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Summary of the thesis

Enzymes are the best catalysts. They are the main catalysts in
cells and have been exposed to millions of years of natural evolu-
tion by including random mutations in their sequence and posterior
selection. Some enzymes show extreme catalytic rates, selectivity,
or stability, but not all are suitable for industrial or pharmaceutical
applications. Their use in industrial contents would be very advan-
tageous, thanks to the fact that enzymes are naturally biodegradable
molecules, work in water-based solvents, and are non-toxic. These
properties are critical for a suitable future for the new generations.
It is crucial to design enzymes for catalyzing industrially relevant
reactions.

One enzyme family with significant usage in the pharmaceutical
industry is Halohydrin Dehalogenasses (HHDH). These enzymes
convert (S)-4-chloro-3-hydroxybutyrate into ethyl (R)-4-cyano-
3-hydroxybutyrate, a precursor of statin drugs that need to be
enantiomerically pure. Not all HHDHs can perform this catalysis
due to their inability to accept the substrate (they have a limited
substrate scope), and insufficient enantioselectivity, stability, or
activity. The design of new enzymes that display good properties in
the selected industrial environment is nowadays possible, thanks to
the experimental Directed Evolution technique. Still, this protocol
mutates residues randomly. The effect of the mutations is not
rationalized and usually requires the production and screening of
multiple (thousands) variants, which has a high cost associated.

Computational protocols, based, for instance, on Molecular Dy-
namics (MD) simulations, allow for rationalizing the effect of the
introduced mutations onto the ensemble of conformations that the
enzymes can explore. Still, analyzing MD simulation outputs can be
challenging, and there is no gold standard that gives good results
and is computationally feasible. From these MD simulations, the
identification of which amino acid positions need to be changed to
enhance a given property is also not straightforward.

xvii



In this thesis, a novel pipeline for analyzing the variance ob-
tained during the MD simulations and the accessible tunnels has
been developed and is described in Chapter 4. This new proto-
col was applied to explore the tunnels in all HHDH families, com-
pare the results with the reported features of each HHDH, and pro-
pose new mutagenesis sites (Chapter 5). Chapter 6 describes the
newly discovered D-family HHDHs and some proposed variants
from Prof. Anett Schallmey’s group, and the thermal stability mech-
anism is unveiled. Finally, in Chapter 7, the most evolved vari-
ant generated via Directed Evolution, i.e., HheC R18, is experimen-
tally and computationally characterized to rationalize the effect of
the randomly introduced mutations and how these affect the stabil-
ity, oligomerization, cooperativity, and catalytic parameters of the
HHDH enzyme.

xviii



Resum de la tesi

Els enzims són els millors catalitzadors que hi ha. Són els princi-
pals catalitzadors a les cèl·lules i han estat exposats a milions d’anys
d’evolució natural, incloent-hi mutacions aleatòries en la seqüència
i posterior selecció. Alguns enzims mostren velocitats catalítiques,
selectivitat o estabilitat molt elevades, però no tots són adequats per
a aplicacions industrials o farmacèutiques. El seu ús industrial seria
molt avantatjós, gràcies al fet que els enzims són molècules natural-
ment biodegradables, funcionen en dissolvents de base aquosa i no
són tòxiques. Aquestes propietats són crítiques per a un futur ad-
equat per a les noves generacions. És crucial dissenyar enzims per
catalitzar reaccions industrialment rellevants.

Una família d’enzims amb un ús significatiu a la indústria far-
macèutica són les Deshalogenases d’Halohidrines (HHDH). Aque-
sts enzims converteixen el (S)-4-clor-3-hidroxibutirat a (R)-4-cià-3-
hidroxibutirat d’etil, un precursor de les estatines que han de ser
enantiomèricament pur. No totes les HHDH poden realitzar aquesta
catàlisi a causa de la seva incapacitat per acceptar el substrat (tenen
un ventall de substrats limitat), enantioselectivitat, estabilitat o ac-
tivitat insuficients. El disseny de nous enzims que mostrin bones
propietats a l’entorn industrial seleccionat és avui en dia possible
gràcies a la tècnica experimental d’Evolució Dirigida. Tot i això,
aquest protocol muta residus aleatòriament. L’efecte de les muta-
cions no està racionalitzat i normalment requereix la producció i se-
lecció de múltiples (milers) variants, cosa que té un alt cost associat.

Els protocols computacionals, basats, per exemple, en simula-
cions de Dinàmica Molecular (MD), permeten racionalitzar l’efecte
de les mutacions introduïdes al conjunt de conformacions que els
enzims poden explorar. Així i tot, analitzar els resultats de la sim-
ulació de MD pot ser un desafiament, i no hi ha un estàndard que
sempre brindi bons resultats i sigui computacionalment factible. A
partir d’aquestes simulacions de MD, la identificació de les posicions
d’aminoàcids que s’han de canviar per millorar una propietat deter-
minada no és senzill.
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En aquesta tesi, s’ha desenvolupat un protocol nou per analitzar
la variància obtinguda durant les simulacions MD i els túnels
accessibles i es descriu al Capítol 4. Aquest nou protocol es va
aplicar per explorar els túnels a totes les famílies HHDH, comparar
els resultats amb les característiques reportades de cada HHDH,
i proposar nous llocs de mutagènesi (Capítol 5). El Capítol 6
descriu els HHDH de la família D acabats de descobrir i algunes
variants proposades pel grup de la Prof. Anett Schallmey, i es
revela el mecanisme d’estabilitat tèrmica. Finalment, al Capítol 7, la
variant més evolucionada generada a través de l’Evolució Dirigida,
és a dir, HheC R18, es caracteritza experimentalment i computa-
cionalment per racionalitzar l’efecte de les mutacions introduïdes
aleatòriament i com aquestes afecten l’estabilitat, l’oligomerització,
la cooperativitat i paràmetres catalítics de l’enzim HHDH.
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Resumen de la tesis

