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9 Abstract 

10 Filters are essential for guaranteeing the good performance of microirrigation systems.  

11 Pressure losses across filters should be known for the proper design and management of 

12 this irrigation equipment. Pressure losses produced by filtering media in sand filters can 

13 be computed using Ergun or Kozeny-Karman equations, which require knowledge, 

14 among other parameters, of the sphericity of the filter medium. As this parameter is not 

15 easy to determine, it is useful to explore the performance of alternative computing 

16 methods that can avoid requiring knowledge of sphericity. In this paper, taking as starting 

17 point the nonparametric machine learning approach known as the gradient boosted 

18 regression tree (GBRT) approach and hybridising it with the differential evolution (DE) 

19 technique, the pressure drop in sand filters used in microirrigation has been modelled. For 

20 different filtering materials such as modified glass, crushed glass, silica sand and glass 

21 microspheres, experimental data of pressure drop for velocities between 0.004 and 0.025 

22 m s-1 was collected and the model built. The results demonstrated that DE–GBRT–based 

23 model was able to accurately predict pressure drop. The model also allowed ranking of 
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24 the importance of the independent variables examined within the model. Taking into 

25 account this ranking, and using only the main variables, a simplified method with an 

26 improved coefficient of determination was constructed.

27

28 Keywords: Regression trees; Gradient boosting; Differential evolution; Drip irrigation; 

29 Sand filters 

30

31 Nomenclature

32

ABC Artificial bee colony

jmb Constant value calculated for the region jmR

Co Cover of the GBRT algorithm

CART Classification and Regression Trees

 eqD Equivalent diameter, m

DE Differential evolution

Fm Weak model that predicts the mean of the training y

set

Fq Frequency of the GBRT algorithm

0F x Constant function

F̂ x an estimate of the function *F x

Ga Gain of the GBRT algorithm

GA Genetic algorithm

GBRT Gradient boosted regression tree

GR Parameter that controls the recombination rate
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H Set of arbitrary differentiable functions 

h Weak learner function

ih x Weighted sum of functions

mh x Decision tree

mJ Number of terminal nodes in the tree model

NP Noisy random vectors

L( ) Loss function

m Weighted medium mass, kg

ogm Overall mass of the grains, kg

MARS multivariate adaptive regression splines

MCW Minimum child weight of GBRT algorithm

MDS Minimum delta step of GBRT algorithm

n Number of observed data

N Number of grains

Nrounds Maximum number of iterations of the GBRT 
algorithm

p Index of the individual in the population

PSO Particle swarm optimization

rim Pseudo-residuals

RMSE Root mean square error

2R Coefficient of determination

SR Subsample ratio of the GBRT algorithm

SStot Total sum of squares

SSreg Regression sum of squares

SSerr Residual sum of squares
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g
mt Trial vectors

mV Medium volume, m3

 wV Volume of the additional water, m3

fV Final volume of the water and medium mixture, m3

V

g
px

Mean flow velocity, m s-1

Original vectors

/p L Pressure drop per unit length

Step value over each tree’s weight estimation

Medium porosity

Learning rate of GBRT algorithm

b
Bulk density of each medium, kg m-3

r Real density of each medium, kg m-3

Sphericity factor

Minimum loss reduction of the GBRT algorithm

Penalty function that controls the model complexity

33

34 1. Introduction

35 Proper irrigation water filtration is essential to ensure the successful continuous long-term 

36 operation of microirrigation systems (Clark, Haman, Prochaska, & Yitayew, 2007). By 

37 following good maintenance practices, which includes filtration, the longevity of some 

38 subsurface microirrigation systems have reached 26.5 years (Lamm & Rogers, 2017). 

39 Screen, disc, media and hydro-cyclone filters are common filter types that are used in 

40 microirrigation systems. The choice of filter type will basically depend on the quality of 
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41 water source, the flow rate of the irrigation system and the desired filtered water quality 

42 for avoiding emitter clogging (Clark et al, 2007).

