
Citation: Viladevall, Q.;

Linares-Mustarós, S.; Huertas, M.A.;

Ferrer-Comalat, J.-C. Understanding

the Axioms and Assumptions of

Logical Mathematical Systems

through Raster Images: Application

to the Construction of a Likert Scale.

Axioms 2023, 12, 1064. https://

doi.org/10.3390/axioms12121064

Academic Editor: Fevrier Valdez

Received: 19 October 2023

Revised: 10 November 2023

Accepted: 17 November 2023

Published: 21 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Understanding the Axioms and Assumptions of Logical
Mathematical Systems through Raster Images: Application to
the Construction of a Likert Scale
Queralt Viladevall 1,2, Salvador Linares-Mustarós 1,3 , Maria Antonia Huertas 1

and Joan-Carles Ferrer-Comalat 3,*

1 IT, Multimedia and Telecommunications Department, Open University of Catalonia, 08018 Barcelona, Spain;
qviladevall@uoc.edu (Q.V.); salvador.linares@udg.edu (S.L.-M.); mhuertass@uoc.edu (M.A.H.)

2 Department of Subject-Specific Education, University of Girona, 17004 Girona, Spain
3 Department of Business, University of Girona, 17003 Girona, Spain
* Correspondence: joancarles.ferrer@udg.edu

Abstract: This article presents different artistic raster images as a resource for correcting misconcep-
tions about different laws and assumptions that underlie the propositional systems of binary logic,
Łukasiewicz’s trivalent logic, Peirce’s trivalent logic, Post’s n-valent logic, and Black and Zadeh’s
infinite-valent logic. Recognizing similarities and differences in how images are constructed allows
us to deepen, through comparison, the laws of bivalence, non-contradiction, and excluded middle,
as well as understanding other multivalent logic assumptions from another perspective, such as
their number of truth values. Consequently, the first goal of this article is to illustrate how the use of
visualization can be a powerful tool for better understanding some logic systems. To demonstrate the
utility of this objective, we illustrate how a deeper understanding of logic systems helps us appreciate
the necessity of employing Likert scales based on the logic of Post or Zadeh, which is the second goal
of the article.
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1. Introduction

In the bivalent propositional logical system, every declarative sentence must be either
true or, if it is not true, it can only be false. This statement is known as the law of bivalence.
Other laws of the bivalent propositional logical system are the law of the excluded middle,
which declares that all statements are either true or false, with there being no middle option
outside of these two, and the law of non-contradiction, which asserts that statements cannot
be true and false at the same time [1]. Let us note that both laws are necessary to justify the
law of bivalence, since the law of the excluded middle does not rule out the possibility that
a statement can be true and false at the same time.

During the last century, numerous logical systems appeared that do not comply
with the law of bivalence. Since these new systems accept more than two truth values
for declarative statements, they were called multivalent logic systems. Given the recent
appearance of these new ideas, some confusion is common even today regarding what laws
or assumptions are associated with the construction of these systems, resulting in a general
lack of understanding of how to work within a framework based on acceptance of the
laws and assumptions in certain multivalent logical systems. Proof of this is found in the
methodology for collecting opinions, evaluations or ratings based on questionnaires with
predetermined response scales such as Likert-type [2,3]. Today, there appears to be much
confusion regarding the type of coherent answers to the different implicit logical systems
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following the questions in said questionnaires, and this is due to a lack of understanding
regarding the underlying logical principles and assumptions of the context.

The idea proposed in the article by Klein, Etternson, and Morris [4] can be used
as a starting point for addressing the initial research gap that the present study aims to
pinpoint. The authors, based on the studies of Herzberg, Mausner, and Snyderman [5];
Czepiel, Rosenberg, and Akerele [6]; Leavitt [7]; and Oliver and Westbrook [8], warn that
according to the “two-factor theory”, in many situations, there are elements that produce
satisfaction (satisfiers) or dissatisfaction (dissatisfiers). Then, citing the work of Yi [9], in
which it is shown that satisfiers are separate and distinct from dissatisfiers and that they
are unequal and nonlinear in their effect on many other constructs, including motivation,
attitudes, preferences, and behaviours, they clearly warn that satisfiers and dissatisfiers
are not opposites to each other and carried out a study regarding these two variables
independently. Given the widespread use of Likert scales anchored by “strongly disagree-
strongly agree” in many articles, there is a clear need to further understand this current
methodological issue. This is, therefore, our first aim.

