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10 Abstract 

11 Sand media filters used in microirrigation systems must remove suspended particle load 

12 for avoiding emitter physical clogging. Turbidity is a parameter related to suspended 

13 particle load that it is easy and quick to measure and it is also included in some 

14 guidelines for reusing effluents in irrigation. Currently, there are not sufficiently 

15 accurate models available to predict outlet turbidity for sand filters, which would be 

16 useful for both irrigators and engineers. The aim of this study was to obtain a predictive 

17 model able to perform an early detection of the sand filter outlet value of turbidity. This 

18 study presents a powerful and effective Bayesian nonparametric approach, termed 

19 Gaussian process regression (GPR) model, for predicting the output turbidity (Turbo) 

20 from data corresponding to 637 samples of different sand filters using reclaimed 

21 effluent. This optimization technique involves kernel parameter setting in the GPR 

22 training procedure, which significantly influences the regression accuracy. To this end, 

23 the most important parameters of this process are monitored and analyzed: type of filter, 
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24 height of the filter bed (H), filtration velocity (v) and filter inlet values of the electrical 

25 conductivity (CEi), dissolved oxygen (DOi), pHi, turbidity (Turbi) and water 

26 temperature (Ti). The results of the present study are two-fold. In the first place, the 

27 significance of each variable on the filtration is presented through the model. Secondly, 

28 a model for forecasting the outlet turbidity was obtained with success. Indeed, 

29 regression with optimal hyperparameters was performed and a coefficient of 

30 determination equal to 0.8921 for outlet turbidity was obtained when this new predictive 

31 GPR–based model was applied to the experimental dataset. The agreement between 

32 experimental data and the model confirmed the good performance of the latter. 

33

34 Keywords: Gaussian process regression (GPR); Bayesian statistics; Machine learning 

35 techniques; Drip irrigation; Clogging 

36

37 1. Introduction

38 Shortage of fresh water resources has stimulated the use of reclaimed effluents with 

39 microirrigation systems since these systems offer several agronomic, environmental and 

40 health advantages regarding other irrigation methods (Trooien and Hills, 2007; Tal, 

41 2016). However, the use of effluents pose an increased emitter clogging risk due to their 

42 higher salt, nutrients, solid and biological concentrations. Thus, the greatest challenge 

43 when using effluents is preventing emitter clogging to keep microirrigation systems 

44 operating as designed (Trooien and Hills, 2007). Despite a proper selection of emitter 

45 reduces emitter clogging (Zhou et al., 2019), operation and maintenance practices such 

46 as filtration, water treatment, dripline flushing and monitoring system performance are 

47 required when effluents are used (Trooien and Hills, 2007).
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48 Sand media filters are considered the standard for protection of microirrigation systems 

49 (Trooien and Hills, 2017) since they usually remove more particles and therefore reduce 

50 emitter clogging (Ravina et al., 1997; Capra and Scicolone, 2007; Duran-Ros et al., 

51 2009; Tripathi et al., 2014; Wen-Yong et al., 2015). However, investment and 

52 maintenance costs for sand filters are greater (Pujol et al., 2011) and require high 

53 technological and professional standards (Capra and Scicolone, 2007), which is aligned 

54 with the growth of precision microirrigation (Madramootoo and Morrison, 2013). In this 

55 regard, advanced techniques such as neural networks (ANN), gene expression 

56 programming (GEP) (Martí et al., 2013), support vector machines (SVM) (García-Nieto 

57 et al., 2016) have been used for predicting the filtered volume and the value of dissolved 

58 oxygen – an indicator of the water quality – at sand media filter outlets. More recently, 

59 García-Nieto et al. (2017, 2018) used hybrid algorithms and gradient boosted regression 

60 trees for modeling pressure loss in these filters. However, prediction of turbidity values 

61 at microirrigation sand filter outlet has not been completely successful (Puig-Bargués et 

62 al., 2012) although better results have been obtained in a pilot multi-media filter 

63 (Hawari and Alnahhal, 2016). Turbidity is a parameter related to suspended load 

64 (Stevenson and Bravo, 2019) that it is easy and quick to measure using specific sensors. 