43

44 Irrigation engineers require knowledge of the pressure drop across the filter to properly 

45 design and manage this important system component which is related to water and energy 

46 consumption as well as pollutant removal efficiency (Duran-Ros, Puig-Bargués, Arbat, 

47 Barragán, & Ramírez de Cartagena, 2009). Mathematical models have been developed 

48 using dimensional analysis for describing pressure drops across screens (Wu, Chen, Liu, 

49 Yin, & Niu, 2014b; Zong, Zheng, Liu & Li, 2015), disc (Yurdem, Demir, & 

50 Degirmencioglu, 2008; Wu et al., 2014a), hydrocyclone (Yurdem, Demir, & 

51 Degirmencioglu, 2008) and in sand media filters (Elbana, Ramírez de Cartagena, & Puig-

52 Bargués, 2013). These models did not consider the specific effect of the different filter 

53 components (filtration zone and auxiliary elements) on pressure loss. In sand media 

54 filters, pressure loss clearly vary across the filter media, the underdrain and diffuser 

55 platter, and the backflushing valve (Bové et al., 2015b; Burt, 2010; Mesquita, Testezlaf 

56 & Ramirez, 2012).

57

58 Bové et al. (2015a) experimentally analysed the pressure drop across different sand and 

59 recycled glass media in a microirrigation sand filter. Although the Ergun equation showed 

60 the best prediction accuracy for predicting the pressure drop, multi linear regression 

61 equations had better performance than the Kozeny–Carman equation, which is a 

62 simplification of the Ergun equation.  However, these equations require parameters 

63 defining the filter media such as equivalent diameter and sphericity which are difficult to 

64 obtain. 
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65 García-Nieto et al. (2017) used a hybrid model artificial bee colony (ABC)-multivariate 

66 adaptive regression splines (MARS) which satisfactorily computed pressure loss across 

67 filtration beds without the need for sphericity. This work suggests that other alternative 

68 methods, specifically a hybrid methodology that combines the gradient boosted 

69 regression tree (GBRT) approach with the differential evolution (DE) optimisation 

70 algorithm (Storn, & Price, 1997; Price, Storn, & Lampinen, 2005; Feoktistov, 2006; 

71 Rocca, Oliveri, & Massa, 2011), could also be used to predict pressure drops in the 

72 granular filters used in microirrigation systems. 

73

74 GBRT models are supervised machine learning procedures that can be used for 

75 multivariate classification and regression (Vapnik, 1998; Friedman, 2002; Schapire, 

76 2003; Bühlman & Hothorn, 2007; Hastie et al., 2003). GBRT models build competitive, 

77 highly robust procedures that are particularly appropriate for treating not very clean data 

78 (Hastie et al., 2003). They are very flexible models that can be easily be customised for 

79 any data-driven task. They are straightforward to implement and have been very 

80 successful in data-mining and machine-learning challenges (Natekin & Knoll, 2013). One 

81 of the reasons for their success could be that tree boosting takes the bias-variance trade-

82 off into consideration while fitting the models (Nielsen, 2016). For example, GBRT 

83 models have been effective in predicting biological parameters in environmental 

84 problems such as forecasting wind variables (Landry et al., 2016), solar power generation 

85 prediction (Persson et al., 2017) and short-term waste estimation (Johnson et al., 2017).

86

87 Differential evolution (DE) is a metaheuristic evolutionary global method, derived from 

88 genetic algorithm (GA), intrinsically capable of solving multidimensional optimisation 
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89 problems involving continuous variables. As with other evolutionary computation 

90 algorithms such as particle swarm optimisation (PSO) (Eberhart et al., 2001; Clerc, 2006; 

91 Olsson, 2011) or ant colony optimisation (Dorigo & Stützle, 2004), DE is a bio-inspired 

92 algorithm that generates high-quality solutions to optimisation problems by means of bio-

93 inspired operators such as mutation, recombination and selection (Storn & Price, 1997; 

94 Price, Storn & Lampinen, 2005; Simon, 2013; Yang et al., 2013). 

95

96 The main objective of the present study was to develop a hybrid algorithm using DE 

97 optimising GBRT parameters (DE–GBRT) to predict the pressure drop per unit length 

98 across sand and recycled glass media from the physical input parameters of the /p L

99 filtration media used in media filters.

100

101 2. Materials and methods

102 2.1. Experimental setup 

103 The experimental setup providing the considered data set is described in Bové et al.  

104 (2015a). In a laboratory filter, which was a scaled version of a commercial microirrigation 

105 media filter (Arbat et al., 2013), pressure losses of four different filtration materials (silica 

106 sand, crushed recycled glass, surface modified glass and microspheres) with grain sizes 

107 between 0.63 and 1.50 mm were measured at surface velocities ranging from 0.004 to 

108 0.025 m s-1 under pressures ranging between 4,631 and 275,630 Pa. 

