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ABSTRACT
Logratios between pairs of compositional parts (pairwise logratios) are the easiest
to interpret in compositional data analysis, and include the well-known additive
logratios as particular cases. When the number of parts is large (sometimes even
larger than the number of cases), some form of logratio selection is needed. In this
article we present three alternative stepwise supervised learning methods to select
the pairwise logratios that best explain a dependent variable in a generalized linear
model, each geared for a specific problem. The first method features unrestricted
search, where any pairwise logratio can be selected. This method has a complex
interpretation if some pairs of parts in the logratios overlap, but it leads to the most
accurate predictions. The second method restricts parts to occur only once, which
makes the corresponding logratios intuitively interpretable. The third method uses
additive logratios, so that K−1 selected logratios involve a K-part subcomposition.
Our approach allows logratios or non-compositional covariates to be forced into the
models based on theoretical knowledge, and various stopping criteria are available
based on information measures or statistical significance with the Bonferroni cor-
rection. We present an application on a dataset from a study predicting Crohn’s
disease.

KEYWORDS
Compositional data; logratios; generalized linear modelling; variable selection;
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1. Introduction 1

Compositional data are data in the form of components, or parts, of a whole, where 2

the relative values of the parts are of interest, not their absolute values. John Aitchison 3

[1–3] pioneered the use of the logratio transformation as a valid, (subcompositionally) 4

coherent way to analyse compositional data. Coherence means that, if the set of parts 5

is extended or reduced, the relationships between the common parts remain constant, 6

whereas their relative values do change because of the differing sample totals. Ratios 7

of parts, however, are invariant with respect to the normalization (closure) of the data 8

and these form the basis of Aitchison’s approach to compositional data analysis, often 9

referred to as CoDA. 10
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Since ratios are themselves compared on a ratio scale, and are usually highly right- 11

skew, they are log-transformed to an interval scale. Hence, the basic concept and data 12

transformation in CoDA is the logratio, with the simplest being the logarithm of a 13

pairwise ratio, for example for two parts A and B: log(A/B) = log(A) − log(B). This 14

study is concerned with such pairwise logratios, denoted henceforth exclusively by the 15

abbreviation LR — logratios in general will not be abbreviated. The challenge is to 16

choose a set of LRs that effectively replaces the compositional dataset and are at 17

the same time substantively meaningful to the practitioner as well as having a clear 18

interpretation. Once the transformation to LRs is performed, analysis, visualization 19

and inference carries on as before, but always taking into account the interpretation 20

in terms of ratios. 21

For a composition consisting of J parts, a set of J − 1 LRs contains the whole 22

information of the composition, as long as each part participates in at least one LR 23

[23]. When the number of parts is large (in biological applications often larger than 24

the number of cases), some form of selection of fewer than J − 1 LRs is convenient or 25

even necessary prior to subsequent statistical analysis. Greenacre [22, 23] developed 26

an unsupervised learning method based on a stepwise selection of the LRs that ex- 27

plained the maximum percentage of logratio variance in the composition itself, where 28

‘explained’ is in the linear regression sense. In this article we are interested rather 29

in supervised learning, that is, selecting LRs that best explain or predict a target 30

variable. Two bivariate supervised approaches have been proposed [15, 52] to find the 31

LRs which are most related to a qualitative target variable. In these approaches each 32

chosen LR does not take into account the explanatory power of the remaining chosen 33

LRs. More recently [6] has extended the idea to the penalized regression approach 34

and to a continuous target variable. In this paper we present three alternative step- 35

wise supervised learning methods to select the LRs that make a net contribution to 36

explaining a dependent variable in a generalized linear model, as an alternative to the 37

hybrid approach by [29] with much the same aim. As opposed to [29], the dependent 38

variable can be of any kind supported by generalized linear models, including binary 39

(Bernouilli), continuous, or count (Poisson) variables. The selection method for the 40

LRs is the standard one in stepwise regression with forward selection, geared to deal 41

with three distinct compositional problems. The conceptual simplicity of stepwise re- 42

gression coupled with that of LRs can be appealing to applied researchers without 43

a sophisticated statistical background, compared to the approaches in [6] and [29], 44

and is yet flexible enough to accommodate three variants which fit different research 45

objectives, and to introduce the researcher’s judgement in LR choice. 46

In the first variant, any LR is eligible to belong to the model. This approach will 47

generally lead to the best predictive power but the LRs can be difficult to interpret 48

if they overlap [30]. It is thus inappropriate when the main or only objective is LR 49

interpretation. In the second variant only LRs involving pairs of parts that do not 50

overlap are eligible — thus if log(A/B) is selected, A andB are excluded from any other 51

ratios. This leads to a simpler interpretation of the LRs as trade-off effects between 52

pairs of parts on the dependent variable. The third variant aims at identifying a subset 53

of parts (i.e., a subcomposition) with the highest explanatory power, by selecting a 54

reduced set of additive logratios (ALRs). Several stopping criteria are possible for 55

these three variants, optimising information measures or ensuring significance of the 56

logratios with the Bonferroni correction. All variants allow the researcher to see the 57

explanatory power of several candidate logratios and modify the LR entered at a given 58

step from his or her expert knowledge, as incorporated into the selection process in 59

[20, 48, 55]. This includes the possibility to force the inclusion of certain logratios or 60
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non-compositional variables from the start. All variants are best evaluated by means of 61

cross-validation: the model that is finalized at the last step is estimated on a hold-out 62

data set in order to get unbiased estimates, p-values and prediction accuracy figures. 63

This article adds to the literature on variable selection in explanatory compositions: 64

first, the compositional developments using regularized regression, including Lasso and 65

related methods, for example [5, 10, 35–37, 39, 40, 50, 51]; second, the unsupervised 66

methods that aim at finding an optimal subcomposition, for example [31]; third, the 67

discriminative balance approach [46, 56] identifies ratios between two or three parts in 68

a supervised problem; fourth, the selbal approach [49, 51] selects two subcompositions, 69

one positively related to the dependent variable and one negatively related, and com- 70

putes the logratio of the geometric mean of the first over the second as predictor (this 71

has been generalised to more than one logratio by [18]); fifth and finally, additional ap- 72

proaches such as using amalgamations [25, 45], investigator driven search of LRs [53], 73

kernel-based nonparametric regression and classification [32], relative-shift regression 74

[34], data augmentation [19], principal balances derived from partial least squares [42], 75

the nearest-single-balance-shift approach [43], and Bayesian methods [58]. 76

The article is organised as follows, we first state the problem of stepwise regression 77

in the context of LRs. We next describe the three variants of the algorithm, each 78

geared to solve a specific problem. We next present an application to one of the data 79

sets used by [49]. The last section concludes with a discussion. 80

2. Compositional stepwise regression 81

2.1. Compositions and their logratios 82

A J-part composition can be defined as an array of strictly positive numbers 83

called parts, for which ratios between them are considered to be relevant [44]: 84

x = (x1, x2, . . . , xJ), with xj > 0 for j = 1, 2, . . . , J . Notice that an alternative defini- 85

tion of a composition, which is more realistic in practice, is to define it as consisting 86

of non-negative numbers, thus admitting zeros and using alternative methods that do 87

not rely on ratios, yet approximate logratio methods very closely — see, for example, 88