65 Accurate prediction of turbidity is becoming interesting since several guidelines for 

66 using reclaimed effluents in irrigation (e.g. USEPA, 2012; Alcalde-Sanz and Gawlik, 

67 2017) include thresholds values for this parameter.

68  

69 Thus, the application of the innovative methodology that combines the Gaussian 

70 process regression (GPR) approach (Rasmussen, 2003; Kuhn and Johnson, 2018; 

71 Ebden, 2015) with the optimization algorithm Limited-memory Broyden-Fletcher-
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72 Goldfarb-Shanno (LBFGSB) (Liu and Nocedal, 1989; Byrd et al., 1994; Zhu et al., 

73 1997) to foretell the outlet turbidity in sand media filters used in microirrigation systems 

74 could be an interesting approach since, at the knowledge of the authors, has not been yet 

75 addressed in previous investigations. GPR is a machine learning method developed on 

76 the basis of statistical theory and Bayesian theory. It is a nonparametric regression 

77 method and can be considered a complex model with capability to model nonlinearities 

78 and variable interactions (Rasmussen, 2003; Ebden, 2015). When this method is 

79 compared with other machine learning techniques (Hastie et al., 2003; Mather and 

80 Johnson, 2015), GPR has several advantages (Rasmussen and Williams, 2006): (1) GPR 

81 has an important generalization capacity; (2) the hyperparameters in GPR can be self-

82 adaptively calculated; and (3) the GPR outputs have clear probabilistic meaning. In this 

83 study, the LBFGSB method was applied successfully to optimize the GPR 

84 hyperparameters. Previous researches show that GPR is an effective tool in many fields, 

85 such as irrigation mapping (Chen et al., 2018), wind engineering and industrial 

86 aerodynamics (Ma et al., 2019), applied geophysics (Noori et al., 2019), applied 

87 demography (Wu and Wang, 2018), psychology (Schulz et al., 2018), mechanical 

88 engineering (Kong et al., 2018), environmental engineering (Liu et al., 2018), tracking 

89 and positioning (Ko et al., 2007a), deformation observation (Rogers  and Girolami, 

90 2016), system identification and control (Ko et al., 2007b) and so on. However, it has 

91 never been used in microirrigation sand filters.

92

93 The main objective of the present study was to predict the outlet turbidity (Turbo) in 

94 sand media filters that worked with reclaimed effluents using Gaussian Processes (GPs) 

95 in combination with the LBFGSB parameter optimization technique.
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96  The structure of this paper is organized as follows: Section 2 introduces the 

97 experimental setup and variables involved in this study as well as the GPR method; 

98 Section 3 describes the results obtained with this model by comparing the GPR results 

99 with the experimental measurements, including the importance of the input variables 

100 and validating the efficacy of the proposed approach; and finally, Section 4 concludes 

101 this study with a list of main findings. 

102

103 2. Materials and methods

104 2.1. Experimental setup

105 A filtration platform with three sand media filters fed with the reclaimed effluent of the 

106 wastewater treatment plant of Celrà (Girona, Spain) was used for carrying out the 

107 experiment. Each one of the filters had a different underdrain design: inserted domes 

108 (model FA-F2-188, Regaber, Parets del Vallès, Spain), arm collector (model FA1M, 

109 Lama, Sevilla, Spain) and porous media (prototype designed by Bové et al. (2017)) (see 

110 Fig. 1).

111

112 All the filters were filled with silica sand CA-07MS (Sibelco Minerales SA, Bilbao, 

113 Spain) with the same characteristics: an effective diameter (De, size opening which will 

114 pass 10% of the sand) of 0.48 mm and a coefficient of uniformity (ratio of the sizes 

115 opening which will pass 60% and 10% of the sand through, respectively) of 1.73. Two 

116 media heights were tested for each filter: 20 and 30 cm, respectively.

117

118 Each filter operated on a 8 h daily basis and not simustaneously with the other two. 

119 Sligth changes on the operation time were sporadically set for solving different 
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120 operation and maintenance issues. Two filtration velocities were used for each filter: 30 

121 and 60 m/h, respectively. Each combination of media height and filtration velocity was 

122 tested during 250 h. The filters were automatically backwashed when the pressure loss 

123 across them reached 50 kPa for more than 1 min. The backwashing was carried out 

124 during 3 min with previously filtered effluent that was chlorinated for achieving 4 ppm 

125 target chlorine concentration.