109

110 2.2. Variables involved in the model
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111 Data obtained from the experiment gave the pressure drop per unit length , as /p L

112 the output variable. The input variables were the filter media type (as category), media 

113 bulk and real density, porosity, equivalent diameter, sphericity or shape factor, flow 

114 surface velocity and average grain size. Procedures for obtaining these variables are 

115 described in Bové et al. (2015a).

116    

117 2.3. Computational procedure

118 2.3.1. Gradient boosting regression tree (GBRT)

119 Gradient boosting is a machine learning method used for classification and regression that 

120 constructs a model from a set of weak models or learners, that are, usually, decision trees. 

121 It builds the model by stages, as is typical for boosting methods, and obtains a single 

122 strong ensemble model optimising a differentiable loss function (Breinman et al. 1984; 

123 Vapnik, 1998; Friedman et al., 2000; Friedman, 2001; Friedman, 2002; Schapire, 2003; 

124 Bühlman & Hothorn 2007; Hastie et al., 2003).

125

126 It can be described as a least-squares regression method, where the aim is to teach a model

127 to predict the values , minimizing the mean squared error , being F ŷ F x 2
ŷ y y

128 the true values from the training set. At each stage of gradient boosting, we 1 m M

129 have a weak model that predicts the mean of the training set. The gradient boosting mF y

130 algorithm improves  constructing a new model that adds an estimator to improve mF 1mF h

131 the previous model . To find , the gradient boosting method 1m mF x F x h x h
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132 takes into account that, to have a perfect  (Friedman et al., 2000; Schapire, 2003; h

133 Bühlman & Hothorn, 2007; Hastie et al., 2003): 

1m mF x F x h x y (1)

134 that is,

135  

mh x y F x (2)

136 Thus, gradient boosting will perform the fitting of to the residual . In each h my F x

137 stage, is constructed as a correction of its predecessor . We can generalise this 1mF mF

138 explanation to other loss functions different from squared error, taking into account that 

139 residuals are the negative gradients of the loss function .y F x
21

2
y F x

140

141  As in other supervised learning problems, we have an output variable y and a set of input 

142 variables x. The objective is to find an estimate of the function that F̂ x *F x

143 minimises the value of some loss function  using a training set,L y F x

144  of already known values of x and their corresponding 1 1 2 2, , , ,..., ,n nx y x y x y

145 values of y, (Friedman, 2002; Schapire, 2003; Bühlman & Hothorn, 2007; Hastie et al., 

146 2003; Mayr et al., 2014a,b; Taieb & Hyndman, 2014; Döpke et al., 2017):

,
ˆ arg min E ,x y

F
F L y F x (3)

The gradient boosting method approximates y with a weighted sum of functions ih x

from some class , called weak learners:H
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1

const
M

i i
i

F x h x
(4)

Using the empirical risk minimisation principle, the method looks for an 

approximation that minimises the average value of the loss function on the F̂ x

training set. It starts with a model, that consists in a constant function , and step 0F x

by step expands its value  in a greedy way (Hastie et al., 2003; Taieb & Hyndman, 

2014; Döpke et al., 2017):

0
1

arg min ,
n

i
i

F x L y (5)

1 1
1

arg min ,
n

m m i m i i
h H i

F x F x L y F x h x (6)

where is a weak learner function.h H

As choosing the best function at every stage for an arbitrary loss function L is a h

computationally infeasible optimization problem, a simplification is applied and a 

steepest descent method is used to solve this minimization problem. Given the 

continuous case, where is the set of arbitrary differentiable functions, the model H

is updated following the equations (Hastie et al., 2003; Taieb & Hyndman 2014; 

Döpke et al., 2017):

11 1
1

,
m

n

m m m F i m i
i

F x F x L y F x (7)

1
1

1 1

,
arg min ,

n
i m i

m i m i
i m i

L y F x
L y F x

F x
(8)



11

147 where the derivatives are obtained with respect to the functions for . If we iF 1,2,...,i m

148 are treating a discrete case, where the set H is finite, the candidate function h that is closest 

149 to the gradient of L will be chosen and the coefficient  can then be calculated using line 

150 search in equations (7) and (8). This is a heuristic approach and will not give an exact 

151 solution to problem, but a good approximation.

152

153 The generic gradient boosting method can be described by a pseudocode (Friedman, 

154 2002; Hastie et al., 2003; Taieb & Hyndman, 2014; Döpke et al., 2017):

155 Input: differentiable loss function , training set  and ,L y F x
1

,
n

i i i
x y

156 iteration number M.