Las enzimas son los mejores catalizadores que existen. Son los
principales catalizadores en las células y han estado expuestos a mil-
lones de años de evolución natural, incluyendo mutaciones aleato-
rias en su secuencia y posterior selección. Algunas enzimas mues-
tran velocidades catalíticas, selectividad o estabilidad muy elevadas,
pero no todas son adecuadas para aplicaciones industriales o far-
macéuticas. Su uso industrial sería muy ventajoso, gracias a que
las enzimas son moléculas naturalmente biodegradables, funcionan
en disolventes de base acuosa y no son tóxicas. Estas propiedades
son críticas para un futuro adecuado para las nuevas generaciones.
Es crucial diseñar enzimas para catalizar reacciones industrialmente
relevantes.

Una familia de enzimas con un uso significativo en la indus-
tria farmacéutica son las Deshalogenasas de Halohidrinas (HHDH).
Estas enzimas convierten el (S)-4-cloro-3-hidroxibutirato en (R)-4-
ciano-3-hidroxibutirato de etilo, un precursor de las estatinas que
deben ser enantioméricamente puras. No todos los HHDH pueden
realizar esta catálisis debido a su incapacidad para aceptar el sus-
trato (tienen un abanico de sustratos limitado), enantioselectividad,
estabilidad o actividad insuficientes. El diseño de nuevas enzimas
que muestren buenas propiedades en el entorno industrial selec-
cionado es hoy posible gracias a la técnica experimental de Evolu-
ción Dirigida. Aún así, este protocolo muta residuos aleatoriamente.
El efecto de las mutaciones no está racionalizado y normalmente re-
quiere la producción y selección de múltiples (miles) variantes, lo
que tiene un alto costo asociado.

Los protocolos computacionales, basados, por ejemplo, en
simulaciones de Dinámica Molecular (MD), permiten racionalizar
el efecto de las mutaciones introducidas en el conjunto de con-
formaciones que las enzimas pueden explorar. Aún así, analizar
los resultados de la simulación MD puede ser un desafío, y no
existe un estándar que siempre brinde buenos resultados y sea
computacionalmente factible. A partir de estas simulaciones MD, la
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identificación de qué posiciones de aminoácidos deben cambiarse
para mejorar una propiedad determinada tampoco es sencilla.

En esta tesis, se ha desarrollado un protocolo novedoso para
analizar la varianza obtenida durante las simulaciones MD y los
túneles accesibles y se describe en el Capítulo 4. Este nuevo proto-
colo se aplicó para explorar los túneles en todas las familias HHDH,
comparar los resultados con las características reportadas de cada
HHDH, y proponer nuevos sitios de mutagénesis (Capítulo 5). El
Capítulo 6 describe los HHDH de la familia D recién descubiertos
y algunas variantes propuestas por el grupo de la Prof. Anett
Schallmey, y se revela el mecanismo de estabilidad térmica. Final-
mente, en el Capítulo 7, la variante más evolucionada generada a
través de la Evolución Dirigida, es decir, HheC R18, se caracteriza
experimental y computacionalmente para racionalizar el efecto de
las mutaciones introducidas aleatoriamente y cómo estas afectan la
estabilidad, la oligomerización, la cooperatividad y los parámetros
catalíticos del enzima HHDH.
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Chapter 1

Introduction
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1.1. Preface

1.1 Preface

The most prominent product obtained by the pharmaceutical indus-
try is organic solvent waste, even with all the recycling and recovery
processes in place (Slater et al., 2010). Most organic solvent waste is
toxic, and its disposal could be more straightforward. Also, acci-
dents and spills are not uncommon events1, even with all the secu-
rity protocols in place (Shareefdeen, 2022). There is, therefore, a need
to reduce the amount of organic solvent used in the pharmaceutical
industry. However, to tackle this problem, we need to understand
why organic solvents are used in the first place.

Organic solvents are used for extracting, solubilizing, and puri-
fying the targeted compound. Usually, the compound must be mod-
ified to get the final product. A chemical reaction has to occur with
a high reaction rate and selectivity, often accomplished thanks to the
use of a catalyst. A catalyst2 is a molecule that speeds up a reaction
rate without being consumed in the process and without modifying
the overall standard Gibbs energy change in the reaction, so it can
be reused and can speed up (i.e., catalyze) the reaction again. Many
catalysts (and many substrates) are soluble in an organic solvent,
and thus the reaction occurs in the organic solvent.

Catalysts are essential to the chemical reactions that sustain life
in all living organisms but also drive many industrial processes
(van Santen et al., 1999). Enzymes, in particular, are highly efficient
catalysts indispensable for the proper functioning of all living
organisms. Enzymes are proteins capable of catalyzing a wide
variety of reactions, including those central to metabolism, such
as the breakdown of sugars and the synthesis of nucleic acids and
proteins. Compared to traditional catalysts, such as metal-based
catalysts, enzymes have several advantages. They are highly spe-
cific and able to catalyze a single reaction or a small set of closely
related reactions (thus, they present high selectivity). They are also
much more environmentally friendly, can operate under milder

1from: http://www.factsonline.nl/accidents/%205405/91993_INFLAMMABLE%
20SOLVENT/chemical-accidents-with-inflammable-solvent

2IUPAC definition: https://goldbook.iupac.org/terms/view/C00876
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greener conditions, and are water-soluble, making them suitable for
various applications.