126

127 Filtered and backwashed effluent volumes, pressures across the filter and some effluent 

128 quality parameters before (pH, temperature, electrical conductivity, turbidity and 

129 dissolved oxygen) and after (only turbidity and dissolved oxygen) being filtered were 

130 measured and recorded every minute in a supervisory control and data acquisition 

131 system (SCADA) fully described by Solé-Torres et al. (2019). 

132

133 Fig. 1. Picture of the experimental set-up with the three filter designs: (a) red: arm 

134 collector; (b) blue: inserted domes; and (c) green: porous media prototype.

135

136 2.2. Variables involved in the model and materials tested 

137 The main objective of this study was to compute the outlet turbidity as a function of 

138 different experimentally measured parameters that the GPR–based model needs as 

139 input. The output variable is the outlet turbidity which is an indicator of the quality of 

140 the filtered effluent and it is directly related to physical clogging risk of emitters of 

141 microirrigation systems.  The operation input variables are as follows:
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142 Filter: Each one of the three filter designs (porous, dome and arm collector) 

143 described in section 2.1. It is a categorical variable;

144 Height of the filter bed (cm): this is an operation variable for sand filters. Two 

145 different filter bed heights of 20 and 30 cm were tested for each filter;

146 Filtration velocity (m/h): it is a variable related to filter operation. Two filtration 

147 velocities (30 and 60 m/h) were tested for each filter since these follow within 

148 the common range of velocities suggested by the manufacturers; 

149 Electrical conductivity ( S/cm): it is a general measure of water quality related 

150 to salinity, which is a constraint for using microirrigation (Tal, 2016); 

151 Dissolved oxygen (mg/l): it is a variable related to the ability of water to support 

152 aquatic life. This is a common parameter used for controlling biological 

153 treatment in wastewater plants; 

154 pH: it measures water acidity or alkalinity;

155 Water temperature (ºC): temperature of the effluent at the filter inlet;

156 Input turbidity (FNU): this a key parameter for water quality that measures water 

157 clarity, which depends on suspended solid load; 

158 Filtered volume (m3): it measures the volume of effluent filtered in each 

159 filtration cycle.

160  

161 2.3. Gaussian process  regression (GPR)

162 GPs are Bayesian state-of-the-art tools for discriminative machine learning (i.e., 

163 regression, classification, and dimensionality reduction). GPs assume that a GP prior 
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164 governs the possible latent functions, which are unobserved, and the likelihood (of the 

165 latent function) and observations shape this prior to produce posterior probabilistic 

166 estimates. Consequently, the joint distribution of training and test data is a 

167 multidimensional GP, and the predicted distribution is estimated by conditioning on the 

168 training data (Camps-Valls, 2016). 

169

170 To fix ideas, a Gaussian distribution is a probability distribution that explains the 

171 random variables including vectors and scalars. On the one hand, this kind of 

172 distribution is fully stated exactly through the mean and covariance: . On 2,x N:

173 the other hand, a Gaussian process can be seen as a generalization of the Gaussian 

174 probability distribution and applies over functions. From the functional space point of 

175 view, a Gaussian procedure is an ensemble of random variables, that is to say, any finite 

176 number having a joint Gaussian distribution.

177

178 2.3.1. The fundamentals of GPR

179 Suppose that depicts the training dataset of the Gaussian , / 1, 2,...,i iD y i Nx

180 approach. Moreover, the feature vectors  comprise the extracted features or the n
ix

181 merged features and the pertinent segregation parameters. The observed target values  iy

182 reproduce the outlet turbidity (Turbo) measured in a filtration process, respectively. 