157 Algorithm:

158 1. Initialize model using a constant value:

159 0
1

arg min ,
n

i
i

F x L y

160 2. For :1 tom M

161 Compute so-called pseudo-residuals:

162

1

,
for 1,...,

m

i i
im

i F x F x

L y F x
r i n

F x

163 Fit a weak learner to the pseudo-residuals using the training setmh x

164 .
1

,
n

i im i
x r

165 Calculate the multiplier  solving the one-dimensional optimisation m

166 problem:

167 1
1

arg min ,
n

m i m i m i
i

L y F x h x

168 Update the model:
169    1m m m mF x F x h x

170 3. Output .MF x

171
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172 Gradient boosting can be used with decision trees, in particular with CART, of a given 

173 fixed size as weak learners. For this particular situation, Friedman (Friedman, 2002) 

174 proposes a variation of the gradient boosting method that improves each weak learner 

175 quality of fit (Friedman, 2002; Ridgeway, 2007; Hastie et al., 2003; Taieb & Hyndman, 

176 2014; Döpke et al., 2017).

177

178 In the m-th step a generic gradient boosting fits a decision tree  to the pseudo-mh x

179 residuals. If is the number of its leaves, the tree model splits the input space intomJ mJ

180 separated regions  and obtains a constant value for each region. for 1 ,...,
mm J mR R mh x

181 input x is written as the sum (Bühlmann & Hothorn, 2007; Hastie et al., 2003; Taieb & 

182 Hyndman, 2014; Döpke et al., 2017):

1

mJ

m jm jm
i

h x b I x R (9)

183 where is the constant value calculated for the region . These coefficients are jmb jmR jmb

184 multiplied by some value , calculated using line search that minimises the loss function, m

185 and then the model is updated:

1 1
1

; arg min ,
n

m m m m m i m i m i
i

F x F x h x L y F x h x (10)

186 Friedman (Shapire, 2003; Bühlmann, & Hothorn, 2007) proposed a modification of this 

187 algorithm that chooses a different optimal for each of the regions, instead of only one jm

188 for the whole tree. This modified algorithm is called TreeBoost. Then, the model is m

189 updated (Bühlmann & Hothorn, 2007; Hastie et al., 2003; Taieb & Hyndman, 2014; 

190 Döpke et al., 2017):
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1 1
1

; arg min ,
m

i jm

J

m m jm jm jm i m i
i x R

F x F x I x R L y F x (11)

191 where the size of trees, J, is the number of terminal nodes in trees and it is a parameter 

192 that can be adjusted for the training data set. It controls the interaction level between 

193 variables in the model. If (decision stumps), there is no interaction between 2J

194 variables. With the model can allow interactions between up to two variables, and 3J

195 so on. Typically a value between 4 and 8 works well and the results are quite insensitive 

196 to J for these values.  is usually not enough for many applications, and is often 2J 10J

197 unnecessary.

198

199 Overfitting the training set can lead to a poor prediction ability. The regularisation 

200 techniques are intended to reduce this overfitting effect controlling the training process.

201

202 There are different approaches to attain this aim (Bühlmann and Hothorn 2007; Hastie et 

203 al., 2003; Taieb & Hyndman 2014; Döpke et al., 2017). In particular, the technique used 

204 by the function GBRT is to include in the loss function the so called penalty function 

205 whose aim is to limit the overfitting: 

L x E x x (12)

206 where E can be, for instance, the mean squared error, and  is the penalty function that 

207 controls the model complexity, aiding to avoid overfitting by means of increasing the 

208 value of the loss function when the complexity of the model grows, thus penalising it.

209
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210 It is also well known that the GBRT technique depends strongly on the following 

211 hyperparameters (Chen, & Guestrin, 2016; Chen et al., 2017):

212 Nrounds: is the maximum number of iterations performed by the algorithm.

213 : it controls the learning rate, that is to say, scales the contribution of each tree 

214 by a factor when it is added to the current approximation. Used to prevent 

215  by making the boosting process more conservative. Lower value for  

216 implies larger value for Nrounds.

217 : It is the minimum loss reduction required to perform another partition on a 

218 leaf node of the tree. As it grows, the algorithm is more conservative. 

219 Minimum child weight: this parameter avoids the splitting of a node once its 

220 sample size has gone under a certain threshold.