Obtaining enzymes for all reactions used in industry would be
a giant step towards a greener world. Despite the importance of
enzymes, their biological catalytic activity is often insufficient for
many industrial and biomedical applications. Therefore, there is a
growing interest in enzyme design, which involves the modification
or engineering of enzymes to enhance or alter their activity, stability,
selectivity, and tolerance to organic solvents.

This work might impact how we can study and make statisti-
cally relevant analyses of the computational simulations of enzymes,
inferring in the importance of the conformational dynamics of en-
zymes in order to rationalize the mutation-induced changes in ac-
tivity with the final long-term goal of designing new enzyme vari-
ants. To that end, the synergistic collaboration between computa-
tional and experimental work is essential for an efficient design of
industrially-relevant.

1.1.1 Enzymes: Nature’s biocatalysts

Enzymes are the catalysts that Nature and evolution have selected
for performing the catalysis needed for all living creatures (Cooper,
2000). Enzymes are only one of many biocatalyst types, but the ma-
jor ones. Other types of biocatalysts present in nature are RNA and
metal organo-complexes, but those are usually coupled to a proteic
part. Cells have mechanisms for regulating the activity of the bio-
catalysts through the amino acid chain. This is a process called al-
lostery, which will be discussed later in this introduction.

Enzymes are excellent biocatalysts thanks to their high activity,
water solubility, and selectivity. But the main feature that makes
enzymes the best catalyst for living organisms is the central dogma
of molecular biology [Figure 1.1]: DNA can duplicate via replication,
can be transformed into RNA via transcription, and the latter one
can be converted into a protein via translation. This makes it easy
to modify the structure of proteins by changing the DNA sequence,
and the next generation can carry out these modifications if they are
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good. That confers enzymes with an enormous evolutive advantage
over other catalysts. Nevertheless, RNA can also do this, but the
structure of RNA is limited to 4 canonic bases or building blocks,
compared to twenty canonic amino acids (AA) that form proteins
(Crick, 1970).

FIGURE 1.1: Scheme of the central dogma of molecular biology. DNA is
transcribed into mRNA that it gets translated into a protein. In the Scheme
it is also depicted the replication of the DNA and the Reverse transcription

from RNA to DNA.

Enzymes are proteins with catalytic features. Proteins are one
of the most diverse and important biomolecules that exist and are
essential for life. It is important to know what proteins are, how
they are made, and what structural properties have. Proteins are
made up of long chains of amino acids. Each amino acid has a
central carbon atom, called the alpha-carbon, which is bonded to
four different groups: a hydrogen atom, an amino group, a car-
boxyl group, and a side chain. The side chain is unique to each
amino acid and gives it unique chemical properties. Twenty differ-
ent amino (canonic) acids can be chained through a peptide bond to
make a protein. A protein’s sequence of amino acids determines its
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unique three-dimensional structure and specific function (Brändén
and Tooze, 1999).

Proteins are synthesized by cells through a process called pro-
tein synthesis, which occurs in the ribosomes. Protein synthesis in-
volves two main steps: transcription and translation. During tran-
scription, the information stored in DNA is transferred to a com-
plementary RNA molecule. This RNA molecule is called messenger
RNA (mRNA) (Alberts et al., 2014).

During translation, the mRNA molecule is used as a template to
guide protein synthesis. The process of translation occurs in the ri-
bosomes, which are tiny organelles found in the cytoplasm of cells.
Translation involves using transfer RNA (tRNA) molecules, which
bring the correct amino acids to the ribosomes and link them to-
gether in the right order to form a protein (Alberts et al., 2014).

The primary structure of a protein is the specific sequence of
amino acids in the protein. The secondary structure of a protein
refers to the local geometric arrangements of the amino acid residues
within the protein, such as the alpha helices and beta sheets. The
tertiary structure of a protein is the three-dimensional structure of
the protein as a whole, which is determined by the interactions be-
tween the amino acid residues and their side chains. The quaternary
structure of a protein refers to the arrangement of multiple protein
subunits in a protein complex (oligomerization) and the presence of
non-proteic parts like metals, RNA, or other organic molecules (Al-
berts et al., 2014).

1.1.2 Enzymes: lowering the activation energy

Enzymes transform substrates into products by reducing the energy
barrier (named activation energy) that needs to be overcome for the
reaction to happen. The maximum energy point along the reaction
coordinate is actualy the transition state (TS). The higher the acti-
vation energy is, more difficult it is for the reaction to happen. If the
barrier is high, other parameters like increasing the pressure or tem-
perature might add energy to the system, therefore increasing the
probability of overcoming the TS.
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Apart from that, the enzyme can stabilize the TS making it lower
in energy compared to in solution, thereby reducing the activation
energy. This concept central to enzyme catalysis is usually known
as transition state stabilization (TSS)(Szefczyk et al., 2004).

Another way to decrease the activation energy is by Ground
State Destabilization(Anderson, 2001). Ground state destabiliza-
tion theory proposes that a catalyst lowers the activation energy
required for a reaction to proceed by increasing the energy of the
reactants, making it easier for them to overcome the energy barrier
and reach the transition state. This is achieved by providing an
alternative reaction pathway that involves the formation of a new
intermediate or transition state that has a lower energy barrier than
the original pathway. This is still a topic of debate(Rindfleisch et al.,
2022).

For achieving this TSS, enzymes present a highly preorganized
active site pocket, which contains all catalytic and binding residues
precisely positioned for catalysis. As it will be discussed in the next
section, enzymes apart from this preorganized active site have the
ability to change conformation, which is also crucial for enhanced
function.