On the other hand, this research can also be included within a line of research that
aims to illustrate how use visualization can be a powerful tool for better understanding
some logical concepts. The line of research that explores visual arguments is known as
proofs without words [10–12]. The images created in this line should help understand
mathematical ideas, demonstrations, and arguments. Therefore, a second possible gap that
the article tries to contribute to is the lack of images of this type that can help understand
the axioms and assumptions of different logical systems.

With this second aim of providing help in such contexts, the present work seeks to
fulfil the objective of improving understanding of the logical laws that underlie the different
multivalent propositional logical systems, as well as understanding other multivalent logic
assumptions, such as their number of truth values. To this end, a type of image, known
as raster, will be used, which will allow us to obtain conceptual images [13] of multiple
logical propositional systems that will establish conceptual definitions, eliminating possible
cognitive conflicts related to them.

To achieve the aforementioned aims, the article is divided into the following sections:
following this introduction come two sections on the materials and methods. The Section 2
entitled “Materials and Methods I: From Bivalent Logic to Multivalent Logics” provides
a constructive tour of Peirce and Łukasiewicz’s trivalent logic, Post’s n-valent logic and
Black and Zadeh’s infinite-valent logic. Next, in the Section 3, “Materials and Methods
II: Colouring the Logics”, we present a proposal to work with raster images as an artistic
representation for each of the different logical systems mentioned, lending greater meaning
to the logical laws of bivalence, the excluded middle and non-contradiction, as well as
other suppositions of multivalent logics. The work continues with the Section 4, “Results
and Discussion”, in which the type of Likert scale that researchers should use based on
the logical axioms implicit in their research is widely discussed. The work finishes with
the Section 5, “Conclusions”, which summarizes the article and justifies the artistic part of
the works presented, since it is expected that they will form part of a travelling exhibition
through various museums.

2. Materials and Methods I: From Bivalent Logic to Multivalent Logics

Until relatively few years ago, our conception of the world was basically governed
by a bivalent logic, the logic of 100% truth (or value 1 associated with true) or 0% truth
(or value 0 associated with false), despite the fact that over two thousand years ago,
Aristotle (De interpretatione, chap. IX) warned that this logic could not assign one of these
two truth values to some statements in certain contexts. He gave the example that in a
context of free will, the statement “tomorrow there will be a naval battle” cannot be true
or false when it is pronounced since, then, the future would be completely determined,
invalidating the principle of free choice. Trying to resolve this problem, Łukasiewicz [14]
presented the first trivalent logic, assigning the truth value of 0.5 to this problematic type
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of sentence. A year later, Post [15] would independently create—though from a purely
formal mathematical stance—multivalent logics with any finite number of values, thus
founding tetravalent or pentavalent logic, for example. Later discoveries have shown that
Peirce had already created a trivalent logical system in 1909, based on the idea of accepting
a third truth value for statements that are not definitely true or false but are on the border
between the two [16]. This type of logic would bear a relationship of similarity with the
ideas of Russell [17] regarding the term “vagueness”, since he accepted that all words are
undoubtedly attributable in a certain domain but become questionable within a penumbra,
outside which they again become not attributable. Black [18] would present the idea that
these statements could have a continuous type of graduation. Years later, Zadeh [19]
popularized infinitely multivalent logic under the name of fuzzy logic (At present, the term
“fuzzy logic” is considered to group together infinite multivalent logical systems in which,
in addition to having differences in the way in which the union, intersection or negation
of statements are constructed, the acceptable truth values can be considered as a single
value from the interval [0, 1], intervals within the interval [0, 1] or even other structures..
For this reason, during the rest of the article, when we talk about fuzzy logic, we will
refer only to the logic proposed by Zadeh, which simply accepts that the truth value of
a statement is a number in the interval [0, 1] and accepts that the value of the truth of a
negation is 1 minus the truth value of the initial statement, or the truth value of the union
and intersection of statements is the maximum and minimum of the truth values of both
statements, respectively.), or one in which it is accepted that statements can have any truth
value determined between 0 and 1 (inclusive).