221 Maximum  step: is a cap value over each tree’s weight estimation.

222 Subsample ratio: is the ratio between the training and testing instances.

223 Therefore, it is convenient to use some technique that adjusts these parameters. Usually, 

224 the traditional way of performing hyperparameter optimisation has been grid search, or 

225 a parameter sweep, which is simply an exhaustive searching through a manually specified 

226 subset of the hyperparameter space of a learning algorithm. Indeed, the grid search is a 

227 brute force method and, as such, almost any optimisation method improves its efficiency. 

228 In this study, in order to avoid these problems associated with the grid search method, the 

229 differential evolution (DE) metaheuristic technique described below was used (Storn & 

230 Price, 1997; Price, Storn, & Lampinen, 2005; Simon, 2013; Yang et al., 2013) with 

231 success.

232
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233 2.3.2. The differential evolution (DE) algorithm

234 In evolutionary computation, differential evolution (DE) is a metaheuristic method that 

235 optimises a problem by iteratively trying to improve a candidate solution with regard to 

236 a given measure of quality. DE is used for multidimensional real-valued but does not 

237 require for the optimisation problem to be differentiable. Therefore, DE can also be used 

238 for optimisation problems that are not continuous, are noisy, and change over time, etc. 

239 DE optimises a problem by maintaining a population of candidate solutions and creating 

240 new candidate solutions by combining existing ones according to its simple formulae, and 

241 then keeping whichever candidate solution has the best fitness on the optimisation 

242 problem at hand (Storn & Price, 1997).

243

244 The algorithm assumes that the variables of the problem to be optimised are encoded as 

245 a vector of real numbers. The length n of these vectors is equal to the number of variables 

246 of the problem, and the population is composed of NP vectors (number of parents). A 

247 vector is defined, where p is the index of the individual in the population g
px

248 and g is the corresponding generation. Each vector is composed in turn by 1,...,p NP

249 the variables of the problem , where m is the index of the variable in the individual,
g
p mx

250 . It is assumed that the domain of the problem variables is constrained 1,...,m n

251 between minimum and maximum values and , respectively. Hence, DE min
mx max

mx

252 technique is basically composed of four steps:

253 Initialisation;
254 Mutation;
255 Recombination; and
256 Selection.
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257 Initialisation is performed at the beginning of the search, and the mutation-recombination-

258 selection steps are performed repeatedly, until a termination condition or stopping 

259 criterion is satisfied (number of generations, elapsed time, or quality of solution reached, 

260 etc.).

261 Initialisation

262 The population is initialised (first generation) randomly, considering the minimum and 

263 maximum values of each variable:

1 min max min
, 0,1 for 1,..., and 1,...,p m m m mrand p NP m nx x x x (13)

264 where is a random number in the range .0,1rand 0,1

265 Mutation

266 Mutation is the construction of NP noisy random vectors, which are created from three 

267 individuals chosen at random, called target vectors , and . The noisy random ax bx cx

268 vectors are obtained as follows:t
pn

for 1,...,g
p c a bF p NPn x x x (14)

269 with p, a, b and c different from each other. F is a parameter that controls the mutation 

270 rate, and is in the range . 0, 2

271 Recombination

272 After obtaining the NP noisy random vectors, the recombination is performed in a random 

273 manner, comparing them with the original vectors , obtaining the trial vectors as g
px g

mt

274 follows:
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,
,

,

if 0,1
for 1,..., and 1,...,

otherwise

g
p mg

p m g
p m

n rand GR
t p NP m n

x

(15)

275 GR is a parameter that controls the recombination rate. Note that the comparison is carried 

276 out variable by variable, so that the test vector will be a mixture of the noisy random 

277 vectors and original vectors.

278 Selection

279 Finally, the selection is made simply by comparing the test vectors with the original ones, 

280 so that the vector of the next generation will be the one that has the best value of the 

281 fitness function fit:

1
if

otherwise

g g g
p p pg

p g
p

fit fitt t x
x

x

(16)

282 2.4. The goodness–of–fit of this approach

283 The operation physical input variables considered in this research work are shown in 

284 Table 1. Therefore, the total number of predicting variables used to construct the hybrid 

285 DE–GBRT-based model was eight. The output predicted variable is the pressure drop per 

286 unit length and the input variable for filter media type was a category./p L

287

288 Table 1 - Set of operation physical input variables used in this study and their names 

289 along with their mean and standard deviation.