[21, 25]. 89

Focusing on strictly positive parts, logarithms of ratios are more statistically 90

tractable than ratios, and Aitchison [1] presented the first comprehensive treatment of 91

compositions by means of logratios, using the additive logratio transformation (ALR) 92

in which J − 1 LRs are computed with the same denominator or reference part, which 93

is assumed here, without loss of generality, to be the last part: 94

log

(
xj
xJ

)
= log(xj) − log(xJ) , j = 1, 2, . . . , J − 1. (1)

This can easily be generalized to any of the possible J(J − 1)/2 LRs between any two 95

parts [2, 22]: 96

log

(
xj
xj′

)
= log(xj) − log(xj′) , j = 1, 2, . . . , j′ − 1 , j′ = 2, 3, . . . , J. (2)

The inherent dimensionality of a composition is J −1, which means that J(J −1)/2− 97

(J − 1) LRs are redundant and only J − 1 LRs can participate in a statistical model. 98
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Greenacre [22, 23] showed that taking exactly J − 1 LRs in such a way that each part 99

participates in at least one LR, always leads to a non-redundant selection. But even 100

J −1 is too large a number when the composition has many parts, and the aim of this 101

article is to select a subset of fewer LRs that is optimal in some sense. 102

The most general form of a logratio is the log-contrast, which can be expressed as: 103

[
α1 α2 · · · αJ

]


log(x1)
log(x2)

...
log(xJ)

 = αT log(x) , where

J∑
j=1

αj = αT1 = 0. (3)

A LR is a special case with one value in the coefficient vector α equal to 1 and another 104

equal to −1, corresponding to the numerator and denominator parts respectively, and 105

the remaining coefficients equal to zero. 106

Other ways of computing logratios involving more than two parts have been sug- 107

gested [12, 14, 16, 41] with the requirement of orthogonality of the α vectors in the 108

log-contrasts, which has implications for the logratio’s interpretation [30] as shown be- 109

low. Notice that two LRs can also have mutually orthogonal α vectors if they do not 110

overlap, that is, if no part participates in both LRs. For instance, in a four-part com- 111

position, the LRs log(x1/x2) and log(x3/x4) have the orthogonal α vectors [1,−1, 0, 0] 112

and [0, 0, 1,−1] respectively. 113

The LRs can be used as dependent, predicted by non-compositional variables [13], or 114

as explanatory, to predict a non-compositional outcome [4], which should be continuous 115

in a linear regression model. The extension from a linear model to a generalized linear 116

model is straightforward. For instance, if the dependent variable is a count, a Poisson 117

regression can be specified, or if the dependent variable is binary, a logit model can be 118

specified [8]. In this article we are concerned with using LRs as explanatory variables. 119

2.2. Stepwise regression 120

Logratio selection in linear or generalized linear models belongs to the domain of 121

statistical learning [33], and, more precisely, supervised statistical learning, because 122

the selection is made with the purpose of optimising the explanatory power or the 123

predictive accuracy with respect to an external response variable. Stepwise regression 124

is one of the earliest forms of supervised statistical learning and can be adapted both 125

to linear and generalized linear models. The forward selection method of stepwise 126

regression is especially interesting due to its ability to handle any number of LRs, 127

even if J − 1 is larger than the sample size, and is described simply as: 128

• In the first step, the algorithm selects the LR leading to the lowest residual sum 129

of squares, or its generalization for both linear models and generalized linear 130

models, −2 × log(likelihood), abbreviated as −2logLik, which is called deviance 131

for some specific models, such as the logit model that we consider in the appli- 132

cation section. 133

• In the second and subsequent steps, the algorithm adds to the equation the LR 134

leading to the strongest reduction in the residual sum of squares or in −2logLik, 135

one LR at a time. 136

Since adding an LR always decreases −2logLik, a stopping criterion is needed in order 137

not to reach the trivial solution with J−1 LRs which would imply that no selection has 138
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been made. This is achieved by means of adding a penalty to −2logLik as a function 139

of the number of selected LRs. The many possibilities available to introduce such a 140

penalty makes the stepwise approach very flexible. Let m be the number of parameters 141

estimated in the model and n the sample size. The most popular penalties are: 142

• the Akaike information criterion (AIC), which minimises −2logLik + 2m; 143

• the Bayesian information criterion (BIC), which minimises −2logLik + log(n)m. 144

Notice that log(n) > 2 for n > 7, so that the BIC criterion will generally lead to more 145

parsimonious models with fewer LRs than the AIC criterion. For example, if n = 500 146

the penalty is 6.215m. 147

Another possibility is to set the penalty in such a way that an additional LR is 148

introduced into the model only if it is statistically significant at a given significance 149

level. At first sight this could be achieved if the penalty factor equals the quantile of 150

the χ2 distribution with 1 degree of freedom and tail area equal to the significance 151

level. For example, ensuring that the added LRs are significant at 5% is equivalent to 152

a penalty equal to 3.841m. 153

However, this approach is flawed because of multiple testing. Since J − 1 non- 154

redundant LRs are simultaneously being tested for inclusion, the significance level 155

has to be defined in more strict terms in order to account for the accumulation of 156

risks arising from multiple testing. A popular criterion is the conservative Bonferroni 157

correction which implies using the χ2 quantile with a tail area equal to the significance 158

level divided by J − 1. For the commonly encountered J and n values, this criterion 159

usually leads to the strongest penalty (and thus to the smallest set of selected LRs 160

and the highest model parsimony). For example, if J − 1 = 10, the relevant tail area 161

is 0.005, the χ2 quantile is 7.879 and the procedure minimises −2logLik + 7.879m. 162

It is well-known that estimates and t-values are biased upwards in absolute value 163

when using stepwise regression, because the variables included are those with the 164

highest values for the particular sample [7, 28, 54]. For the same reason, p-values are 165

too low (risking to make the Bonferroni correction insufficient) and prediction intervals 166

too narrow. It is also hardly surprising that goodness of fit measures are overestimated 167

when the data are used to find the model which optimises them. The whole issue falls 168

under the umbrella of failing to take model uncertainty into account [7]. The problem 169

is made more serious when samples are small, the number of variables is large, and 170

the number of steps in the stepwise procedure is large. 171

This requires shrinkage methods or independent testing of the final model with a 172

fresh cross-validation sample. If the original sample is large enough it is possible to 173

split it randomly, roughly two thirds being used to run the stepwise regression (training 174

part) and one third to validate the final model (test part). However, gathering fresh 175

data provides a more convincing argument for the model, as it extends the range of 176

time and space settings under which the model is valid [7]. 177

Even after validation, it must be taken into account that many models may have a 178

similar fit to the data and the procedure has only found one of them [54]. The problem 179

is compounded when there is strong collinearity [28] and makes stepwise regression 180

appropriate for predictive and exploratory purposes, but not for theory testing. The 181

final model cannot be interpreted as if it were prespecified [28]. 182

Having said this, many learning methods for compositional data use stepwise algo- 183

rithms due to their wide acceptance and conceptual simplicity [22, 23, 29, 31, 49, 51], 184

and the existence of several solutions with similar goodness of fit and the need for 185

cross-validation are shared by even the most sophisticated statistical learning meth- 186

ods. 187
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2.3. Introducing expert knowledge in stepwise regression 188