The logical laws associated with constructing the different logical propositional sys-
tems mentioned are as follows:

(1) The law of bivalence: each declarative sentence with meaning (Requiring that it
has meaning stems from Stuart Mill’s observation that, since it has no meaning, the
declarative statement “Abracadabra is a second intention” cannot be conceived in
binary logic as being either a true or a false statement.) has exactly one truth value,
either true or false.

(2) The law of the excluded middle: every meaningful declarative sentence is true or
false, with no third possible option outside of these two.

(3) The law of non-contradiction: no meaningful declarative sentence can be true and
false at the same time.

In the next section, we will gain a better understanding of how each law is defined
through the use of raster images and determine other constructive premises that will allow
us to delve into the differences between the different logical systems mentioned above.

3. Materials and Methods II: Colouring the Logics

Raster images, also called bitmaps, present a rectangular grid of pixels suitable for
working with the logical laws of bivalence, non-contradiction and the excluded middle,
as well as other implicit assumptions of logical systems, such as the assumption that
truth values do not change with time or that there is a fixed a priori number of possible
truth values.

The essential idea is to associate truth values with colours that represent those values.
Thus, the truth values of six statements in a bivalent propositional logical system can be
viewed as a raster image in the style of Figure 1, whose pixels are coloured white if the
statement is true or black if it is false. Dichotomous thinking, also known as black-and-
white thinking, is when your thought patterns assign people, things, and actions to one of
two categories. The choice of black and white colours is simply justified by the popularity
of this term.
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Figure 1. Two-pixels-high and three-pixels-wide raster image, displayed in ADOBE photoshop.

We can establish a rule for the idea by associating the colour of the pixel of the raster
image to its truth value based on the following expression:

pixel color Pij =

{
white
black

i f the statement(i − 1) ∗ 3 + j is true
i f the statement(i − 1) ∗ 3 + j is f alse

where 1 ≤ i ≤ 2 (2 is the number of rows), 1 ≤ j ≤ 3 (3 the number of columns) and Pij
the pixel associated with the position ij, according to the typical nomenclature used for
matrices, where the rows are read from left to right and the columns from top to bottom.

Let us now consider a simple example to understand the rule. Given the following six
statements:

• A1: Object A is a square.
• A2: Object B is a square.
• A3: Object C is a square.
• A4: Object D is a square.
• A5: Object E is a square.
• A6: Object F is a square.

According to the rule shown, from the image in Figure 1, it follows that:

• Given that the pixel P11 is black, the statement A(1-1)·3+1 = A1 is false.
• Given that the pixel P12 is black, the statement A(1-1)·3+2 = A2 is false.
• Given that the pixel P13 is white, the statement A(1-1)·3+3 = A3 is true.
• Given that the pixel P21 is black, the statement A(2-1)·3+1 = A4 is false.
• Given that the pixel P22 is white, the statement A(2-1)·3+2 = A5 is true.
• Given that the pixel P23 is black, the statement A(2-1)·3+3 = A6 is false.

This idea can be generalized to raster images of size n × m (number of rows × number of columns)
according to the following rule:

pixel color Pij =

{
white
black

i f the statement(i − 1) ∗ m + j is true
i f the statement(i − 1) ∗ m + j is f alse

(1)

where 1 ≤ i ≤ n, 1 ≤ j ≤ m.
Thus, by way of example, Figure 2 provides a quick visualization of the truth values

of a group of 3290 (47 × 70) statements. In this image, the shape serves a purely aesthetic
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purpose, and we do not intend for viewers to seek any deeper explanation. Our primary
aim is to captivate the observer’s attention, encouraging them to reflect on how the choice
of colours contributes to the overall discourse.
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We can observe how the colours in Figure 2 complement the textual information
provided in the definition of the laws. They enable us to vividly visualize how, in bivalent
or binary propositional logic, the law of the excluded middle is always fulfilled. This is
because, by analogy, we can only paint the pixels either black or white, with no third option
available. Similarly, we see that the law of non-contradiction is fulfilled, since every pixel,
by the very definition of a pixel, can only be painted in a single colour and cannot therefore
be painted black and white at the same time. Finally, the law of bivalence is also better
understood, since each pixel must necessarily be painted one colour or the other.