1.1.3 Protein Dynamics

An extra layer of complexity about anzymes and proteins is that they
are not static structures, unlike the impression one can get from the
X-ray structures or the one obtained by homology modeling. In so-
lution, proteins are flexible and can adopt an ensemble of confor-
mations key for their function. The protein may display different
properties in all the different conformations they can adopt. Thanks
to this, while studying proteins, it is vital to understand how a mu-
tation (i.e., amino acid change) may affect the 3D structure and also
the relative stabilities of all different conformations, thus changing
the properties of the protein (Kirby, 1996).

More specifically, in the case of enzymes, it is known that the
different conformations they can adopt have a high impact on their
catalytic properties. For instance a change in conformation might be
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needed for the enzyme-substrate formation. There are three models
that describe the enzyme-substrate binding process: the lock-and-
key model, the induced fit model, and the conformational selection
model (Orosz and Vértessy, 2021).

The lock-and-key model of enzyme-substrate binding is one of
the oldest and most widely recognized. According to this model, the
enzyme and substrate are compared to a lock and key, respectively,
where the enzyme’s active site is shaped to fit precisely the substrate.
This specific shape complementarity allows the enzyme to bind the
substrate and catalyze the reaction. This model can explain some
enzymes’ good selectivity but fails, for instance, to explain substrate
promiscuity (Orosz and Vértessy, 2021).

The induced fit model is a modification of the lock-and-key
model. It is based on the idea that the active site of an enzyme is not
static. Still, it changes slightly upon substrate binding. This change
in conformation helps the enzyme to bind the substrate more
tightly and leads to a more optimal orientation of the substrate for
catalysis. In this model, the protein conformation shift is mandatory
and sometimes is the rate-determining step of the reaction (Orosz
and Vértessy, 2021).

The conformational selection model describes the enzyme as
an ensemble of conformations, which can be shifted due to bind-
ing of substrate, inhibitor, cofactor or effector. In fact, along the
catalytic cycle, the enzyme changes conformation for allowing sub-
strate binding or product release. Apart from that, enzymes can
change conformations due to alterations in the physical conditions
(such as temperature and preasure). In this mechanism, the lig-
and seems to "select" and stabilize a higher-energy conformation for
binding (Orosz and Vértessy, 2021).

It is also important to note that these models are not mutually ex-
clusive. In reality, enzymes use a combination of these mechanisms
to increase their specificity and efficiency of substrate binding and
catalysis (Orosz and Vértessy, 2021).
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1.1.4 Allostery

Allostery (Motlagh et al., 2014) refers to the ability of a protein, such
as an enzyme, to change its conformation in response to the binding
of a molecule at a specific site on the protein that is distinct from
the active site. This change in conformation can lead to changes in
the activity of the protein, including changes in the rate at which
it catalyzes a reaction, its specificity or affinity for a particular sub-
strate. Allosteric regulation can be either positive or negative. Posi-
tive regulation will increase the protein’s activity, whereas negative
regulation will lead to a decrease in the protein’s activity.

Allostery is an extremely useful tool for the cells to downregu-
late or upregulate certain metabolic routes in response to an exter-
nal stimulus, such as a hormone. In human cells, almost all pro-
teins involved in metabolic routes need an allosteric effect to have
the desired effect. Some examples are the membrane receptors, G-
coupled proteins, the adenylate cyclase, all kinds of kinases (PKA,
PKC, MAP, MAPKK, etc.), ion channels, transcription factors, and
many others.

However, additional allosteric effects often take place and are es-
sential. If we focus on the G-protein example, it has different activity
depending on whether it is in a monomeric or multimeric state. It
is known that the presence of other amino acid chains (i.e., protein
partners or even peptides) can regulate the enzyme’s activity. Thus
not only a small molecule but also the oligomerization state may
have a considerable effect on enzyme activity (this regulation is also
called cooperativity). Cooperativity can be negative, like in the pre-
vious example (the other chain inactivates the enzyme), or positive,
when the presence of another subunit makes the enzyme more effi-
cient.

It is proposed that the allosteric effect travels from the binding
site to the catalytic site via a series of internal interactions that the
protein residues have (H-bonds, stacking, van der Waals and elec-
trostatic)(Hu et al., 2009), inducing a change in the active site. This
alteration of the active site makes the protein more or less active or
efficient. This concept is known as intrinsic allostery (Gunasekaran,
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Ma, and Nussinov, 2004; Boehr, Nussinov, and Wright, 2009). Any
change in the amino acid interactions of a protein may have a signif-
icant effect on the enzyme activity, even if such modification is far
away from the active site. This means that any mutation in the pro-
tein’s amino acid sequence can affect activity thanks to the intrinsic
allosteric concept.

1.1.5 Enzyme Kinetics

Enzyme kinetics studies the reaction rates for an enzyme-catalyzed
chemical reaction. As described previously, an enzyme speeds up
the chemical reactions by decreasing the activation energy. This af-
fects the reaction kinetics and the rates of the reactions by increasing
the concentration of reactive species, either by breaking down reac-
tants into more reactive forms or by forming intermediates that can
react more readily.

The reaction rate is the value that describes the reaction velocity
only by monitoring the substrate consumption or product release.
To explore the enzyme’s effect on the reaction rate, multiple mod-
els have been developed to monitor different catalysts and elucidate
how they work.

It is known that (Segel, 2013) usually adding more substrate into
the catalyzed reaction media increases the reaction velocity, but
there is a limit called Vmax. Once the rate is close to Vmax, adding
more substrate will have almost no effect, creating the hyperbolic
curve that has an asymptote at the Vmax value.