Expert knowledge can be a crucial complement to data-driven statistical learning for 189

compositional data [23, 53], serving to overcome the inherent limitations of the stepwise 190

method, by reducing the number of data-driven steps. In this respect, the user should 191

be able to: 192

• force certain theoretically relevant LRs into the regression equation; 193

• discard LRs with a nonsensible effect sign according to theory [28]; 194

• force certain theoretically relevant non-compositional covariates into the regres- 195

sion equation; 196

• choose among LRs with approximately the same significance or AIC/BIC im- 197

provements. 198

With respect to the last of the above-mentioned options, there are already three pub- 199

lished studies [20, 48, 55] where the expert with domain knowledge has interacted with 200

the statistical algorithm to make choices of LRs from a list of those competing to enter. 201

The idea in the present context is to present the expert with the ‘top 20’ LRs, say, in 202

decreasing order of importance in the modelling, that is increasing order of −2logLik. 203

Those at the top often have very little difference between them statistically, and the 204

expert can agree with the optimal one but could also, at the expense of a slightly 205

worse fit, choose an LR lower down the list which has a preferred interpretation or a 206

higher theoretical relevance. 207

The three studies cited above all operate in an unsupervised mode. That is, they are 208

not concerned with modelling or predicting a response but rather with substituting 209

the full set of LRs with a smaller set that accounts for most of the logratio variance 210

while approximating the multivariate structure of the data as closely as possible. Nev- 211

ertheless, notice that the second study [48] cited above does have a supervised learning 212

flavour, since the LRs are chosen not to explain total logratio variance between sam- 213

ples, but logratio variance between four groups of samples. In other studies focused on 214

choosing sets of ALRs [27, 57], there are often competing choices of the denominator 215

parts that lead to similar results, where again the expert can make a reasoned choice 216

based on substantive considerations. 217

If there are non-compositional continuous or categorical variables that are substan- 218

tively relevant and statistically predictive of the response, they can be introduced into 219

the model first, and then the LRs are introduced as before to explain the residuals. 220

For the ALR variant of our method, the choice of initial LR can also be made by the 221

expert who wants to force a particular reference part in the ALRs, based on domain 222

knowledge. Whichever the intervention of the user, the final model should then be 223

cross-validated in the same way as described in Section 4.5. 224

3. The logratio selection algorithms 225

In this section we propose three variants of the forward stepwise selection algorithm 226

for generalized linear models, each geared towards solving a specific compositional 227

problem. At the final step, any of them will yield an equation of the form: 228

g(y) = β00 +
∑
jj′

βjj′ log

(
xj
xj′

)
, (4)
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where the summation term contains at most J − 1 non-redundant logratios, β00 is the 229

intercept term and g is the link function of the generalized linear model. 230

3.1. Unrestricted search 231

The first algorithm is a straightforward adaption of the unsupervised stepwise selection 232

algorithm [23] to a supervised setting. Any non-redundant LRs may be selected by the 233

algorithm. This implies that if log(C/B) and log(C/A) have already been selected, 234

then log(B/A) is excluded, since log(B/A) = log(C/A) − log(C/B) and would not 235

contribute to explain variance or improve predictions. More importantly, redundancy 236

implies that many models lead to the same predictions and goodness of fit. Selecting 237

log(B/A) and log(C/B) leads to the same predictions as log(C/B) and log(C/A) 238

and as log(B/A) and log(C/A). It also leads to the same expression of the regression 239

equation as a single log-contrast of log(A), log(B) and log(C) (see section 3.4). Rather 240

than different models, they are three reformulations of the same and only model [9], 241

the choice among which is absolutely irrelevant for all intents and purposes. Faced with 242

this situation, the stepwise algorithm provides only one solution. This argument can 243

be extended to any set of LRs with parts forming a cycle in a graph, which indicates 244

redundancy (see [22, 23]) — the chosen LRs have to form an acyclic graph (examples 245

are shown in Fig. 2 in the application). 246

The final solution of this algorithm may be a combination of overlapping and non- 247

overlapping pairs of parts. For example, supposing there are J = 7 parts, denoted 248

by A,B,C,D,E, F,G. The stepwise algorithm might for instance select log(B/A), 249

log(C/B) and log(G/F ). The pair G/F does not overlap with any other (i.e., the 250

parts F and G participate in only one LR) while the pairs B/A and C/B overlap in 251

part B. 252

The parameter interpretation in models combining overlapping and non-overlapping 253

LRs is all but intuitive [9, 30]. In the above example with the selection log(B/A), 254

log(C/B) and log(G/F ) in the model, the interpretation would be as follows, taking 255

into account that the effects of the explanatory variables have to be interpreted keeping 256

all other variables constant [9]. The coefficient associated with log(G/F ) is interpreted 257

as increasing G at the expense of decreasing F , while keeping the mutual ratios of A, 258

B and C constant. Since log(G/F ) does not overlap with the remaining LRs, its 259

interpretation is not affected and its coefficient expresses a trade-off between only the 260

numerator and denominator parts. 261

Of course, it can be the case that bothG and F increase in absolute terms at different 262

rates. However, in relative terms, i.e. compositionally speaking, there will still be a 263

trade-off. The coefficient associated with log(B/A) is interpreted as increasing B at the 264

expense of decreasing A, while keeping constant both C relative to B and G relative to 265

F . Keeping the ratio of C over B constant means that C changes by the same factor 266

as B. Thus, the coefficient associated to log(B/A) is interpreted as increasing B and 267

C by a common factor at the expense of decreasing A, in relative terms. Likewise, 268

the coefficient associated to log(C/B) is interpreted as increasing C at the expense of 269

decreasing B, while keeping the ratios of B over A and G over F constant. Keeping the 270

ratio of B over A constant means that A decreases by the same factor as B. Thus, the 271

coefficient associated with log(C/B) is interpreted as increasing C while decreasing 272