Now we have seen that the representation of the bivalent system by raster images cre-
ated from black and white colours makes sense, the next step is to represent Łukasiewicz’s
trivalent system using three colours. Since Łukasiewicz’s system supposes accepting that
contingent future sentences cannot be classified as true or false, it is proposed that a third
colour be used, completely different from black or white, so that there is no confusion
between them. Therefore, we will not be using any shades of grey. The artist chose the
colour green for this purpose. Figure 3 shows a representation of a set of 3290 statements in
this system through the use of white, black and green. Let us remember that these artistic
images serve a purely aesthetic purpose, and there is no need to seek meaning in the pattern
of the shapes. The figure shows how there is now a third truth value different from true
and false, represented by the colour green, revealing that the law of the excluded middle is
no longer fulfilled. Given that the law of non-contradiction continues to be fulfilled, since
no pixel can have two colours at the same time, the image allows us to discuss the possible
independent nature of these two laws.

The next logical propositional system that we are going to look at is Peirce’s trivalent
propositional system, which is documented in his notebook [16] on logic and accepts
that the elements that fulfil a predicate can fulfil it in a true or false way, or its degree of
compliance is on the boundary between truth and falsehood, coinciding with Russell’s [17]
idea of vagueness. As an example, we have the sentence: “the car is red”. In the words of
Russell [17], since the colours constitute a continuum, there will be shades of red that we
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will not be able to identify as belonging to that tone, not because we are ignorant of the
meaning of the word red, but because colours are words whose extension of application is
essentially doubtful. Thus, there will be cars with a shade of red that we will not be able to
identify with total certainty as a red car, because we will have doubts between the being
and not being of that specific quality. Consequently, there will be situations in which the
sentence “the car is red” can be seen as both a true and a false sentence.
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To work on this type of logic, a raster image in white, black, and a shade of grey can be
used to represent a logic system that supports the truth values true, false and both true and
false at the same time. Peirce’s trivalent logic does not fulfil any of the three laws listed, not
even the law of non-contradiction, since we have statements that can be considered true
and false at the same time. Figure 4 presents an artistic image that helps us understand the
non-compliance of the three laws given this logic.

Figure 5 is an artistic raster image associated with Post’s 4-valent logic, which is an
extension of Peirce’s trivalent logic system. Specifically, the figure presents a raster image
in white, light grey, dark grey and black, representing a logical system that admits four
truth values and whose possible expression to assign colour is:

pixel colour =


white

light grey
dark grey

black

f or absolutely true statements
f or statements that are more true than f alse
f or statements that are more f alse than true

f or absolutely false statements

We observe that in this tetravalent logical system, none of the three studied laws are
fulfilled. The fact that there are more colours than just black and white with which to
paint the pixel serves to negate the law of the excluded middle. Similarly, being able to
paint a pixel with a mixture of black and white allows the law of non-contradiction to be
negated, since it paints the pixel with a colour obtained from black and white at the same
time. Finally, the law of bivalence is not fulfilled either, since being able to paint the pixel
in colours other than black and white is consistent with the fact that there are meaningful
declarative statements that do not have exactly one single truth value, true or false.
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Finally, Figure 6 shows a raster image to represent the logical system that allows each
proposition to be assigned a truth value within a continuous gradient of infinite options.
For this reason, the pixels can be painted in infinite shades of grey between white and
black, inclusive. Since it is not possible to represent infinite shades of grey on a canvas, it
was decided to suggest the infinite greys by progressively darkening from white to black
in different parts of the work. This logical system, identified with the fuzzy logic system
created by Black [18] and Zadeh [19], does not fulfil any of the laws in the list either, and can
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be seen as an extreme case when n tends to infinity from Post’s n-valent systems derived
from Peirce’s trivalent.
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Black and Zadeh’s logical system currently provides one of the theoretical bases
closest to human thought for modelling problems that incorporate uncertainty in the
models mentioned [20–23].