In 1913, the German biochemist Leonor Michaelis and the Cana-
dian physician Maud Menten published the widely known model
nowadays (Michaelis-Menten). This model assumes that the reac-
tion follows the next formula:

E + S ⇀↽ [ES] → E + P (1.1)

where E is the enzyme, S is the substrate(s), ES is the complex
formed by the enzyme and substrate(s), and finally, P is the prod-
uct(s) of the reaction. In this representation, reactions have different
rate constants, where the catalytic rate constant (kcat) is the rate of
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the non-reversible product formation reaction (Johnson and Goody,
2011).

Assuming the equilibrium, the steady-state and that the enzyme
is at a much lower concentration than the substrate, we can calculate
the reaction rate in the following way:

υ =
d[P]
dx

= Vmax
[S]

KM + [S]
= kcat[E]0

[S]
KM + [S]

(1.2)

where [E]0 is the initial enzyme concentration, and KM is the
value of [S] when the rate is at its half maximum. KM measures
the enzyme’s affinity for the substrate.

This model has become the standard way of getting the kinetic
values of catalysts and makes it easy to compare multiple enzymes’
performance for the same reaction by comparing kcat, KM, or even
the catalytic efficiency (kcat/KM).

To get the parameters using experimental values, the amount of
substrate consumed and/or product formed needs to be measured
at different times for a set of initial substrate concentrations. Then,
the data has to be fitted in a non-linear regression, and the parame-
ters can be extracted from the regression curve.

Even with that, not all enzyme-catalyzed reactions follow a
Michaelis-Menten distribution. Some enzymes display a sigmoid
saturation curve, which often indicates a cooperative binding in the
catalyst. This means the enzyme has multiple active sites, but they
do not work entirely independently. Positive cooperativity implies
that the active site has a higher affinity for the substrate (KM) if
another active site has a substrate in the active site. To model this
behavior, the Hill–Langmuir (Hill) equation is used (Srinivasan,
2021):

υ0 = Vmax
[S]nH

K50 + [S]nH
(1.3)

The only difference between the Michaelis-Menten and Hill
equation is the introduction of the n parameter (Hill coefficient).
The Hill coefficient is the parameter coefficient, where nH = 1 means
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FIGURE 1.2: Plot that shows how the Hill distribution changes by changing
the nH value. In the plot it is depicted the concentration of ligand where
the substrate concentration is at half in a Michaelis-Menten. This is useful

to see that KM and K50 are not comparable parameters.

no coefficient (and thus the equation equals the Michaelis-Menten),
and a higher value denotes larger cooperativity between active sites.
Also, because the formula is slightly different, the KM parameter
does not exist, but rather K50 can also be used to describe affinity[see
Figure 1.2].

1.1.6 Enzyme design: an overview of strategies

Various protocols have been developed, given the importance of
enzyme engineering to improve their efficiency (Leveson-Gower,
Mayer, and Roelfes, 2019; Vaissier Welborn and Head-Gordon,
2019). These enzyme design strategies can be classified into rational
and non-rational. Generally speaking, the non-rational techniques
provide excellent results in terms of enzyme optimization but do
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not provide knowledge about the role of the added mutations. This
knowledge is crucial for developing more robust and economically
viable enzyme design strategies. On the contrary, rational methods
have the advantage of being potentially cheaper and able to provide
detailed information on the effect of mutations. Despite some
success in the field, rationally designed enzymes still perform
relatively poor compared to experimentally-engineered enzymes.

Non-rational enzyme design techniques are based on experimen-
tal methods, thanks to the ability to produce and test multiple en-
zymes using screening techniques. Screening refers to the testing of
the new designs towards the target reaction pursued to be improved
and then selecting those designs that showed an improvement. It
can be done in multiple ways, limited to the ability to test each re-
action and the necessary conditions. Thanks to this, in non-rational
strategies, thousands and even millions of constructs can be tested.

There are multiple techniques that allow the introduction of ran-
dom mutations into the enzyme, but almost all of them are based
on modifying the DNA in a mutagenic Polymerase Chain Reaction
(PCR). The PCR is the laboratory equivalent of the DNA replica-
tion that occurs in the cells, but a mutagenic PCR is the one that
introduces variations in the DNA on purpose. It is usually done by
introducing designed fragments of DNA (mutagenic Primers) that
will give a modified protein or by changing the PCR conditions to
force errors in the replication process so that random mutations will
be introduced (error-prone PCR). This process creates diversity in
the gene, and coupled with the proper screening method and re-
peated several times in order to have a Darwinian selection, we ob-
tain the Directed Evolution (DE) (Wang et al., 2021) method, the
most known technique to design new enzymes and the one that
shows better results. Thanks to this, the Nobel Prize of Chemistry
2018 was given to Frances H. Arnold, George P. Smith, and Sir Gre-
gory P. Winter for the development of Directed Evolution and Phage
display screening methods3.

Rational enzyme design involves experimental or computational
techniques (or a combination of both) to determine which residues

3https://www.nobelprize.org/prizes/chemistry/2018
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need to be mutated and to which specific amino acid (Lassila et al.,
2006). Information on the reaction and the enzyme’s structure is
needed first. With this, the function of specific amino acids in the
enzyme activity and structure can be understood, and therefore mu-
tations or even new enzyme scaffolds can be proposed. One of the
most known examples of rational design approaches is the Inside-
Out protocol (Zanghellini et al., 2006).

