

approximated by method W (18.28%) than by the other two methods, with,

respectively, 14.15% and 13.63%.

Because the set of vectors must explain the total variance of the data

set, the variance explained by some of the PBs has to be greater than the

variance retained by the corresponding PC. Therefore, it is necessary to

define measures of effectiveness which will allow how well the PBs approach

the PCs to be evaluated. Let v = (v1, v2, . . . , vD−1) be the vector containing

the variances of estimated PCs or PBs ordered from maximum to minimum

variance. The components of vector v are commonly represented graphically

as a scree plot (Jolliffe 2002, p. 115) with the purpose of choosing a subset of

PCs for dimensionality reduction. In this work, it is preferable to represent

the cumulative percentage of variance explained

100 ·
∑k

j=1 vj∑D−1
j=1 vj

, k = 1, . . . , D − 1 .

Figure 7 (left) shows that, as expected, the PCs (filled circle) exhibit the

best performance. Among the PB methods, method W (triangle) has the

poorest performance, whereas methods O (circle) and C (cross) are nearly
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coincident.

The components of vector v are positive and add to the total variance.

This is not relevant to the analysis as the importance the components of vec-

tor v have is evaluated in terms of the proportion of the total variance (Table

3). Following Prados et al. (2010), this suggests that vector v carries relative

information, that is, the compositional approach is adequate. Consequently,

v can be taken as a composition. Consider the sequence of subcompositions

of v: v2 = (v1, v2), v3 = (v1, v2, v3), . . ., vk = (v1, v2, . . . , vk), k ≤ D − 1.

Their Aitchison norm, ‖vk‖a, measures the concentration of variance in the

first k (ordered) components. By construction and due to its subcomposi-

tional coherence, the Aitchison norm of the subcompositions v2, v3, . . ., vk

provides a sequence of increasing values. Figure 7 (right) shows that these

values are useful to measure the effectiveness approaching PCs. It shows

the Aitchison norm of the vector of variances for PCs (filled circle), O (cir-

cle), C (cross), and W (triangle) for different sizes of the subcomposition.

Starting with vector v3, the curve representing the variance explained by

PC appears, as expected, above the other lines. The curve of W is always

the lowest one, thus reflecting the price to be paid for estimating the first

balance using only full compositions. The two recursive methods O and

C produce Aitchison norm curves that almost overlap. These observations

hold for the particular data set used; the shape and order of the curves will

not necessarily be the same for other data and/or number of parts.

Further comparison of methods requires a measure of effectiveness ap-

proaching PCs. A first idea comes from the property of the PCs which are

uncorrelated random variables by construction. As the PBs approach PCs,

correlations between the PBs are expected to be small. To evaluate the de-

viation from zero Fig. 8 shows the absolute value of the Pearson correlation
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coefficients between the isometric logratio coordinates (Eq. (3)) obtained by

the PBs for methods O, C and W, respectively. The behavior of the three

methods is very similar as regards to the minimum, maximum and median

values. Method W shows the largest interquartile range, whereas the short-

est is from method O. Noticeably, the PB methods do not aim to provide

uncorrelated balances, on the contrary, the suggestion of both low and high

correlations between ratios of parts or groups of parts may provide valuable

information. For example, PB8 and PB9 in method O (O4 and O9) show a

correlation coefficient equal to −0.01, indicating that the ratio Al2O3/K2O

can be assumed uncorrelated to the ratio Fe2O3t/
√

(MgO ·MnO). In ad-

dition, the same method provides a correlation coefficient equal to −0.79

between PB5 (i.e., O8) and PB9 (i.e., O9) suggesting a linear relation be-

tween the parts Fe2O3t, MgO, and MnO.

5.2 Simulations

Although the PB algorithms presented aim to construct complete log-ratio

basis, their performance as dimension reduction techniques when the number

of parts is large, namely D > 50, is briefly explored here. For this situation,

the use of the optimal algorithm would require a powerful computational

system. In other words, this is not recommendable for a personal computer.

Consequently, this section compares the constrained PCs and the Ward

hierarchical clustering algorithms with the PCA and the SPB methods (Mert

et al. 2015).