290

291 To predict the pressure drop per unit length from other operation parameters, /P L

292 it is necessary to choose the model that best fits the experimental data. To determine the 
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293 goodness–of–fit, the two criteria considered here were the coefficient of determination 2R

294 and the root mean square error (RMSE), respectively (Freedman et al., 2007). A dataset 

295 takes values , each of which has an associated modelled value . The former are termed it iy

296 the observed values and the latter are often referred to as the predicted values. The dataset 

297 variability is measured through different sums of squares as follows (Freedman et al., 

298 2007):

299 : the total sum of squares, proportional to the sample variance.
n

i
itot ttSS

1

2

300 : the regression sum of squares, also termed the explained sum 
n

i
ireg tySS

1

2

301 of squares.

302 : the residual sum of squares.
n

i
iierr ytSS

1

2

303 Note that in the previous sums, is the mean of the n observed data:t

n

i
itn

t
1

1 (17)

304 Taking into account the above sums, the coefficient of determination is defined via:

2 1 err

tot

SS
R

SS

(18)

305 so that a coefficient of determination value of 1.0 points out that the regression curve fits 

306 the data perfectly.

307

308 Similarly, the second ratio used in this research work to measure the goodness–of–fit is 

309 the root mean square error (RMSE). It indicates the sample standard deviation of the 
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310 differences between predicted values and observed values. The RMSE is defined for n 

311 different predictions as follows (Freedman et al., 2007):

errSS
RMSE

n

(19)

312 2.3.3. The hybrid DE-GBRT-base model

313 Additionally, as previously mentioned, the GBRT technique is greatly dependent on the 

314 GBRT hyperparameters such as the maximum number of iterations (Nrounds), learning 

315 rate, minimum loss reduction, minimum child weight, maximum step and subsample 

316 ratio. Some methods frequently used to determine suitable hyperparameters are (Hastie, 

317 Tibshirani, & Friedman, 2003): grid search, random search, Nelder-Mead search, 

318 heuristic search, genetic algorithms, pattern search and so on. Usually, the traditional way 

319 of performing hyperparameter optimisation has been grid search, or a parameter sweep, 

320 which selects sets of parameters from a chosen grid and studies the performance of the 

321 model for each set. Indeed, the grid search is a brute force method and, as such, almost 

322 any optimisation method improves its efficiency. In this study, in order to avoid these 

323 problems associated with the grid search method, the differential evolution (DE) 

324 metaheuristic technique was used (Price, Storn, & Lampinen, 2005; Simon, 2013; Yang 

325 et al., 2013).

326

327 The DE optimisation technique was selected as ait appeared to be an appropriate, effective 

328 and simple tool for tuning the GBRT parameters. A hybrid model, specifically a novel 

329 hybrid DE–GBRT–based model, was constructed taking as its dependent variable the 

330 pressure drop per unit length (output variable) from the other eight remaining variables 

331 (input variables) found in granular filters (Bové et al., 2015a), studying their effect in 
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332 order to optimise its calculation through the analysis of the coefficient of determination 

333 with success. Fig. 1 shows the flowchart of this new hybrid DE–GBRT–based model 2R

334 implemented in this research work.

335

336 Fig. 1 - Flowchart of the new hybrid DE–GBRT–based model.

337

338 Furthermore, cross-validation was the standard technique utilised here for finding the real 

339 coefficient of determination ( ) (Picard & Cook, 1984; Freedman et al., 2007). Indeed, 2R

340 in order to assessment the predictive capacity of the DE–GBRT–based model, a thorough 

341 10-fold cross-validation algorithm was implemented in this study (Picard & Cook, 1984). 

342 To this end, the regression modelling has been performed with the Extreme Gradient 

343 Boosting algorithm, using the Xgboost library (Chen, He, Benesty, Khotilovich & Tang, 

344 2017) along with the DE technique with the DEoptim package (Ardia, Mullen, Brian, & 

345 Peterson, 2016) from the R Project. The initial intervals of the space of solutions used in 

346 DE technique are indicated in Table 2.

347  

348 It should be noted that sixty population members were used in the DE optimisation. The 

349 process stopped if the value of the relative tolerance ( ) could not be reduced after 30 810

350 steps or a maximum number of 200 iterations. Under this conditions, the tuning of the 

351 parameters required 89 iterations in order to get convergence. 

352

353 Table 2 - Search space for each of the GBRT parameters in the DE tuning process.

354
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355 In order to optimise the GBRT parameters, the DE module was used. In this way, the DE 

356 looks for the best parameters (maximum number of iterations (rounds), learning rate, 

357 minimum loss reduction, minimum child weight, maximum step and subsample ratio) by 

358 using the comparison of the cross-validation error in every iteration. The search space is 

359 six-dimensional, with one dimension per each parameter. Hence, the objective function 

360 or main fitness factor is the coefficient of determination ( ) in this problem.2R

361

362 3. Results and discussion

363 Table 3 points out the optimal hyperparameters of the best fitted DE–GBRT–based model 

364 found with the differential evolution (DE) technique.