183  depicts the input matrix of training dataset, symbolizes the output 
1

N

i î
X x

1

N

i i
yy

184 vector. A Gaussian process defines a prior over functions, which can be converted f x

185 into a posterior over functions once we have seen some data.  A Gaussian process can 
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186 be fully stated exactly by using its mean function  and covariance function m x

187 . In this way, the Gaussian process is indicated as (Rasmussen and Williams, ,k x x

188 2006; Marsland, 2014):

, ,f GP m k:x x x x (1)

189 so that

,
T

m E f

k E f m f m

x x

x x x x x x

(2)

190 The mean function  depicts the anticipated value of the function  at the input m x f x

191 point . The covariance function  can be taken into account as a measurement x ,k x x

192 of the confidence level for , and it is required that  be a positive definite m x ,k

193 kernel. In general, the mean function is set to be zero for notation simplicity, but it is 

194 also reasonable if there is no prior knowledge about the mean variable, as is the case in 

195 this study.

196

197 The choice of the covariance function is critical for the Gaussian process. It describes 

198 the assumptions about the latent regression model and, therefore, is also referred to as 

199 the prior (Schneider and Ertel, 2010). In this research, the affine mean function and 

200 squared-exponential (SE) covariance function are expressed as follows (Shi and Choi, 

201 2011; Kuhn and Johnson, 2018):

2

2
SE 2

, exp
2fk
l

x x
x x

(3)
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202 being l the characteristic length-scale and  the signal variance. The parameter 2
f

203 selection of the SE covariance function has a direct effect on the performance of the 

204 Gaussian process. Here, l controls the horizontal scale over which the function changes, 

205 and  controls the vertical scale of the function.2
f

206

207 The function values  are not achievable in most applications. In practice, only the f x

208 noisy observations are available given by:

fy x (4)

209 so that  is the additive white noise and besides suppose that Gaussian noise is 

210 independent and identically distributed such that , where  is the 20, nN: n

211 standard deviation of this noise. Any finite number of the observed values can also 

212 constitute an individual Gaussian process as given by (Vidales, 2019):

2 2, , 0, ,n ij n ijGP m k GP ky x x x x x: (5)

213 where  is the Kronecker delta function described as:ij

214
1 if

0 otherwiseij

i j

215 The purpose of the GPR model is to foretell the function value  and its variance *f

216  given the new test point . In this sense,  depicts the input matrix of test *cov f *x *X

217 dataset and  the size of test dataset. Taking into account the definition of Gaussian *N

218 process, the observed values and the function values at new test points obey a joint 

219 Gaussian previous distribution which can be expressed as:
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2 *

* * * *

, ,
0,

, ,

nK X X I K X X
N

K X X K X X

y

f
:

(6)

220 where:

221  : is the covariance matrix of training dataset;,K X X

222 : is the covariance matrix of test dataset;* *,K X X

223 : depicts the covariance matrix obtained from the training and test *,K X X

224 dataset. Furthermore .* *, ,
T

K X X K X X

225

226 Since and  are jointly distributed, it is possible to condition the prior on the y *f

227 observations and ask how likely predictions for the are. This can be expressed as:*f

* * * *, , , covX X Nf y f f: (7)

228 where

1* * * * 2, , , , nE X X K X X K X X If f y y (8)

1* * * * 2 *cov , , , ,nK X X K X X K X X I K X Xf (9)

229 Afterwards, the subsequent distribution can be used for the forecast of new test input 

230 points. Indeed,  is the predicted output value of the GPR model for test point. *f

231 Additionally, confidence interval (CI) of the predicted output value can be calculated 

232 through the variance . For instance, the 95% CI can be determined by *cov f

233 . As a consequence, the GPR model not only * * * *2 cov , 2 covf f f f
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234 supplies the predicted values but also furnishes the confidence level of the predicted 

235 results.

236

237 Finally, the GPR model is a nonparametric model since the predicted outputs rely only 

238 on the inputs and the observed values . In this way, parameters  are y , ,f nl

239 termed the hyperparameters of the GPR model.

240

241 2.3.2. Hyperparameter estimation

242 The predictive performance of GPR model depends exclusively on the suitability of the 

243 chosen kernel. To estimate the kernel hyperparameters, an exhaustive search over a 

244 discrete grid of values can be used, but this can be quite slow. The most usual method 

245 considers an empirical Bayes approach that maximizes the marginal likelihood. That is, 

246 the optimal hyperparameters are achieved by maximizing the log marginal likelihood. 