Following the scheme established in Mert et al. (2015), in each simulation

run 1,000 replications of a compositional data set with n = 100 observations

and with the number of parts D ∈{50; 100; 500; 1,000} were generated. To

create one data set, a loadings matrix (D− 1)× (D− 1) was first generated

27



in the ilr-space through a uniform distribution in the interval [−1, 1]. Next,

a scores matrix n × (D − 1) was generated in the ilr-space using a multi-

variate Gaussian distribution centered at the origin of coordinates and with

a diagonal covariance matrix. The D − 1 values of the diagonal vector of

this matrix were taken as (0.9, 0.92, . . . , 0.910, 0.01, . . . , 0.01). The form of

this matrix guarantees the uncorrelation of the principal components and an

exponential decrease of the first eigenvalues. Using the product of the load-

ings matrix and scores matrix, the matrix n× (D− 1) of ilr coordinates was

obtained and back transformed to the simplex to create the matrix n ×D

for the compositional data set.

Because the aim is to evaluate the performance of the algorithms as

a dimension reduction technique, the focus was placed on the explained

variance of the resulting first balances provided by the methods. Figure 9

shows the boxplots for the cumulative percent of explained variance of the

first five components for the methods: the PCA (PC), the sparse PBs (SPB)

(Mert et al. 2015), and the two suboptimal algorithms proposed here: the

constrained PCs (C) and the Ward hierarchical clustering (W). The four

figures correspond, respectively, to the simulated data for the dimension

D ∈{50; 100; 500; 1,000}. Each boxplot summarizes the results of the 1,000

simulations. As expected, the PCA outperforms the PB methods in all

the cases. As a general behavior, the SPB method seems to explain more

variance for the two first PBs than the algorithms C and W do. However,

the boxplot trends suggest that the suboptimal algorithms achieve, and even

outperform, the same level as the SPB method for D ∈ {50, 100}. A similar

relation is suggested between the algorithms C and W. That is, the figures

suggest that the algorithm C explains more variance than the algorithm W

for the two first PBs, but the trend is that the algorithm W achieves the
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performance of the algorithm C. Another general feature is that in all the

cases the differences among the three methods increase when the dimension

increases.

As regards to the consumption of computational time, the main disad-

vantage to method SPB is the previous selection of an optimal tuning pa-

rameter (Jolliffe 2002; Mert et al. 2015). This process consists of creating

the PBs and calculating their cumulative explained variance for a sequence

of values for the tuning parameter. In the simulation here, in a typical ex-

ample with n = 100 and D = 50 and a sequence of 30 tuning values, method

SPB took about 2.25 seconds to provide the five first PBs of the data set.

For this same case, the algorithms C and W took about 0.05 and 0.01 sec-

onds, respectively, to provide the complete log-ratio basis formed of 49 PBs.

When the dimension was increased to D = 1,000, the results were about

15 seconds for the SPB method. In this case, to provide the corresponding

999 PBs, the algorithms C and W took 2.5 and 1.5 seconds, respectively.

However, the construction of the five first PBs without the tuning selection

process for one of the replications of the data set is reasonably fast. Once

the tuning parameter is fixed, the SPB method took only about 0.07 and 0.5

seconds, respectively, thus becoming faster than the sub-optimal algorithms

for high-dimensional data sets, as stated by Mert et al. (2015).

6 Conclusions

The PCA of a set of compositions (clr-transformed and centered) has a num-

ber of appealing properties: maximum explained variance of the sequence

of PCs, uncorrelated components, and orthogonal geometric axes. Because

of these properties, PCA is one of the main tools for exploratory analysis

and CoDa modeling. The main shortcoming of PCs is the difficulty in in-
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terpreting the resulting coordinates because a PC is a function of all the

original parts.

Balances are log-contrasts resulting from a logratio of two geometric

means of two groups of parts. Their interpretation is considerably simpler

than that of PCs. In the present contribution, the idea of approximating

the complete log-ratio basis of PCs using a set of balances, called principal

balances (PBs), has been formalized. A new optimal algorithm to construct

PBs has been introduced. However, PB computation requires an exhaustive

search over the possible set of orthonormal balances, which may consume

a considerable amount of computational time when the number of parts

increases. To avoid this, two suboptimal but faster procedures to search

for PBs have been presented. A new algorithm based on the construction

of constrained PCs provides similar results to the optimal algorithm. This

algorithm substitutes the exhaustive search for an efficient search driven by

the information provided by the PCs. The second algorithm, based on the

Ward hierarchical clustering method, deals with the information provided

by the variation matrix and enhances the associations between groups of

parts, but forces the first PB to involve all the parts. The performance of

the three algorithms has been analyzed and discussed. A new measure of

effectiveness based on the Aitchison norm has been proposed. The results

obtained corroborate the theoretical properties of the methods: they approx-

imate reasonably well the complete log-ratio basis of PCs, thus improving

interpretability. However, the price paid is a smaller amount of variance

explained by the first balances and the lack of uncorrelation between the

coordinates.