4. Results and Discussion

This article presents five raster-type artistic works creating conceptual images to repre-
sent binary propositional logic, Łukasiewicz’s trivalent propositional logic, Peirce’s trivalent
propositional logic, Post’s n-valent propositional logics, and Black and Zadeh’s infinite-
valent propositional logic. The similarities and differences in these images provide a deeper
understanding of the definitions of the laws of the excluded middle, non-contradiction,
bivalence and other assumptions of the mentioned logical systems, such as their number
of items or the fact that the truth values of propositions in these systems do not change
over time. Consequently, the work shows that, aside from the usual idealistic conception
of aesthetic contemplation, art can also lead to other forms of relationship between an
artist and the public. More specifically, in the first place, this work evidences a connection
between art and mathematics from a formative point of view, facilitating a significant
understanding of abstract mathematical ideas, which enrich the reader’s knowledge of the
laws, axioms and assumptions in multiple logical systems. Secondly, the work presents
the construction of different logical systems based on the laws of non-contradiction, the
excluded middle and the assumption of the number of truth values in the system. In this
regard, it provides a greater understanding of how explicit laws and assumptions comply
with various multivalent logical systems, ultimately showing that the acceptance or not of
the laws of non-contradiction and the excluded third middle build different multivalent
logical systems. Consequently, the work carried out can be classified within the research
line related to the debate around the possibilities offered by the acceptance or denial of
laws in the field of logic, an open line with continual contributions to this day [24–27], the
fruit of which continues to grow on a practical level [28–30].

We would like to note that the artworks presented here will form part of an exhibition
on multivalent logics, to go on display shortly. This adheres to the objectives of research
in the educational field, which the research group to which the authors belong has been
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carrying out in recent years. As a result of an agreement with the Barcelona Science
Museum, the authors participated as curators of the exhibition that commemorated the
50th anniversary of the creation of the first article on fuzzy logic [31]. Based on the multiple
ideas arising from that exhibition, another exhibition was held on the sorites paradox at the
Catalan Museum of Mathematics, involving ten artistic works being presented around this
concept [32].

Finally, we aim to utilize the three laws presented to delve deeper into the construction
of Likert scales. We will discover that the type of scale for evaluating the quality or
characteristic to be measured is related to the type of logical axioms chosen for the statistical
study, classifiable under one of the logics presented in this work.

Firstly, the scale type is illustrated in Figure 7, where one must choose a single value
from various options. The consumer‘s overall evaluation of the foreign product is measured
using five items on a Likert scale anchored by “strongly disagree-strongly agree”. This type
of scale has been used and continues to be used in a multitude of experimental works (see,
for instance, Shafieizadeh et al. [33] or Kraus et al. [34]).
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Figure 8. Second example of Likert scale anchored by “strongly disagree-strongly agree”.

If the researcher opts for this approach, they will implicitly be employing the axioms
of binary logic.

This arises from the fact that the person being surveyed must select only one item,
following the idea that it is either an option that identifies a set, or the answer lies within
the complementary set. There is no third option. Since they cannot mark two items
simultaneously, we are adhering to the law of non-contradiction, preventing a meaningful
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declarative sentence from being true and false simultaneously. By complying with both
laws, we automatically satisfy the law of bivalence.
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The choice of this type of scale should be carefully considered by the researcher. They
should be aware that this scale type presents inherent issues related to binary classification.
For instance, if there is uncertainty between two correlated options, the researcher will
never know. Likewise, if a consumer likes certain aspects of a Catalan product but dislikes
others, such as enjoying the taste and price but disliking the use of non-local ingredients,
selecting only one option would not fully represent their feelings.

In this sense, something can be both liked and disliked simultaneously. This phe-
nomenon is known in psychoanalysis as ambivalence, a concept introduced by Bleuler [35],
referring to a pronounced emotional attitude in which contradictory impulses coexist.

A possible way to try to solve this conflict may be to use a scale like the one presented
in Figure 10. This type of Likert scale involves marking a single item on a scale that extends
the first type with an option labelled “Don’t know”.
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Figure 10. Likert scale anchored by “strongly disagree-strongly agree” plus “Don’t Know” option.

Let us observe that in this case, we have a scale that follows the axioms presented in
Łukasiewicz’s trivalent logic. If we cannot choose between an item and its complementary
set, the response “Don’t Know” must be marked. Therefore, there is a third possible truth
value (the law of the excluded middle is not upheld), and by having to select only one, we
adhere to the law of non-contradiction since no meaningful declarative sentence can be
true and false simultaneously.
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With this scale, indeed, similar issues to those mentioned in the previous scale can be
identified, although it would not specifically pinpoint the problem that led to choosing the
“Don’t Know” option. Consequently, it would be more accurate to present two separate
scales to measure both satisfaction and dissatisfaction, where a value of 0 in both represents
absence and a value of 1 represents totality. In Figures 11 and 12, two examples of these
can be seen.
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Let us observe that, in this case, the scales follow the axioms presented in Peirce’s
trivalent logic and Post’s n-valent logic.