247

248 The marginal likelihood  is obtained, using Bayes’ rule, as:P Xy

,P X P f X P f X dfy y (10)

249 The term marginal likelihood refers to the marginalization over the function values . f

250 Since , the log marginal likelihood can be written as:0, ( , )K X Xy N

11 1
log ( ) log log 2

2 2 2y y

N
p X K Kyu y y u u

) ) ) (11)

251 where   and  is the determinant. In this expression, the 2 , ( , )y nK K I K K X X u
)

252 first term is a data-fit term, the second term (always positive), substracted from it, is a 

253 model complexity penalty, and the last term is just a normalization constant. Then, this 
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254 expression shows that the criterion of maximum marginal likelihood avoids the problem 

255 of over-fitting because if two models are explaining the observed data, then the simplest 

256 one will be chosen (Murphy, 2012).

257

258 The optimal hyperparameters  can be calculated using any arg max log ,p Xy

259 standard gradient-based optimizer after parameter initialization. In this study, the variant 

260 of the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm, denomined 

261 LBFGSB algorithm (Liu and Nocedal, 1989; Byrd et al., 1994; Zhu et al., 1997) is used.

262

263 2.4. The goodness–of–fit of this approach

264 Eight predicting variables were used (see section 2.2) to construct the new GPR–based 

265 model. The output predicted variable is the outlet turbidity. To predict the outlet 

266 turbidity from other input operation parameters, it is necessary to choose the model that 

267 best fits the experimental data. In this sense, to determine the goodness–of–fit, the 

268 criterion considered here was the coefficient of determination (Picard and Cook, 2R

269 1984; Freedman et al., 2007). A dataset takes values , each of which has an associated it

270 modelled value . The former are termed the observed values and the latter are often iy

271 referred to as the predicted values. The dataset variability is measured through different 

272 sums of squares as follows (Freedman et al., 2007):

273 : the total sum of squares, proportional to the sample variance;
n

i
itot ttSS

1

2

274 : the regression sum of squares, also termed the explained 
n

i
ireg tySS

1

2

275 sum of squares;
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276 : the residual sum of squares.
n

i
iierr ytSS

1

2

277 Note that in the previous sums, is the mean of the n observed data:t

n

i
itn

t
1

1 (12)

278 Taking into account the above sums, the coefficient of determination is defined via:

2 1 err

tot

SS
R

SS

(13)

279 so that a coefficient of determination value of 1.0 points out that the regression curve 

280 fits the data perfectly.

281

282 Two additional criteria considered in this study were the root mean square error 

283 (RMSE) and mean absolute error (MAE) (Hastie et al., 2003; Wasserman, 2003). These 

284 statistics are also used frequently to evaluate the forecasting capability of a 

285 mathematical model. Indeed, the root mean square error (RMSE) and mean absolute 

286 error (MAE) are given by the expressions (Freedman et al., 2007; Wasserman, 2003):

2

1RMSE

n

i i
i

t y

n

(14)

1MAE=

n

i i
i

t y

n

(15)

287 If the root mean square error (RMSE) has a value of zero, it means that there is no 

288 difference between the predicted and observed data. Mean Absolute Error (MAE) is the 

289 average vertical distance between each point and the identity line. MAE is also the 
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290 average horizontal distance between each point and the identity line. MAE has a clear 

291 interpretation as the average absolute difference between and .it iy

292

293 Besides, it is well known that the GPR technique depends strongly on the following 

294 hyperparameters (Friedman and Roosen, 1995; Xu et al., 2004; Vidoli, 2011):

295 Variance ( ): is the signal variance and controls the vertical scale of the kernel 2
f

296 function;

297 Lengthscale ( ): the characteristic length-scale and controls the horizontal scale 

298 over which the kernel function changes;

299 Gaussian noise variance ( ): if  is the additive white noise and the Gaussian 
2
n

300 noise is independent and identically distributed such that , then  
20, nN: 2

n

301 is the variance of this noise. 