The aim of the algorithms introduced in this work is, rather than a

dimension reduction technique, to provide useful tools for data driven con-
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struction of a complete log-ratio basis. For a reduced number of parts it is

feasible to apply the optimal algorithm, although its use is conditioned by

the computational time, that is, by the quality and capacity of the available

computational resources. If the resource available is a common personal

computer, then using one of the suboptimal algorithms to increase number

of parts would be preferable. To this aim, the Ward hierarchical clustering

algorithm is recommended if the interest focuses on the relation of pro-

portionality between parts or groups of parts. Despite high-dimensional

data sets (hundreds or thousands of parts) perhaps not being frequent in

geochemistry, they are common in other fields such as genomics or in the

analysis of the microbiome. In such a scenario, one can use the SPB method

(Mert et al. 2015) that was designed as a dimension reduction technique.

However, when compared with the suboptimal algorithms these approaches

show reasonable results as regards to the comsumption of computational

time and to the cumulative percentage of variance explained. For example,

we found that for D = 1,000, the first five PBs provided by the algorithms

SPB and constrained PCs accumulate approximately 10% and 9.5% total

variance, respectively. Importantly, because the constrained PCs approach

is based on an optimization technique, its performance might be improved

following new emerging algorithms (Cox and Arnold 2016). The ideas pre-

sented in this article could contribute to introducing new algorithms for

high-dimensional data to improve these performances.
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Figure captions list

Fig. 1 CoDa-dendrogram using the SBP from Table 1. Vertical axis shows the
level of accumulated variance. Dotted lines represent groups of parts formed by a
unique element

Fig. 2 Example: optimal PB algorithm. The label First PB indicates the PB
that explains the maximum proportion of variance. Numbers in black rectangles
indicate the sequence followed by the algorithm to construct the PBs (see text for
details)

Fig. 3 CoDa-dendrogram using the SBP with the constrained PC algorithm

Fig. 4 CoDa-dendrogram using the SBP with the Ward clustering method

Fig. 5 Compositional biplot of Aar Massif data set

Fig. 6 Aar Massif data set: CoDa-dendrogram for PBs obtained with each of the
three methods. Left: optimal PBs (O); center: constrained PCs (C); right: Ward
hierarchical clustering (W)

Fig. 7 Aar Massif data set. Left: cumulative percentage of explained variance for
each PC or PB. Right: Aitchison norm of the vector of ordered explained variances
taken as a composition

Fig. 8 Aar Massif data set: box plots of the absolute value of the Pearson corre-
lation coefficient when the coordinates are expressed according the PBs provided
by the different methods: optimal PBs (O); constrained PCs (C); and Ward hier-
archical clustering (W)

Fig. 9 Cumulative percent of explained variance of the first five components for
PCA (PC), sparse PBs (SPB); constrained PCs (C); and Ward hierarchical clus-
tering (W) for simulated data with different dimension D ∈{50; 100; 500; 1,000}
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Table captions list

Table 1 Example of SBP: a typical geochemical data set for the composition

(Ba, Ca, Fe, K, Mg, Mn). Mean and variance correspond to the sample

mean and variance of the balance. The sum of the variances is 5.62 which

corresponds to the sample total variance

Table 2 Four typical examples in geochemistry. Performance of PCA and

of the PBs constructed using (O) optimal PBs, (C) constrained PCs and

(W) Ward hierarchical clustering for four simple data sets (D: number of

parts; n: number of samples). Columns in the center: computational time in

seconds; columns on the right: cumulative percentage of variance explained

by the first three PCs and PBs

Table 3 Aar Massif data set: loadings and vector of explained variances of

PCA and of the PBs constructed using (O) optimal PBs, (C) constrained

PCs, and (W) Ward hierarchical clustering. PBs are ordered according to

their variance. Values equal to zero are reported as blanks
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Table 1 Example of SBP: a typical geochemical data set for the composition (Ba,
Ca, Fe, K, Mg, Mn). Mean and variance correspond to the sample mean and
variance of the balance. The sum of the variances is 5.62 which corresponds to the
sample total variance

ilrk(x) Ba Ca Fe K Mg Mn Mean Variance % Variance

ilr1(x) +1 -1 -1 -1 -1 -1 -3.93 0.53 9.37%
ilr2(x) 0 -1 -1 +1 -1 -1 0.00 0.93 16.58%
ilr3(x) 0 -1 +1 0 -1 -1 -1.46 2.69 47.89%
ilr4(x) 0 -1 0 0 -1 +1 -3.45 1.29 23.01%
ilr5(x) 0 +1 0 0 -1 0 0.64 0.18 3.16%
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Table 2 Four typical examples in geochemistry. Performance of PCA and of the
PBs constructed using (O) optimal PBs, (C) constrained PCs and (W) Ward hi-
erarchical clustering for four simple data sets (D: number of parts; n: number of
samples). Columns in the center: computational time in seconds; columns on the
right: cumulative percentage of variance explained by the first three PCs and PBs