If the researcher prefers, it is possible to use a format with two statements and a single
column to indicate the degree of truth for each statement. This format aligns more closely
with the implicit logic of the questionnaires while also simplifying Likert scales to a single
column. An example of this idea can be seen in Figure 13.
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It should be noted that in some research, Likert scales within the framework of fuzzy
axioms have been used. In these cases, researchers (see, for instance, Lalla et al. [36],
Bharadwaj [37], Lazim and Osman [38]) propose assigning a truth value to each statement
on the scale, indirectly allowing for the marking of different items. Figure 14 shows an
example of question presentation in this type of proposal.
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axioms. Figure 15 provides an example that aligns with our proposed idea.
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The grayscale representation in this Figure serves as a reminder that values in fuzzy
logic range from 0 to 1 (inclusive). It is worth noting that interviewees do not have to mark
a single value on the scale; they can select a range of values to indicate the interval in which
they believe the true value lies.

We conclude by noting that these scales associated with fuzzy thinking do not fulfil
the law of the excluded middle, as they encompass a broader range of possibilities beyond
mere truth and falsehood values. Additionally, they do not adhere to the law of non-
contradiction, as they permit the possibility of something being both true and false at the
same time.

5. Conclusions

We can conclude that the two aims proposed at the beginning of the article have finally
been achieved. First of all, it was shown how raster images can serve as valuable tools for
elucidating complex concepts and their associated principles to a general audience. They
were instrumental in verifying the following facts:

(1) In bivalent or binary classical propositional logic, the law of the excluded middle is
always fulfilled since, by analogy, we can only paint the pixel black or white and there
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is no third option. Similarly, the law of non-contradiction is fulfilled, since every pixel,
by the very definition of a pixel, can only be painted in a single colour and cannot,
therefore, be painted black and white at the same time. Finally, the law of bivalence is
fulfilled since each pixel must necessarily be painted in one colour or the other.

(2) In Łukasiewicz’s trivalent logic, the law of the excluded middle is not fulfilled since,
by analogy, we can paint the pixel black, white or green and, thus, there is a third
option. On the other hand, the law of non-contradiction is fulfilled, since every pixel,
by the very definition of a pixel, can only be painted in a single colour and cannot
therefore be painted by two colours at the same time. Finally, the law of bivalence is
not fulfilled since each pixel can be painted in three colours.

(3) In Peirce’s trivalent logic, the law of the excluded middle is not fulfilled since, by
analogy, we can paint the pixel black, white or by a combination of black and white
and there is a third option. In addition, the law of non-contradiction is not fulfilled
since every pixel can always be painted by a combination of black and white at the
same time. Finally, the law of bivalence is not fulfilled since each pixel can be painted
in three colours.

(4) In Post’s 4-valent logic, which is an extension of Peirce’s trivalent logic system, none
of the three studied laws are fulfilled.

(5) In Black and Zadeh’s infinite-valent logic, which is an extension of Peirce’s trivalent
logic system, none of the three studied laws are fulfilled.

As observed in the previous section, mastering the axiomatics of diverse system logics
enhances proficiency in utilizing associated tools, such as selecting appropriate Likert scales
for specific research, which was the second objective of this investigation.

To conclude, it is important to highlight that the use of raster images as a conceptual
representation of law definitions, following the research approach presented by Tall and
Vinner [13], is not the only option. For instance, raster images can be employed to explore
the complementary, union, and intersection of various logical systems. While Zadeh
primarily used the complement with respect to 1, the maximum, and the minimum [19],
there exist endless possibilities for exploration. Moreover, this approach also provides the
opportunity to investigate when two logical systems are isomorphic. The ability to confirm
this fact at a glance can be exceptionally valuable. Consequently, this work opens up new
avenues for research, much like the research direction that Nelsen [10] and others [11,12]
are currently pursuing in the realm of theorem proving through images.
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