365

366 Table 3 - Optimal hyperparameters of the best fitted GBRT model found with the DE 

367 technique.

368

369 Table 4 shows the determination and correlation coefficients for the hybrid DE–GBRT–

370 based model fitted for the pressure drop per unit length in this article.

371

372 Table 4 - Coefficients of determination ( ), correlation coefficients (r) and root mean 2R

373 square errors (RMSE) for the hybrid DE–GBRT–based model fitted in this study for the 

374 pressure drop per unit length.

375
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376 According to these previous statistical calculations, the GBRT technique in combination 

377 with the DE optimization is an excellent model for estimating the pressure drop per unit 

378 length in granular filters, since the fitted GBRT model with DE has a coefficient of 

379 determination equals 0.77 and a correlation coefficient equals 0.88, respectively.2R

380

381 These coefficients are similar to those obtained by García-Nieto et al. (2017) using an 

382 ABC-MARS model, altough the RMSE was slightly smaller with the DE-GBRT model. 

383 So, these results show a trustworthy goodness of fit, that is to say, a good agreement is 

384 obtained between our model and the observed data.

385

386 An iMac with a processor 3.2 GHz Intel Core i5, with 8GB RAM and Maverick 10.9.5 

387 as operating system was used to perform the computation. A time of 773.984 s, 

388 approximately 12 min, was necessary for the tuning and construction of the model. 

389

390 The importance measure are relative and the addition of all the values for each criteria 

391 amounts to one. They are:

392 Gain: it is computed taking into account each variable contribution to each tree 

393 that appears in the model.

394 Cover: it is the relative number of observations of the variable in the model.

395 Frequency: it is the relative number of times an independent variable appears in 

396 the trees of the obtained model.

397 The most significant measaure is Gain and thus it has been used to contruct the graph of 

398 the relative importance of the variables.
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399 As an additional result of these calculations, the significance ranking for the three input 

400 variables predicting the pressure drop per unit length (output variable) in this complex 

401 study is shown in Table 5 and Fig. 2. Therefore, for the DE–GBRT model the most 

402 significant variable in pressure drop per unit length prediction is the Flow surface 

403 velocity, followed by Average grain size, and finally equivalent diameter.

404

405 Table 5 - Significance ranking for the variables involved in the best fitted DE–GBRT–

406 based model for the pressure drop per unit length prediction according to /p L

407 criteria Gain, Cover and Frequency.

408

409 Fig. 2 - Relative importance of the input operation variables to predict the pressure drop 

410 per unit length in the fitted DE–GBRT–based model./p L

411

412 Bearing in mind that the flow surface velocity and average grain size are two variables 

413 easy to determine experimentally and the GBRT model indicates that they are the two 

414 most important variables, a simplified GBRT model was built using only these two 

415 variables. The curve predicted with this model is compared with the observed one in Fig. 

416 3. The determination coefficient and correlation coefficient for this simplified model were 

417 0.78 and 0.88, respectively.

418

419 In conclusion, this work was able to estimate the pressure drop per unit length in 

420 agreement with the actual experimental values observed using the DE–GBRT–based 

421 model with great accurateness as well as success. Therefore, it was appropriate to use a 
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422 GBRT model with a DE–based optimisation technique in order to achieve the best 

423 effective approach in this regression problem. Because these results agree with the 

424 outcome criterion of ‘goodness of fit’ ( ) the DE–GBRT–based model was an excellent 2R

425 fit to the experimental.

426

427 Fig. 3 - Comparison between the pressure drop per unit length values observed and 

428 predicted, by type of filter, using the DE–GBRT–based simplified model ( ).2 0.78R

429

430 Finally, the residual errors for each observation of the predicted model, calculated as the 

431 difference between the predicted and the observed pressure drop per unit length values, 

432 by type of filter, using the DE–GBRT–based simplified model, is represented in Fig. 4. 

433

434 Fig. 4 – Residuals for the predicted pressure drop per unit length values, by type of filter, 

435 using the DE–GBRT–based simplified model.