302 At this point, we have constructed a model (specifically in this study, the novel GPR–

303 based model) taking as dependent variable the outlet turbidity (output variable) from the 

304 other eight remaining variables (input variables) in granular filters (Tien, 2012; Bové et 

305 al., 2015), studying their effect in order to optimize its calculation through the analysis 

306 of the coefficient of determination with success.2R

307

308 Additionally, as previously mentioned, this GPR technique is greatly dependent on their 

309 hyperparameters: variance ( ); lengthscale ( ) and the Gaussian noise variance ( ). 2 2
n

310 The traditional way of performing hyperparameter optimization has been grid search, or 

311 a parameter sweep, which is simply an exhaustive searching through a manually 
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312 specified subset of the hyperparameter space of a learning algorithm. In this study, the 

313 variant of the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm, 

314 denomined LBFGSB algorithm (Liu and Nocedal, 1989; Byrd et al., 1994; Zhu et al., 

315 1997) is used due to its features of rapid convergence and moderate memory 

316 requirement for large-scale problems. Moreover, LBFGSB is an iterative algorithm. 

317 After initialization with a starting point and boundary constraints, it iterates through five 

318 phases (Fei et al., 2014): (1) gradient projection; (2) generalized Cauchy point 

319 calculation; (3) subspace minimization; (4) line searching; and (5) limited-memory 

320 Hessian approximation. It is important to observe LBFGSB is an iterative algorithms 

321 that requires initialization and is sensitive to the initial value of the hyperparameters.

322

323 3. Results and discussion

324 The new predictive model created, employed as input variables eight different operation 

325 variables. All of them are presented in Table 1. The total number of samples measured 

326 experimentally was 637, but after removing samples with missing data, we have worked 

327 with data from 547 filtration cycles.

328

329 Table 1

330 Set of operation physical input variables used in this study along with their mean, 

331 median, standard deviation (STD) and mean absolute deviation (MAD).

332
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333 In order to tackle this study, we divided the dataset in a training set with 80% of the 

334 data, and testing set with the remainder 20% of the data. A model is constructed and 

335 optimized with the training data and then, it is tested with the test data set. 

336

337 The outlet turbidity is used as output dependent variable of the proposed GPR–based 

338 model. The prediction performed from the independent variables (Tien, 2012) was 

339 satisfactory as it was already stated before, the GPR technique is influenced by the 

340 selection of the GPR hyperparameters much as the variance and lengthscale  for 2

341 the RBF kernel, the Gaussian noise variance  and objective function value.2
n

342

343 Table 2 points out the optimal hyperparameters of the best fitted GPR–based model 

344 found with the LBFGSB optimization technique. Usually, the traditional way of 

345 performing hyperparameter optimization in most computational codes has been grid 

346 search, or a parameter sweep, which is simply an exhaustive searching through a 

347 manually specified subset of the hyperparameter space of a learning algorithm. Indeed, 

348 the grid search is a brute force method and, as such, almost any optimization method 

349 improves its efficiency. The LBFGSB method used here belongs to quasi-Newton 

350 methods, a class of hill-climbing optimization techniques that seek a stationary point of 

351 a function. It is an iterative method for solving nonlinear optimization problems.

352

353 Table 2 

354 Optimal hyperparameters of the best fitted GPR–based model found with the LBFGSB 

355 technique: variance  and lengthscale  for the RBF kernel, the Gaussian noise 2
f
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356 variance , and the corresponding objective function value for the optimized models 2
n

357 for the training set.

358  

359 Therefore, we have constructed a new predictive model that is the GPR–based model 

360 that employs as dependent variable the outlet turbidity in micro-irrigation sand filters 

361 fed with effluents.

362

363 The value of R2 was calculated using the optimized model with the testing set. The 

364 module Gpy from the Gaussian process framework in python (Gpy, 2014; Martin, 

365 2018), along with the LBFGSB technique (Liu and Nocedal, 1989; Byrd et al., 1994; 

366 Zhu et al., 1997), were used to construct the final regression model.

367   

368 Taking into account the results achieved, the GPR technique in combination with the 

369 LBFGSB optimization method is able to build models with a high performance for the 

370 estimation of the outlet turbidity in micro-irrigation sand filters fed with effluents using 

371 the test set. Indeed, the coefficient of determination (R2) of the fitted GPR model was of 

372 0.8921 with a correlation coefficient of 0.9445, and the root mean square error (RMSE) 

373 and mean absolute error (MAE) were 0.4335 and 0.2974 for the outlet turbidity, 

374 respectively. A computer with a CPU Intel Core i7-4770 @ 3.40 GHz with eight cores 

375 and 15.5 GB RAM memory was used, taking 0.2676 seconds to obtain the final outlet 

376 turbidity (Turbo) model. 