The Inside-Out protocol is based on the concept of theozyme
(short for ¨theoretical enzyme¨) to model the transition state(s) of
interest and apropiate it into a protein scaffold. Using Quantum Me-
chanics (QM) calculations, the transition state of the reaction of in-
terest is modeled (Romero-Rivera, Garcia-Borràs, and Osuna, 2017).
Additional amino acids can be added to the active site of the the-
oretical enzyme to have a stabilization effect. This protocol usu-
ally creates multiple theozymes for the desired reaction, which are
then incorporated into an enzyme scaffold with Rosetta (or related
software). Subsequent steps can introduce new variations in the
scaffold, and the new variants are sometimes further evaluated by
employing Molecular Dynamics (MD) in an explicit solvent before
the experimental validation. Unfortunately, despite the initial suc-
cesses, enzymes developed using this protocol are usually not ac-
tive enough for practical usage, and Directed evolution needs to be
applied to enhance the activity of the constructs. Since the first de-
velopment of the inside-out protocol, many other approaches have
been proposed as discussed in different reviews (Osuna, 2021), but
none of them can design highly efficient enzymes rivaling natural
ones or those obtained with DE.

Rational and non-rational techniques are not mutually exclusive.
Enzyme structure, dynamics, and mechanism can be studied, re-
vealing several critical positions in the amino acid sequence that
can be selected for iterative mutagenesis. The techniques that use
knowledge of the enzyme to propose positions and create ¨Small
but smart¨(Jochens and Bornscheuer, 2010) mutation libraries are
described as Semi-Rational enzyme design approaches.
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1.2 Halohydrin dehalogenases (HHDHs)

This thesis focuses on the work done in understanding a family of
enzymes called Halohydrin dehalogenases (HHDHs) (Schallmey
and Schallmey, 2016). HHDHs are enzymes that catalyze the de-
halogenation reaction of some toxic compounds for the host organ-
isms, creating an epoxide and releasing the halide. The generated
halide is then held in the so-called halide binding site and is re-
leased after the product. The active form of HHDH is reported to be
tetrameric, but the presence of the dimeric form has also been found
for some HHDHs(Wijngaard, Reuvekamp, and Janssen, 1991). Each
active site has a conserved catalytic triad composed of Serine 132,
Tyrosine 145, and Arginine 149 (numeration from HheC).

The mechanism of the dehalogenation reaction works as follows.
The catalytic Serine and Tyrosine side chains are oriented towards
the oxygen of the alcohol group of the substrate. The serine-alcohol
hydrogen bond stabilizes the substrate in place, while the interaction
between tyrosine and arginine polarizes tyrosine’s oxygen, lower-
ing its pKa. After the deprotonation of the tyrosine, it can act as a
base and deprotonate the alcohol group of the substrate, thus pro-
moting the intramolecular nucleophilic attack of the alcoxide to the
adjacent carbon releasing the halide and generating an epoxide [see
Figure 1.3].
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FIGURE 1.3: Chem-draw scheme displaying the mechanisms of HHDHs
(residue numbers from HheC). On the left, the catalytic tyrosine acts as a
base and abstracts the proton from the oxygen of the halohydrin, thus pro-
moting the intramolecular nucleophylic attack on the carbon, releasing the
halide (Cl−) and creating the epoxide. Afterwards, a non-natural nucle-
ophile can be positioned in the halide-binding site, and perform a nucle-
ophilic attack at the (usually) less substituted carbon of the epoxide. In this

step, Tyr acts as an acid.

This reaction is, however, not the only reason why HHDHs are
interesting and important for the pharmaceutical and agrochemical
industry. HHDHs can also catalyze the reverse reaction using other
small and anionic nucleophiles, the epoxide-ring opening reaction.
HHDHs can catalyze this secondary promiscuous reaction, where
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the epoxide is held in the active site, the chloride is released, and an-
other small and charged nucleophile can occupy the halide binding
site. With this new configuration, the catalytic serine and tyrosine
interact with the oxygen of the epoxide. The new nucleophile at-
tacks the carbon of the epoxide ring (usually the terminal carbon),
and the tyrosine acts as an acid, thus protonating the oxygen and
regenerating the alcohol [see Figure 1.3]. This second reaction is
more important for the pharmaceutical industry due to the high
enantio- and regio- selectivity that some HHDHs can show towards
specific epoxides, making HHDHs an excellent choice for obtaining
laboratory-evolved catalysts for obtaining precursors of drugs such
as atorvastatin.

These enzymes were discovered in 1968 (Castro and Bartnicki,
1968), but HHDHs demonstrated their ability to catalyze epoxide
ring-opening with different nucleophiles in 1991 (Nagasawa et al.,
1992). It was found that they accept a wide range of charged and
small nucleophiles for the epoxide ring-opening reactions, which
give access to the corresponding unnatural alcohols like β-nitro and
β-azido, as well as β-hydroxynitriles (Hasnaoui-Dijoux et al., 2008).
From those nucleophiles, cyanide is one of the most used and stud-
ied, thanks to offering further transformation of compounds into an
amino, amide, or carboxy group-containing molecules by the action
of nitrile-amide converting enzymes (Elenkov, Hauer, and Janssen,
2006).

HHDHs show different substrate scope, stereoselectivity, enan-
tioselectivity, and thermal stability. Thanks to the ability of HHDHs
to clean toxic compounds and create important molecules for drug
synthesis, these enzymes have been heavily studied and multiple
types of HHDHs have been reported and grouped in families that
go from A to G up to this date (Koopmeiners et al., 2016). The
most studied and used HHDH is HheC, one of the first HHDHs
reported and showing high affinity for aromatic substrates, high
β-regioselectivity, and (R)-enantio-selectivity (Jong et al., 2005) as a
wild type. Thanks to that, numerous mutations have been designed
on top of the HheC scaffold to obtain higher activity, change the
selectivity, and enhance the substrate scope and stability (Schallmey
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and Schallmey, 2016). Also, DE of HheC has been performed (Fox
et al., 2007) to design the best HHDH to date for catalyzing (Ma
et al., 2010) the conversion of halohydrin (ethyl (S)-4-chloro-3-
hydroxybutyrate) into the corresponding hydroxynitrile with high
selectivity fulfilling the requested industrial demands.