436

437 4. Conclusions

438 Taking into account the experimental and numerical results, the main findings of this 

439 study can be summarised as follows:

440 The new hybrid DE–GBRT–based model used in this work can accurately predict 

441 the pressure drop per unit length in different granular media used in sand filters 

442 without using as input variable the sphericity, which is a parameter difficult to 

443 obtain experimentally.
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444 A reasonable coefficient of determination equal to 0.78 was obtained when this 

445 hybrid DE–GBRT–based model was applied to the experimental pressure drop 

446 dataset.

447 The significance order of the input variables involved in the prediction of the 

448 pressure drop per unit length in granular filters was set. This is one of the main 

449 findings in this work. Specifically, input variable Flow surface velocity could be 

450 considered the most influential parameter in the prediction of the pressure drop 

451 per unit length. In this regard, it is also important to highlight the influential role 

452 of the Average grain size in the dependent variable pressure drop per unit length.

453 Taking into account the results of the previous point, and for practical reasons, as 

454 the two most important variables are relatively easy to obtain, a simplified GBRT 

455 model that used only these variables was developed with a comparatively very 

456 good coefficient of determination.

457 The influence of the hyperparameters involved in the GBRT approach to predict 

458 pressure drop per unit length regression performance was established. 

459 The results verified that the hybrid DE–GBRT–based regression method 

460 significantly improved the generalisation capability achievable with only the 

461 GBRT–based regressor. Thus, input data from other filtered materials used in 

462 microirrigation can be processed to predict the pressure drop measuring only a 

463 few key variables.

464 In summary, this innovative methodology presented could be applied to other filtration 

465 processes with similar or distinct filter media types with success, but it is always 

466 necessary to take into account the characteristics of each filter and experiment. 

467 Consequently, an effective DE–GBRT–based model is a good practical solution to the 
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468 problem of predicting the pressure drop in sand media filters that are used in 

469 microirrigation systems.

470  
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Fig. 1 - Flowchart of the new hybrid DE–GBRT–based model.



Fig. 2 - Relative importance of the input operation variables to predict the pressure drop 

per unit length in the fitted DE–GBRT–based model./p L



Fig. 3 - Comparison between the pressure drop per unit length values observed and 

predicted, by type of filter, using the DE–GBRT–based simplified model ( ).2 0.78R



Fig. 4 – Residuals for the predicted pressure drop per unit length values, by type of filter, 

using the DE–GBRT–based simplified model.



Table 1 - Set of operation physical input variables used in this study and their names 

along with their mean and standard deviation.

Input variables Name of the variable Mean Standard deviation
Filter media type Filter_type -- --
Bulk density (kg m-3) Density_b 1397 88.77
Real density (kg m-3) Density_r 2471 62.58
Medium porosity Porosity 0.4324 0.03119
Equivalent diameter (m) Diameter 0.7935 0.1761
Sphericity Sphere 0.7637 0.1314
Flow surface velocity (m s-1) Velocity 0.01421 0.006594
Average grain size (mm) Grain_size 0.7576 0.1176

Table 2 - Search space for each of the GBRT parameters in the DE tuning process.

GBRT hyperparameters Lower limit Upper limit

Rounds 1 100

0.1 1

0 30

Minimum child weight (MCW) 1 30

Maximum  step (MDS) 0 30

Subsample ratio 0.5 1



Table 3 - Optimal hyperparameters of the best fitted GBRT model found with the DE 

technique.

GBRT hyperparameters Optimal values

Rounds 60

0.51

0.17

Minimum child weight (MCW) 4.7

Maximum  step (MDS) 15

Subsample ratio (SR) 0.87

Table 4 - Coefficients of determination ( ), correlation coefficients (r) and root mean 2R

square errors (RMSE) for the hybrid DE–GBRT–based model fitted in this study for the 

pressure drop per unit length.

Model Coef. of determination ( )/correlation coef. (r)2R RMSE

DE– GBRT 0.7741/0.8798 30.15



Table 5 - Significance ranking for the variables involved in the best fitted DE–GBRT–

based model for the pressure drop per unit length prediction according to /p L

criteria Gain, Cover and Frequency.

Input variable Gain Cover Frequency

Flow surface velocity  19.32 10 0.7025 0.5593

Average grain size 24.50 10 0.0606 0.1282

Equivalent diameter 21.22 10 0.0643 0.0459

Real density 34.96 10 0.0658 0.0763

Medium porosity 34.66 10 0.0603 0.1467

Sphericity 45.79 10 0.0266 0.0280

Bulk density 41.41 10 0.0176 0.0137

Silica sand 63.11 10 0.0021 0.0017