377
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378 A graphical representation of the terms that form the best fitted GPR–based model for 

379 the outlet turbidity (Turbo) is shown below in Figs. 2 and 3.

380

381 Fig. 2. First-order terms for some of the independent variables for the dependent 

382 variable output turbidity .oTurb

383

384 Fig. 3. Second-order terms of some of the independent variables for the dependent 

385 variable output turbidity .oTurb

386

387 3.1. Importance of the variables

388 The importance of the variables for Gaussian Process models is often done using 

389 automatic relevance determination (ARD) (Seeger, 2000). However, this procedure does 

390 not provide an adequate technique because it systematically underestimates the 

391 relevance of linear input variables in relation with nonlinear ones that have the same 

392 relevance in the generation of the squared error (Piironen and Vehtari, 2016). This is 

393 consistent with our experience. For instance, it is to be expected that an important 

394 variable for Turbo is Turbi. This result is not obtained with ARD, where the importance 

395 of this variable is relegated to the last positions of the relevance ranking. As an 

396 alternative, Paananen and co-workers (Paananen et al., 2019) propose the use the 

397 variance of the posterior latent mean. When the value of a single independent variable is 

398 modified a small amount, a large variation of the value of the latent mean implies that 

399 this variable is relevant. However, this method is not suitable for categorical variables, 

400 as it is the case with the filter variable, as they do not admit small modifications: either 
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401 we have one filter or other. Thus, in our study, a different method that accounts for the 

402 presence of categorical variables has been used: the importance of the variables has 

403 been studied removing a variable, evaluating the new model performance and 

404 comparing it with the performance of the full model. The greater the decrease in the 

405 goodness-of-fit parameter, the greater the importance of the independent variable.

406

407 Therefore, as an additional result of these calculations, the significance rankings for the 

408 input variables predicting the outlet turbidity (output variable) in this complex nonlinear 

409 study are shown in Table 3 and Fig. 4. Thus, for the GPR model the most significant 

410 variable in output turbidity prediction is the input turbidity, followed by the filter, 

411 electrical conductivity, height of the filter bed, velocity, dissolved oxygen, water 

412 temperature and pH.

413

414 Table 3 

415 Log marginal likelihood variation value between the full model and the model without 

416 the variable for the Turbo model.

417

418 Fig. 4. Relative relevance of the variables in the GPR model for the outlet turbidity 

419 (Turbo).

420

421 As it could be anticipated, outlet turbidity is highly dependent on inlet turbidity since 

422 suspended particles are retained across filter media, and therefore turbidity is reduced. 

423 Less turbidity at filter outlet is to be expected. However, turbidity removal depends also 
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424 on media particle size (Triphati et al., 2014) and on the interaction between filter type, 

425 media height and filtration velocity, considering input turbidity as a co-variable (Solé-

426 Torres et al., 2019b). The results confirm these previous results, but electrical 

427 conductivity has also an effect that was not considered before since only one water 

428 quality parameter could be included in the analysis carried out by Solé-Torres et al. 

429 (2019b). Electrical conductivity measures total dissolved solids (Trooien and Hills, 

430 2007) and is not directly related with turbidity but with the effluent that was used in the 

431 experiment it showed a slight effect on outlet turbidity. Further research considering 

432 more filtration velocities and media heights could shed more light on their effect on 

433 turbidity values.

434  

435 In conclusion, this research work was able to estimate the outlet turbidity (output 

436 variable) in agreement with the actual experimental values observed using the GPR–

437 based model with great accurateness as well as success. Indeed, Fig. 5 shows the 

438 comparison among the outlet turbidity values observed and predicted by using the GPR 

439 model with the testing set. Therefore, it is mandatory the use of a GPR model with an 

440 LBFGSB optimization technique in order to achieve the best effective approach in this 

441 regression problem. 