A and B by a common factor. As a result, the effects of overlapping LRs do not 273

correspond to the effects of the trade-offs between the numerator and denominator 274

parts. On the one hand, this requires exercising great care in the interpretation task, 275
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and on the other it deviates from the objective of choosing LRs that lead to simple 276

interpretation. 277

Nevertheless, the present variant of the algorithm selects the LRs that contribute 278

the most to predictive power, overlapping or not. If the purpose of the researcher is 279

only to make predictions, then interpretation may not be essential and this variant 280

may be the best choice. An interpretational trick which does not involve the LRs is 281

provided in Section 3.4. 282

This method variant can be related to the approach in [6] which similarly makes an 283

unrestricted selection of LRs based on penalized regression. The following two variants 284

of the method make for simpler interpretations of the effects of each LR. 285

3.2. Search for non-overlapping pairwise logratios 286

In this variant of the algorithm, the stepwise search is restricted to at most J/2 (if J 287

is even) or (J−1)/2 (if J is odd) LRs with non-overlapping parts. This limitation may 288

yield a lower predictive power in some applications, but may be very welcome for high- 289

dimensional compositions where parsimony is a must. Since they are non-overlapping, 290

the K/2 selected LRs will involve exactly K parts. This approach has some important 291

advantages: 292

• It is easily interpreted. Non-overlapping LRs have orthogonal α coefficient vec- 293

tors in Eq. 3 by construction. They are thus an exception to the often-quoted 294

problems when interpreting LRs as explanatory variables [30]. For this reason, 295

their effects on the dependent variable can be interpreted in a straightforward 296

manner in terms of trade-offs between only the numerator and the denominator 297

parts [30], as intended when building the LRs. 298

• It tends to reduce collinearity among the LRs, which is an important issue in 299

stepwise methods. 300

• It is faster, as it continuously removes LRs from the set of feasible choices. 301

Each non-overlapping LR can also be considered to be a balance up to a multi- 302

plicative scalar, which brings this variant of the algorithm close to the discriminative- 303

balance approach in [46], where ratios between two or three parts are selected in a 304

supervised problem. 305

3.3. Search for additive logratios in a subcomposition 306

This algorithm draws from the fact that a subcomposition with K parts can be fully 307

represented by K − 1 LRs as long as each part participates in at least one LR [23] 308

and that any logratio selection fulfilling this criterion has identical predictions and 309

goodness of fit [9]. This includes the additive logratios (ALRs) with any part of the 310

subcomposition in the denominator and the remaining K − 1 parts in the numerator, 311

which makes for a shorter search of candidate LRs and makes the interpretation easier. 312

Thus, this algorithm searches for the K-part subcomposition with the highest explana- 313

tory power by fixing the denominator part of the LR determined in the first step and 314

then bringing in additional parts as numerators of the LRs entering subsequently. 315

The effects of the selected set of ALRs in the model in the final linear model are not 316

interpretable as trade-offs between pairs of parts [30] but an alternative simple rule 317

for interpretation is given in [9]: to interpret the ALR effects as those of increasing 318

the part in the numerator while decreasing all other parts in the subcomposition by a 319
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common factor. The common denominator of the ALRs has an associated effect equal 320

to the sum of all coefficients with a reversed sign. 321

In our previous 7-part example, suppose that log(B/G) and log(A/G) are chosen: 322

g(y) = b00 + bAG log(A/G) + bBG log(B/G). (5)

The estimated coefficient bAG is the effect of increasing A while decreasing B and G 323

by a common factor, the coefficient bBG is the effect of increasing B while decreasing 324

A and G by a common factor, and (−bAG−bBG) shows the effect of increasing G while 325

decreasing B and A by a common factor. 326

As stated previously, this algorithm that results in an equation with ALR predictors, 327

also results in identifying a subcomposition. If the researcher prefers other parameter 328

interpretations, the resulting subcomposition can be fitted into the regression model 329

in a subsequent step using the researcher’s favourite type of logratio transformation, 330

including those with orthogonal α vectors in Eq. 3. 331

This algorithm has similar objectives as the approaches of the regularized-regression 332

family [35, 37, 50], which also aim at selecting a subcomposition to explain the non- 333

compositional dependent variable. It is also related to the selbal approach [49], which 334

selects two subcompositions, one positively related to the dependent variable and one 335

negatively related, and computes the logratio of the geometric mean of the first over 336

the second as predictor. The selbal algorithm constrains the effects of all parts to be 337

equal within the numerator and denominator sets. 338

Our approach can also be understood as a supervised equivalent of the algorithm 339

presented by [31], which is a backward stepwise procedure searching for the subcom- 340

position containing the highest possible percentage of total logratio variance of the 341

original composition. Notice the difference between ‘containing’ and ‘explaining’ vari- 342

ance — contained variance is the contribution to the total logratio variance, where the 343

contributions of each part in the composition are summed to get the total, whereas 344

explained variance is in the regression sense, where a part can not only explain its own 345

contribution to the variance but also contributions due to intercorrelations with other 346

parts. 347

3.4. Reexpression as a single log-contrast 348

The final model in any of the three approaches can be expressed as a log-contrast of 349

the logarithms of all involved parts, whose coefficients add up to zero. 350

For instance, the equivalent log-contrast to in Eq. 5 has the αj coefficients in: 351

bAG log(A) + bBG log(B) + (−bAG − bBG) log(G). (6)

This log-contrast can be interpreted as a whole: increasing the parts with positive αj 352

log-contrast coefficients at the expense of decreasing the parts with negative αj log- 353

contrast coefficients leads to an increase in the dependent variable, parts with higher 354

coefficients in absolute value being more important. 355

All three methods are available in the new release of the package easyCODA [22] in 356

R [47], using function STEPR, with options method=1 (unrestricted search) method=2 357

(non-overlapping search) and method=3 (search for a subcomposition by selecting 358

ALRs). The user can specify how many steps the algorithm will proceed, or select 359

a stopping criterion, either BIC or Bonferroni. Theoretically relevant LRs or covari- 360

ates can be forced into the regression equation at step 0. The selection can also be 361
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made one single step at a time, where the researcher is presented with a list of LRs 362

that are competing to enter the model, from which either the statistically optimal one 363

is chosen or a slightly less optimal one with a more interesting and justified substantive 364

meaning and interpretation. 365

4. Application 366

4.1. Data 367

The three approaches to logratio selection are applied to a data set relating Crohn’s 368

disease to the microbiome of a group of patients in a pediatric cohort study [17, 369

49]. The 662 patients with Crohn’s disease (coded as 1) and the 313 without any 370

symptoms (coded as 0) are analysed. The operational taxonomic unit (OTU) table 371

was agglomerated to the genus level, resulting in a matrix with J = 48 genera and a 372

total sample size n = 662 + 313 = 975. All the genera but one had some zeros, varying 373

from 0.41 % to 79.38 % and overall the zeros accounted for 28.8 % of the values in 374

the 975 × 48 table of OTU counts. Among the available zero-replacement methods, 375

for comparability purposes with [49], the zeros were substituted with the geometric 376