This thesis reports the knowledge generated from the computa-
tional and experimental study of this enzyme family and generated
mutants. This knowledge is key for the generation of new designs
for obtaining HHDHs with better functionalities. This hybrid com-
putational and experimental thesis shows how a strong collabora-
tion between both sides might lead to, but also highlights that the-
oretical work can successfully be used to predict and propose new
mutations and not only to explain the observables.
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2.1. Computational Methods for studying enzymatic systems

In this Chapter, the methods and the basic fundamentals for un-
derstanding the results reported in this thesis are provided. Molec-
ular dynamics (MD) simulations, computational analysis methods,
and laboratory techniques used to test, design, and validate the mul-
tiple Halohydrin dehalogenases (HHDHs) will be described in a the-
oretical and practical way.

2.1 Computational Methods for studying enzymatic
systems

2.1.1 Classical Mechanics and Molecular Dynamics simulations

The big impact of enzymes’ dynamism on catalysis, stability, sub-
strate scope, and selectivity makes it the main point that will be
studied in this thesis to understand and design better catalysts. In
order to evaluate the enzyme conformational dynamics, the prin-
cipal methodology used is Molecular Dynamics (MD) simulations.
With MD simulations, one can explore the position of the atoms that
compose the enzyme over time, but it is crucial to know the method-
ology used and the limitations of the methods (Dror et al., 2012).

For simulating the movements of the atoms composing an
enzyme, multiple methods can be used. However, in contrast to
more precise methods based on quantum mechanics (QM) that can
be used to study bond breaking/forming but are computationally
to expensive for evaluating the enzyme’s conformational dynamics,
molecular mechanics (MM) allow exploring the motions of all the
atoms for an extended period of time (picoseconds up to some cases
milliseconds). In MM, it is assumed that all atoms are charged
spheres with a given radius and mass connected through previ-
ously defined permanent bonds; thus, there are no bond-forming
or bond-breaking events. This approach based on studying the
conformational dynamics with MM is also called classical MD
simulations. In classical MD simulations, the potential energy
of the system is computed by means of the sum of bonded and
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non-bonded terms, as shown in:

Utot = Ubonded + Unon−bonded (2.1)

The multiple parts or formulas that describe all the forces that
take place at a given time in one atom are determined by the Force-
Field (FF) (Ponder and Case, 2003a). In most FFs used in protein MD
simulations, the bonded energies are divided into three terms: bond,
torsions, and angles. Otherwise, the non-bonded terms are the van
der Waals and electrostatic terms (Salomon-Ferrer et al., 2013).
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• The first term (Ubond) contains the sum of potential energies
that describe the bonds. These energies are described as a typ-
ical elastic or harmonic potential energy. This means that it is
only determined by the square of the distance between atoms
(x) and a constant (k). The constant depends on the type of
bond we describe and are defined in the FF. This means that
we can understand the bonds in the MD simulations as springs
that join the atoms.

• The second term (Uangle) describes the sum over all angles
formed by two consecutive bonds. With that, the potential
energy caused by the displacement of the angles is defined. In
this case, all angles are treated the same way, so no constant is
used, and there is no equivalent “type of angles.”

• The third term (Utorsions), the last one from the bonded terms,
is the one that describes the bond torsions or twists. It is de-
fined by a Fourier expansion of a constant that defines the type
of bond and bond order and the cosine of the torsion angle.
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This term describes the force that captures the steric and elec-
trostatic interactions that might impede the twist of a bond.

• The fourth term is the van der Waals (UvdW) interactions. This
term is the sum of all interactions done by the simple fact that
all atoms have electrons or “electron clouds,” and those induce
some short-lived multipoles into other atoms. These interac-
tions are mainly attractive but are strongly repulsive over short
distances. This is the typical part of the forcefield that exerts
a higher computational cost, so a distance threshold is set in
place (8-12 Å) where this interaction potential is zero. Also, a
less resource-hungry descriptor is used, such as Lennard-Jones
12-6 function. This is described by the two parameters called
well depth and collision diameter. The collision diameter is
the parameter that defines when the vdW interaction between
two atoms is zero, and the well depth is the parameter that de-
scribes the maximum attraction vdW potential energy that the
two atoms can have. After this is defined, the only variable that
changes this is the distance between the two atoms.

• The fifth and last therm is the electrostatic term, which de-
scribes the Coulombic (electrostatic) interactions between
charged atoms and is computed using Coulomb’s law, where
q1 and q2 are the charges on the particles, r is the distance
between the particles and (epsilon) the electric constant.