Time (sec.) % var. expl.
Example D n PCs O C W PCs O C W

1 6 2,097 0.013 0.041 0.028 0.003 90 88 85 88
2 8 778 0.001 0.420 0.033 0.003 68 65 64 65
3 10 87 0.006 3.061 0.026 0.002 94 85 84 82
4 13 2,097 0.023 148.8 0.124 0.006 73 68 61 68
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Table 3 Aar Massif data set: loadings and vector of explained variances of PCA
and of the PBs constructed using (O) optimal PBs, (C) constrained PCs, and (W)
Ward hierarchical clustering. PBs are ordered according to their variance. Values
equal to zero are reported as blanks

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

Al2O3 0.23 0.12 0.32 -0.09 0.21 0.24 0.04 0.77 -0.15
CaO 0.08 -0.40 0.14 0.24 0.17 -0.68 -0.39 0.04 -0.12

Fe2O3t -0.30 0.22 0.01 -0.04 -0.07 -0.29 0.20 0.16 0.78
K2O 0.23 0.33 0.32 -0.56 -0.06 0.03 -0.38 -0.42 0.02
MgO -0.50 0.33 0.19 0.55 -0.11 0.28 -0.24 -0.13 -0.21
MnO -0.25 0.21 -0.28 -0.29 -0.08 -0.35 0.45 -0.00 -0.55
Na2O 0.47 -0.03 0.19 0.37 0.17 0.07 0.56 -0.39 0.06
P2O5 -0.20 -0.68 0.18 -0.21 -0.48 0.29 0.12 -0.02 0.02
SiO2 0.43 0.10 -0.63 0.18 -0.44 0.09 -0.24 0.12 0.06
T iO2 -0.20 -0.21 -0.44 -0.15 0.67 0.32 -0.12 -0.13 0.09

expl.var (in %) 71.22 19.05 4.28 2.66 1.80 0.67 0.17 0.10 0.05

O1 O6 O3 O2 O8 O7 O5 O4 O9

Al2O3 0.37 0.50 -0.11 0.71
CaO 0.95

Fe2O3t -0.30 0.29 -0.11 -0.22 0.82
K2O 0.37 0.50 -0.11 -0.71
MgO -0.30 0.29 -0.11 0.71 -0.22 -0.41
MnO -0.30 0.29 -0.11 -0.71 -0.22 -0.41
Na2O 0.37 -0.50 -0.11 0.71
P2O5 -0.30 -0.87 -0.11 -0.22
SiO2 0.37 -0.50 -0.11 -0.71
T iO2 -0.30 -0.11 0.89

expl.var (in %) 64.15 14.15 6.29 4.60 3.86 3.54 2.13 0.86 0.41

C1 C3 C7 C2 C4 C5 C8 C9 C6

Al2O3 0.37 0.50 -0.11 0.71
CaO 0.95

Fe2O3t -0.30 0.37 -0.11 0.82
K2O 0.37 0.50 -0.11 -0.71
MgO -0.30 0.37 -0.11 0.71 -0.41
MnO -0.30 0.37 -0.11 -0.71 -0.41
Na2O 0.37 -0.50 -0.11 0.71
P2O5 -0.30 -0.55 -0.11 -0.71
SiO2 0.37 -0.50 -0.11 -0.71
T iO2 -0.30 -0.55 -0.11 0.71

expl.var (in %) 64.15 13.63 6.29 4.60 4.07 3.86 2.13 0.86 0.41

W1 W2 W3 W4 W5 W6 W7 W8 W9

Al2O3 0.39 0.50 0.71
CaO -0.26 -0.58 0.71

Fe2O3t -0.26 0.29 -0.29 -0.41 0.71
K2O 0.39 0.50 -0.71
MgO -0.26 0.29 0.87
MnO -0.26 0.29 -0.29 -0.41 -0.71
Na2O 0.39 -0.50 0.71
P2O5 -0.26 -0.58 -0.71
SiO2 0.39 -0.50 -0.71
T iO2 -0.26 0.29 -0.29 0.82

expl.var (in %) 57.63 18.28 6.29 5.96 4.61 3.83 2.13 0.86 0.41
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