Bayesian multiplicative replacement method [38]. 377

Since the dependent variable is binary, the appropriate member of the generalized 378

linear model family is the logit model, with the probability p of Crohn’s disease ex- 379

pressed as the logit (log-odds) log
(

p
1−p

)
. Positive regression coefficients would indicate 380

associations with a higher incidence of Crohn’s disease. For the particular case of logit 381

models the deviance equals −2logLik. As recommended by [28], prior to any stepwise 382

procedure we tested an intercept-only model against a model with J − 1 LR, rejecting 383

the intercept-only model (χ2 = 407.1 with 47 degrees of freedom). 384

The same data set has been analysed using the selbal approach [49], which con- 385

trasts two subcompositions of genera S1 and S2 in a single variable equal to the 386

log-transformed ratio of the respective geometric means. Thus the coefficients of the 387

parts for each subcomposition are the same, resulting in the following log-contrast as 388

a predictor of the incidence of Crohn’s disease, where the positive and negative coef- 389

ficients apply respectively to the 8 parts of S1 in the numerator and the 4 parts of S2 390

in the denominator (abbreviations of the genera are used — see the Appendix for the 391

list of full names): 392

0.2041 log(Dial) + 0.2041 log(Dore) + 0.2041 log(Lact) + 0.2041 log(Egge) 393

+ 0.2041 log(Aggr) + 0.2041 log(Adle) + 0.2041 log(Stre) + 0.2041 log(Osci) 394

− 0.4082 log(Rose) − 0.4082 log(Clos) − 0.4082 log(Bact) − 0.4082 log(Pept) 395

4.2. Results with the complete data set 396

For comparability with [49] we first run the analysis on the complete dataset, leaving 397

the crucial cross-validation step for Section 4.5. The results for our three approaches, 398

with the stopping criterion set to optimise BIC are in the left panel of Tables 1 to 3. 399

The function which is being optimised is deviance + 6.8824m. Table 1 shows the unre- 400

stricted solution. Variables are ordered according to entry in the stepwise algorithm. 401

There is an overlap of the genus Stre in steps 1 and 6, which will cause complications 402

in the interpretation. In the second version of the algorithm, then, the selected LRs 403

differ from the sixth step onward, with very small increases in the BIC, shown in Table 404
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BIC penalty Bonferroni penalty
Ratio Estimate s.e. p-value Estimate s.e. p-value
Stre/Rose 0.3059 0.0320 < 0.0001 0.3022 0.0315 < 0.0001
Dial/Pept 0.1378 0.0235 < 0.0001 0.1618 0.0218 < 0.0001
Dore/Bact 0.2436 0.0376 < 0.0001 0.2393 0.0372 < 0.0001
Aggr/Prev 0.1025 0.0221 < 0.0001 0.1008 0.0220 < 0.0001
Adle/Lach 0.1107 0.0275 < 0.0001 0.1158 0.0273 < 0.0001
Lact/Stre 0.1489 0.0371 < 0.0001 0.1482 0.0364 < 0.0001
Osci/Clos 0.1645 0.0429 0.0001 0.1688 0.0426 < 0.0001
Sutt/Bilo 0.0889 0.0247 0.0003 0.0873 0.0246 0.0004
Clot/Pept 0.0712 0.0264 0.0070

BIC 932.03 932.55

Table 1. Estimates of the final model with the first approach (unrestricted stepwise search). Ratios have been
inverted, where necessary, to make all coefficients positive.

2. 405

BIC penalty Bonferroni penalty
Ratio Estimate s.e. p-value Estimate s.e. p-value
Stre/Rose 0.2377 0.0294 < 0.0001 0.2444 0.0291 < 0.0001
Dial/Pept 0.1570 0.0221 < 0.0001 0.1702 0.0217 < 0.0001
Dore/Bact 0.2322 0.0379 < 0.0001 0.2272 0.0371 < 0.0001
Aggr/Prev 0.1026 0.0223 < 0.0001 0.1087 0.0222 < 0.0001
Adle/Lach 0.1077 0.0279 0.0001 0.1139 0.0276 < 0.0001
Rumi/Clos 0.2511 0.0660 0.0001 0.2553 0.0642 < 0.0001
Sutt/Bilo 0.0728 0.0248 0.0033 0.0844 0.0245 0.0006
Osci/Faec 0.1220 0.0346 0.0004 0.1088 0.0333 0.0011
Lact/Turi 0.0864 0.0295 0.0034
Egge/Euba 0.0792 0.0303 0.0091

BIC 937.92 939.64

Table 2. Estimates of the final model with the second approach (non-overlapping LRs). Ratios have been

inverted, where necessary, to make all coefficients positive.

Since non-overlapping LRs have orthogonal α vectors, their interpretation is ac- 406

cording to the logratio formulation [30]. That is, the incidence of Crohn’s disease is 407

significantly associated with an increase in the relative abundance of each numera- 408

tor genus at the expense of a decrease in the relative abundance of the respective 409

denominator genus. 410

The third approach identifies the set of ALRs, shown in Table 3, where there is 411

a much bigger increase in the BIC. The first LR selected, identical to the first ones 412

in the previous results, determines the denominator part of them all. The algorithm 413

selects 11 ALRs as a 12-part subcomposition. This subcomposition of 12 genera may be 414

transformed into the practitioner’s favourite logratio representation without changing 415

the predictions or goodness of fit of the model as long as 11 logratios are used [9]. A 416

convenient example of the former is to rerun the final model with a different part in 417

the ALR denominator. This makes it possible to obtain the missing standard error 418

and p-value in the log-contrast corresponding to the denominator part in the original 419

run (Rose in the first row of Table 4). The remaining estimates and standard errors 420

in Table 4 do not change. Each coefficient can be interpreted as the effect on the 421
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dependent variable (i.e., the log-odds of having Crohn’s disease) of increasing the part 422

in the numerator while decreasing all other parts in the subcomposition by a common 423

factor. For instance, according to the coefficient of Stre/Rose in Table 3, the likelihood 424

of Crohn’s disease increases with increases in the genus Stre, at the expense of joint 425

decreases in Dial, Pept, Lact, Bact, Dore, Adle, Aggr, Prev, Osci, Clos and Rose. 426