442

443 Fig. 5. Observed and predicted Turbo values, taking into account the confidence 

444 interval, by using the GPR–based model with the testing set ( ).2 0.8921R

445

446
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447 4. Conclusions

448 Taking into account the experimental and numerical results, the main findings of this 

449 study can be summarized as follows:

450 Firstly, there are no analytical equations to predict the outlet turbidity from the 

451 experimental values; accordingly, the development of alternative diagnostic 

452 techniques is very important. In this sense, the new GPR–based method used in 

453 this work is a good decision to evaluate the outlet turbidity in sand media filters 

454 used in microirrigation systems; 

455 Secondly, the assumption that the outlet turbidity diagnosis can be accurately 

456 modelled by using a hybrid GPR–based model in granular filters was confirmed; 

457 Thirdly, a reasonable coefficient of determination equal to 0.8921 was obtained 

458 when this GPR–based model was applied to the experimental dataset 

459 corresponding to the outlet turbidity (Turbo);

460 Fourthly, the significance order of the input variables involved in the prediction 

461 of the outlet turbidity in sand media filters was set. This is one of the main 

462 findings in this work. Specifically, input variable Turbidity (Turbi) could be 

463 considered the most influential parameter in the prediction of the outlet 

464 turbidity. In this regard, it is also important to highlight the influential role of the 

465 type of filter in the dependent variable outlet turbidity;

466 Finally, the influence of the hyperparameters setting of the GPR approach on the 

467 outlet turbidity regression performance was set up. 

468 In summary, this methodology could be applied to other filtration processes with similar 

469 or distinct filter media types with success, but it is always necessary to take into account 
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470 the characteristics of each filter and experiment. Consequently, an effective GPR–based 

471 model is a good practical solution to the problem of the determination of the outlet 

472 turbidity in sand media filters broadly used in microirrigation systems.

473
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Fig. 1. Picture of the experimental set-up with the three filter designs: (a) red: arm 

collector; (b) blue: inserted domes; and (c) green: porous media prototype.



Fig. 2. First-order terms for some of the independent variables for the dependent 

variable output turbidity .oTurb



Fig. 3. Second-order terms of some of the independent variables for the dependent 

variable output turbidity .oTurb



Fig. 4. Relative relevance of the variables in the GPR model for the outlet turbidity 

(Turbo).



Fig. 5. Observed and predicted Turbo values, taking into account the confidence 

interval, by using the GPR–based model with the testing set ( ).2 0.8921R



Table 1

Set of operation physical input variables used in this study along with their mean, 

median, standard deviation (STD) and mean absolute deviation (MAD).

Input variables Name of the variable Mean Median STD MAD
Filter media type Filter -- -- -- --
Height of the filter bed (cm) H 25.631 30.000 4.9601 0.0000
Filtration velocity (m/h) v 49.909 60.000 14.174 0.0000
Electrical conductivity ( S/cm) CEi 2575.6 2639.0 497.68 285.00

Dissolved oxygen (mg/l) DOi 3.3529 3.3300 0.9860 0.6700
pH pHi 7.3526 7.3800 0.2229 0.1400
Input turbidity (FNU) Turbi 6.1029 5.8000 2.5898 1.5800
Water temperature (ºC) Ti 20.002 19.960 3.3486 2.6200

Table 2 

Optimal hyperparameters of the best fitted GPR–based model found with the LBFGSB 

technique: variance  and lengthscale  for the RBF kernel, the Gaussian noise 2
f

variance , and the corresponding objective function value for the optimized models 2
n

for the training set. 

Output 

variable

2
f

2
n Objective fun. 

value

Turbo 1.05 1.56 0.0298 174



Table 3 

Log marginal likelihood variation value between the full model and the model without 

the variable for the Turbo model.

Variable Likelihood variation

Input Turbidity (FNU) 566

Filter 128

Electrical Conductivity  S/cm) 76

Height (cm) 42

Velocity (m/h) 36

Dissolved Oxygen (mg/l) 30

Temperature (ºC) 29

pH 20