If the model is not used merely for prediction, significance of the logratios becomes 427

important. The right panel of Tables 1 to 4 presents the results using a penalty equiva- 428

lent to forcing the selected LRs to be significant at 0.05 with the Bonferroni inequality: 429

deviance +10.7130m. This has led to selecting one fewer LR for the first approach and 430

two fewer LRs for the second and third approaches. Given the large sample size, BIC 431

also employs a substantial penalty to the deviance and this is why results are barely 432

affected in this particular application. 433

BIC penalty Bonferroni penalty
Ratio Estimate s.e. p-value Estimate s.e. p-value
Stre/Rose 0.1488 0.0444 0.0008 0.1415 0.0438 0.0012
Dial/Rose 0.1354 0.0267 < 0.0001 0.1407 0.0262 < 0.0001
Pept/Rose -0.1909 0.0331 < 0.0001 -0.2065 0.0324 < 0.0001
Lact/Rose 0.1547 0.0404 < 0.0001 0.1420 0.0397 0.0003
Bact/Rose -0.2859 0.0521 < 0.0001 -0.2792 0.0481 < 0.0001
Dore/Rose 0.2252 0.0483 < 0.0001 0.2021 0.0439 < 0.0001
Adle/Rose 0.1477 0.0375 < 0.0001 0.1511 0.0360 < 0.0001
Aggr/Rose 0.1381 0.0332 < 0.0001 0.1378 0.0328 < 0.0001
Prev/Rose -0.0905 0.0260 0.0005 -0.0920 0.0258 0.0004
Osci/Rose 0.1551 0.0439 0.0004
Clos/Rose -0.2140 0.0723 0.0031

BIC 964.44 967.42

Table 3. Estimates of the final model with the third approach (subcomposition search with ALR). Ratios
have been left with the fixed denominator part, hence positive and negative coefficients.

BIC penalty Bonferroni penalty
Ratio Estimate s.e. p-value Estimate s.e. p-value
Rose/Stre -0.3237 0.0425 < 0.0001 -0.3375 0.0383 < 0.0001
Dial/Stre 0.1354 0.0267 < 0.0001 0.1407 0.0262 < 0.0001
Pept/Stre -0.1909 0.0331 < 0.0001 -0.2065 0.0324 < 0.0001
Lact/Stre 0.1547 0.0404 < 0.0001 0.1420 0.0397 0.0003
...

...
...

...
...

...
...

Prev/Stre -0.0905 0.0260 0.0005 -0.0920 0.0258 0.0004
Osci/Stre 0.1551 0.0439 0.0004
Clos/Stre -0.2140 0.0723 0.0031

BIC 964.44 967.42

Table 4. Estimates of the final model with the third approach and an alternative denominator (subcompo-
sition search with ALR).

Fig. 1 shows three plots of the sequence of certain diagnostics for the three algo- 434

rithms. The null deviance of this application is equal to 1223.9, and if a complete set 435

of J − 1 logratios is used as predictors, which can be LRs, ALRs or other logratio 436

transformations, the residual (or ‘unexplained’) deviance is 816.8. This means that 437
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1223.9 − 816.8 = 407.1 units of deviance is the best that can be accounted for by the 438

LRs. Using this maximum of 407.1 as 100%, each LR entering at each step is account- 439

ing for a part of that maximum, expressed as a percentage. In Fig. 1 the gray bars 440

show the increasing percentages at each step, which would eventually reach 100%. The 441

black bars show the incremental amounts, in a type of scree plot. 442
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Figure 1. Scree-type plots showing incremental amounts (black bars) at each step and cumulative amounts

(gray bars) at each step of the three respective algorithms. The values are percentages of the maximum
achievable deviance that can be accounted for by using a complete set of J − 1 = 47 LRs in the logistic

regression.

4.3. Interpretational tools 443

A convenient way of summarizing the selected LRs of the three algorithms in each of 444

the Tables 1–3 is in the form of a directed acyclic graph (DAG), where the parts are 445

vertices and the LRs are defined by the edges [22, 23], with each arrow pointing to the 446

numerator part (Fig. 2, showing the solutions for the Bonferroni penalty). The ALRs 447

in Fig. 2(c) define a connected DAG, which is why they are equivalent to the complete 448

explanatory power of a subcomposition [23]. 449

All models can be interpreted when converted into the corresponding log-contrast 450

[9] as a function of the log abundances constrained to a zero sum of the αj coefficients. 451

Log-contrasts can easily be obtained, for instance, from the right panel in Tables 452

1 to 3. This is essential for the unrestricted approach for which the LRs have no 453

easy interpretation on their own. Coefficients can be arranged in descending order for 454

convenience. 455

In the unrestricted approach the log-contrast is: 456

0.2393 log(Dore)+0.1688 log(Osci)+0.1618 log(Dial)+0.1583 log(Stre) 457

+0.1482 log(Lact)+0.1158 log(Adle)+0.1008 log(Aggr)+0.0873 log(Sutt) 458

−0.0873 log(Bilo) −0.1008 log(Prev)−0.1158 log(Lach)−0.1618 log(Pept) 459

−0.1688 log(Clos)−0.2393 log(Bact)−0.3022 log(Rose) 460

Thus, the likelihood of Crohn’s disease increases with increases in the genera Dore, 461

Osci, Dial, Stre, Lact, Adle, Aggr and Sutt at the expense of decreases in Rose, Bact, 462

Clos, Pept, Lach, Prev and Bilo. 463

In the non-overlapping LR approach, the numerator and denominator parts have 464

αj coefficients of equal value and reversed sign in the log-contrast: 465
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Figure 2. Directed acyclic graphs (DAGs) visualizing the ratios selected in the three stepwise approaches

(according to the Bonferroni penalty, the right hand panels in Tables 1–3). Arrows point from the denominator
to the numerator in every case. In each graph the LR at the top (Stre/Rose) is the first one selected and the

ratios introduced in following steps are shown in a clockwise direction. (a) Unrestricted search, showing an

overlap of Stre; 15 parts included. (b) Restricted to non-overlap; 16 parts included. (c) ALR selection; 10 parts
included, which define a subcomposition, and the only graph out of the three that is connected.

0.2553 log(Rumi)+0.2444 log(Stre)+0.2272 log(Dore)+0.1702 log(Dial) 466

+0.1139 log(Adle)+0.1088 log(Osci)+0.1087 log(Aggr)+0.0844 log(Sutt) 467

−0.0844 log(Bilo)−0.1087 log(Prev)−0.1088 log(Faec)−0.1139 log(Lach) 468

−0.1702 log(Pept)−0.2272 log(Bact)−0.2444 log(Rose)−0.2553 log(Clos) 469

Thus, the likelihood of Crohn’s disease increases with increases in the genera Rumi, 470

Stre, Dore, Dial, Adle, Osci, Aggr and Sutt at the expense of decreases in Clos, Rose, 471

Bact, Pept, Lach, Faec, Prev and Bilo. 472

In the ALR approach in Table 3, coefficients of the numerator parts can be taken 473

directly from the estimates, and the coefficient of the denominator part is the sum of 474

all coefficients with reversed sign and can be taken also from Table 4: 475

−(0.1415 + 0.1407 − 0.2065 · · · − 0.0920) = −0.3375
The log-contrast is: 476

0.2021 log(Dore)+0.1511 log(Adle)+0.1420 log(Lact)+0.1415 log(Stre) 477

+0.1407 log(Dial)+0.1378 log(Aggr)−0.0920 log(Prev)−0.2065 log(Pept) 478

−0.2792 log(Bact)−0.3375 log(Rose) 479

Thus, the likelihood of Crohn’s disease increases with increases in the genera Dore, 480

Adle, Lact, Stre, Dial and Aggr, at the expense of decreases in Rose, Bact, Pept, and 481

Prev. 482

Fig. 3 plots the above coefficients for the ALR approach with the Bonferroni penalty 483

as well as the multiplicative effects after exponentiating the coefficients and expressed 484

as percentage effects. The 95% bootstrap confidence intervals of these multiplicative 485

effects are shown graphically, based on 1000 bootstrap samples, and the 2.5 % and 486

97.5 % percentiles of the bootstrapped estimates of the log-contrast coefficients. It can 487

be seen that none cross the threshold of 1, which represents the hypothesis of no effect 488

for each term of the log-contrast. 489
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Figure 3. Estimated log-contrast coefficients (left) and their conversion to multiplicative effects and 95 %

bootstrap confidence intervals (right).

4.4. Introduction of expert knowledge 490

Because of space considerations, from this section on, we focus on the ALR subcompo- 491

sition search approach. Under this approach, in the 9th step, the algorithm reports the 492

Egge genus as the second best choice additional part in the subcomposition after Prev. 493

Since Egge is present in the subcomposition by [49], while Prev is not, a researcher 494

might want to force the logratio with Egge in the numerator instead of Prev as in 495

Table 3 (Table 5). We see that the subcomposition under the BIC penalty (left panel) 496

has changed and the Osci and Clos genera have dropped out and the Egge and Sutt 497

genera have been substituted, at the expense of only a slight increase in the BIC value 498

as compared to Table 3. In this way, more than one solution can be presented to the 499

user to choose from. 500

BIC penalty Bonferroni penalty
Ratio Estimate s.e. p-value Estimate s.e. p-value
Stre/Rose 0.1362 0.0451 0.0025 0.1055 0.0438 0.0161
Dial/Rose 0.1283 0.0267 < 0.0001 0.1270 0.0263 < 0.0001
Pept/Rose -0.2087 0.0326 < 0.0001 -0.2045 0.0321 < 0.0001
Lact/Rose 0.1363 0.0399 0.0006 0.1265 0.0390 0.0012
Bact/Rose -0.3659 0.0554 < 0.0001 -0.3165 0.0486 < 0.0001
Dore/Rose 0.1847 0.0450 < 0.0001 0.1685 0.0445 0.0002
Adle/Rose 0.1341 0.0367 0.0003 0.1329 0.0364 0.0003
Aggr/Rose 0.1249 0.0333 0.0002 0.1246 0.0322 0.0001
Egge/Rose 0.0823 0.0329 0.0125 0.0905 0.0320 0.0046
Prev/Rose -0.0923 0.0268 0.0006
Sutt/Rose 0.0964 0.0329 0.0034

BIC 967.50 972.18

Table 5. Estimates of the final model with subcomposition search where the ALR Egge/Rose was forced into

the equation at the 9th step.
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4.5. Results with separate training and test subsamples 501

The previous sections presented the results on the full sample for the sake of compa- 502

rability with [49]. However, a much better way to proceed, which we recommend to 503

all users of the approaches proposed in this article, is to hold a part of the sample out 504

for testing and validation. In this section, a Bernouilli random variable was generated 505

with probability 0.4 indicating units belonging to the test part, while the remaining 506

units were assigned to the training part on which the stepwise procedure was run. 507

Table 6 shows the unbiased coefficients of the model of the last step in the training 508

sample estimated from the test sample (ALR subcomposition approach). It must be 509

noted that BIC does no longer have to be better when applying the BIC penalty. In 510

this particular case, the Bonferroni approach leads to a better BIC value on the test 511

sample. BIC values in Tables 3 and 6 are not comparable because they are computed 512

from different samples. 513

BIC penalty Bonferroni penalty
Ratio Estimate s.e. p-value Estimate s.e. p-value
Lact/Rose 0.1533 0.0581 0.0083 0.1887 0.0572 0.0010
Dial/Rose 0.1930 0.0423 < 0.0001 0.2098 0.0406 < 0.0001
Pept/Rose -0.1268 0.0511 0.0131 -0.1110 0.0480 0.0208
Adle/Rose 0.1200 0.0602 0.0464 0.1345 0.0528 0.0108
Bilo/Rose -0.0751 0.0438 0.0862 -0.0758 0.0378 0.0451
Dore/Rose 0.2305 0.0799 0.0039
Faec/Rose -0.0466 0.0666 0.4848
Osci/Rose 0.0406 0.0752 0.5894
Clos/Rose -0.1978 0.1165 0.0895
Egge/Rose 0.0813 0.0549 0.1387
Coll/Rose -0.0031 0.0455 0.9463
BIC 417.05 397.16
Accuracy (+ cases) 87.8 % 88.5 %
Accuracy (– cases) 58.1 % 50.4 %
Overall accuracy 78.6 % 76.8 %

Table 6. Estimates of the final model with the third approach (subcomposition search with ALR). Test
sample.

Under the Bonferroni approach (right panel of Table 6), all parts except Bilo were 514

also present in the full-sample analysis (Table 3) and all ALRs are statistically signifi- 515

cant at 5 %. The estimation on a separate test sample makes it possible to get not only 516

unbiased p-values but also unbiased predictive accuracy figures. The model predicts 517

88.5 % of cases with Crohn’s disease correctly as such, and 50.4 % of cases without 518

Crohn’s disease correctly as such. Overall predictive accuracy is 76.8 %. An unbiased 519

log-contrast can be obtained from the estimates on the test sample in the right panel 520

of Table 6: 521

0.2098 log(Dial)+0.1887 log(Lact)+0.1345 log(Adle) 522

−0.0758 log(Bilo)−0.1110 log(Pept)−0.3462 log(Rose) 523

Thus, the likelihood of Crohn’s disease increases with increases in the genera Dial, 524

Lact, and Adle, at the expense of decreases in Rose, Pept and Bilo. The differences 525

between this log-contrast and that presented in Section 4.3 stress the importance of 526

cross-validation. 527

Under the BIC approach (left panel of Table 6), four different parts appear com- 528
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pared to the full-sample analysis (Bilo, Coll, Egge and Faec), and some ALRs are not 529

statistically significant, although they had been significant in the training sample due 530

to the downward bias of p-values in that part of the data. The model predicts 87.8 % 531

of cases with Crohn’s disease correctly, and 58.1 % of cases without Crohn’s disease. 532

Overall predictive accuracy is 78.6 %. In this case the BIC penalty leads to a better 533

predictive accuracy as compared to the Bonferroni penalty, at the expense of including 534

some ALRs whose relevance is uncertain. 535

Table 6 thus presents an example in which the significance of LRs in the training 536

sample is confirmed in the test sample (right panel) and an example of the opposite 537

(left panel). The actual strength of cross-validation is the chance given to the researcher 538

to identify parameter estimates which behave differently in the test sample compared 539

to the training sample, particularly those that perform less well. 540

4.6. Exploring model stability using the bootstrap 541

The bootstrap performed in Fig. 3 only takes into account the estimation uncertainty 542

[28]. In order to take into account the uncertainty associated to model selection, the 543

whole stepwise procedure can be submitted to the bootstrap procedure. The following 544

simulation exercise was performed, reported here for Method 3 (that is, choosing a 545

subcomposition via the selection of ALRs). The complete data set was bootstrapped 546

100 times and for each bootstrap sample, Method 3 with the Bonferroni penalty was 547

applied and the chosen subcomposition recorded. In doing so, the researcher becomes 548

aware that subcompositions vary in size and some of the genera in the right hand panel 549

in Table 3 are not consistently selected as parts in the subcomposition, while some 550

absent parts in Table 3 are selected in a sizeable proportion of bootstrap samples. 551

The 20 most often selected genera in the 100 bootstrap samples are, in descending 552

order: Rose (100%), Dial (96%), Pept (95%), Bact (76%), Dore (75%), Lact (69%), 553

Aggr (59%), Adle (58%), Stre (54%), Bilo (37%), Acti (36%), Prev (35%), Osci (30%), 554

Clos (30%), Egge (29%), Sutt (27%), Clot (18%), Lach (15%), Coll (13%), and Rumi 555

(12%). The numbers of ALRs selected in the bootstrap samples vary from 5 to 15, 556

with 90% of them between 6 and 12. This shows that there is indeed a potentially 557

wide variability in the number of ALRs selected by this method, which translates to a 558

corresponding variability in the size of the selected subcompositions. The right hand 559

panel in Table 3 and the bootstrap results show that, with the exception of Prev (35%, 560

see above), all the selected genera in Section 4.2 are in more than 50% of the bootstrap 561

samples. 562

5. Conclusion and discussion 563

The main strength of this article is its conceptual and practical simplicity. Compared 564

to many competing supervised statistical learning methods for compositional data, it 565

yields an actual equation whose predictors the user can actually see, which makes it 566

ultimately possible to introduce modifications based on expert knowledge. The method 567

is very flexible in allowing several types of dependent variables (for the time being, 568

continuous, Poisson and binary), several stopping criteria, and three approaches each 569

geared towards a particular objective, namely prediction, interpretation and subcom- 570

position analysis. The selected LRs are readily interpretable for the latter two modal- 571

ities while a log-contrast is interpretable for all. Last but not least, the method will 572

likely appear familiar to many applied researchers without a sophisticated statistical 573
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background, who may gather courage to use and understand it. 574

The possibility to take advantage of the user’s judgement in order to select mean- 575

ingful albeit statistically suboptimal LRs has already been developed for unsupervised 576

learning [22, 23]. In supervised learning this can also include forcing non-compositional 577

controls into the model and can be a way out of the limitations of purely data-driven 578

approaches [20, 48, 55]. The possibility has been shown in the application section by 579

forcing in a part which had been found to be relevant in the previous study by [49]. 580

This has led to two alternative subcompositions for the user to choose from, in Table 581

3 and Table 5. 582

[11] compare our approach with the selbal approach [49], principal balances derived 583

from partial least squares [42] and penalized regression from LRs [6]. Our approach 584

and especially the third variant of the algorithm, leads to identifying similar predictive 585

parts as selbal and penalized regression from LRs, while balances derived from partial 586

least squares tend to identify a much larger number of parts. 587

The results of stepwise regression are indeed sample-dependent and biased. The 588

way out is to perform cross-validation and apply the model that is finalized at the last 589

step to a hold-out data set, if one is available. As a second option, the sample can be 590

split in two subsamples for training and testing purposes, respectively. Estimates, tests 591

and predictions obtained with the cross-validation sample are unbiased. The user is 592

encouraged to perform cross-validation whenever applying stepwise methods, and has 593

to be reminded that even after cross-validation, the approach is exploratory by nature 594

and the final model cannot be assumed to be correct, but at most one out of many 595

models fitting the data about as well and with about the same predictive accuracy. 596

This drawback is common to all statistical learning methods. An extension of our 597

approach is then possible to other supervised learning techniques such as classification 598

and regression trees and random forests, where cross-validation is routinely applied. At 599

each step an LR can be selected to maximize the success of prediction of the response 600

variable, based on cross-validation. As we have done in the context of generalized linear 601

models, the stepwise selection can again take place using any of the three selection 602

methods. Introducing other cross-validation methods into our approach is the subject 603

of ongoing research. Another future development is to include logratios that involve 604

amalgamated (summed) parts as in [24, 26]. 605

The particular example used in this article has a medium-sized number of parts 606

compared to many compositional datasets used in the past in different fields. However, 607

the method needs to be trialled in more diverse scenarios, especially in the case of very 608

high-dimensional “omics” and microbial datasets, where CoDA is being regularly used 609

nowadays. The stepwise selection of logratios is not a particularly fast algorithm for 610

large numbers of variables, although the third version with ALRs is more scalable 611

than the rest. All three variants start with a search through J(J − 1)/2 LRs, which 612

is problematic if J is very large, in the hundreds or even the thousands. For the ALR 613

approach in Method 3, it could be that the approach presented in [27] can be used 614

as an alternative to isolate a suitable ALR transformation, by choosing the reference 615

part to give an ALR transformation that is the most isometric, that is, as close to the 616

exact logratio geometry as possible. This greatly facilitates the algorithm, since the 617

stepwise searches are only of order J whereas for Methods 1 and 2, they are of order 618

J2/2. This is the subject of ongoing research. 619
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Appendix. List of genera abbreviations and full names 620

• Acti: Actinomyces 621

• Adle: Adlercreutzia 622

• Aggr: Aggregatibacter 623

• Bact: Bacteroides 624

• Bilo: Bilophila 625

• Clos: Clostridiales 626

• Clot: Clostridium 627

• Coll: Collinsella 628

• Dial: Dialister 629

• Dore: Dorea 630

• Egge: Eggerthella 631

• Euba: Eubacterium 632

• Faec: Faecalibacterium 633

• Lach: Lachnospira 634

• Lact: Lactobacillales 635

• Osci: Oscillospira 636

• Pept: Peptostreptococcaceae 637

• Prev: Prevotella 638

• Rose: Roseburia 639

• Rumi: Ruminococcaceae 640

• Stre: Streptococcus 641

• Sutt: Sutterella 642

• Turi: Turicibacter 643

Data and software availability 644

The Crohn data set is available in the R package selbal. All methods will be available 645

in the the new release of the easyCODA package [22] in R [47], which is already pre- 646

released on RForge and can be installed as follows: 647

install.packages("easyCODA", repos="http://R-Forge.R-project.org")

. 648
The R code for reproducing these results is available on GitHub at 649

https://github.com/michaelgreenacre/CODAinPractice 650
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