Then, the FF requires not only the formulas for the multiple en-
ergetic terms needed to be computed but also all parameters that
the particles under investigation will need. Furthermore, in Amber
forcefields, these parameters are created to replicate the character-
istics of the molecules. For instance, several amber forcefields are
made to simulate proteins, enzymes, and other biomolecules like
DNA or RNA as accurately as possible. Other force fields are used
to simulate water, solvents, and salts. The General Amber force field
(GAFF) is widely used for parametrizing non-canonical amino acids,
cofactors, or general organic molecules (Wang et al., 2004; Ponder
and Case, 2003b).
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With all of that, one can compute the interactions and energies
in most scenarios one can encounter in simulating enzymes and
biomolecules. However, to generate and propagate trajectories over
time and evaluate how the system behaves, additional steps need to
be taken. This is done in MD by following Newton’s second law:

Fi = mi ∗ ai (2.3)

As the forces that each particle in the system is affected by have
already been described, one can split the calculations into three com-
ponents and get the acceleration of the particle after computing the
total potential energy described by the force field:

−dU
dri

= miai(t) (2.4)

In MD simulations, the forces acting on the atoms in a molecule
are calculated at each time step(∆T). The accelerations are then cal-
culated using Newton’s second law. The positions and velocities of
the atoms are then updated using the accelerations, and the process
is repeated at the next time step. This allows the motion of the atoms
to be simulated over time, allowing the properties of the molecule to
be studied. The time step used can vary and be modified depending
on the situation, but it is often in the femtosecond range. In this the-
sis, and typically done in MD simulations of big systems, the time
step is set at two femtoseconds. In this way, and because the vibra-
tion of C-H bonds is a much faster event, we can set the distance
between H and a heavy atom as constant (Susskind and Hrabovsky,
2014).

Another important concept in MD simulations is the different
available thermodynamic ensembles. Each ensemble represents a
different set of conditions that the system is subjected to, and the
choice of ensemble depends on the specific goals of the simulation;
the conditions are the number of atoms (N), pressure (P), volume
(V), and energy (E). These variables are used to define the thermo-
dynamic state of the system. Several different types of ensembles are
commonly used in MD simulations, including the microcanonical
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ensemble (NVE), the canonical ensemble (NVT), and the isothermal-
isobaric ensemble (NPT) (Frenkel and Smit, 2002).

The microcanonical ensemble is used to study isolated systems
in which the total energy is fixed. This type of ensemble helps study
the thermodynamic properties of a system, such as its temperature,
entropy, and specific heat.

The canonical ensemble is used to study systems with a thermo-
stat so that the temperature is fixed. This type of ensemble helps
study the behavior of a system at a constant temperature and pre-
dict how the system will respond to changes in temperature. This is
the ensemble in which the production simulations of this thesis are
made due to the mentioned control in the temperature and because
the volume is also kept constant.

The isothermal-isobaric ensemble is used to study systems in
which the temperature and pressure are fixed. This type of ensemble
helps study the behavior of a system at a constant temperature and
pressure and for predicting how the system will respond to changes
in these variables.

2.1.2 Running MD simulations

The first thing needed to perform an MD simulation is the molecule
or set of molecules in a given starting conformation. In this the-
sis, these molecules are mainly enzymes and other molecules that
are substrates (if applicable). To get the initial protein structure,
the large Protein Database (PDB) can be explored to check if crys-
tal structures of the system in good quality and resolution are avail-
able. If this is the case, one must check if the protein structure is
complete. If not, the missing parts need to be reconstructed with
programs like the recent alphafold2(AF2) (Jumper et al., 2021), Swiss-
Model1, or others. Also, the X-ray will not contain the protons due
to the resolution limit of the technique, so these need to be added
to the system, setting a proper protonation state for all the residues.
To do so, programs like H++ (Gordon et al., 2005) or PropKa (Olsson
et al., 2011) can be used to estimate the pKa of the residues in the

1https://swissmodel.expasy.org/
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protein environment, at the pH at which the structure was obtained.
Some exceptions are the histidine, aspartic and lysine residues be-
cause multiple protonation states are available. One has to look at
the interactions that the residue can make to guess the most probable
place for the protons to be, as well as check whether they have a cat-
alytic role and assign the proper protonation state for the modeled
reaction state.

Regarding the mutants, there are no X-ray resolved structures of
most of the mutants and variants accessed in this thesis. To get the
structure of the mutant, the Wild-Type (WT) protein can be modified
using programs like PyMOL (Schrödinger, LLC, 2015a; Schrödinger,
LLC, 2015b; Schrödinger, LLC, 2015c), ChimeraX(Pettersen et al.,
2021), rosetta (Rohl et al., 2004), or more recently with AF2. For a few
modifications, using the mutagenesis tool from PyMOL can be suit-
able if one carefully chooses the best rotamer and the minimization
steps are increased further. For mutants with many modifications,
such as HheC R18 (37 positions mutated), the program rosetta was
used so that the mutations are done automatically (or AF2 could be
used, which was only recently made available). The rotamers are se-
lected based on an internal force field-based field minimization and
scoring. The obtained protein is further verified and compared with
the result from AF2.

Another important and applicable modification in this thesis is
to access the proteins’ oligomerization state. Proteins can, and nor-
mally do, form oligomers. We need to obtain the proper oligomer-
ization state for the system. To do so, we can use programs like PISA
(Krissinel and Henrick, 2007), Alphafold2 multimer, or PyMOL.

Once the quaternary structure is accessed, the cofactor (if the pro-
tein require it) needs to be included in the active site if we want to
simulate the HOLO state or remove it (in the case that the substrate
was in the X-ray structure) for the APO state.

The last step that needs to be considered before running the MD
simulation is that the system needs to be solvated. To do so, and be-
cause enzymes are usually solvated in water, explicit solvents (water
models) are added[see Figure 2.1]. This can be done by adding the
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protein to a box of pre-equilibrated water that comprehensively cov-
ers the protein in all directions. The solvent box must be sufficiently
big to accommodate the protein and extra space from the protein
surface until we reached the threshold used for the Lennard-Jones
potential. To avoid edge effects, copies of the box are placed around
the original’s limits, creating the so-called Periodic Boundary Con-
ditions (PBC). These new boxes are copies of the original one, and
the new atoms are not part of the potential energy, but the presence
of the PBC makes the effects of the box disappear.

FIGURE 2.1: 3D render of a HHDH in the Solvent box. This system is
prepared for being simulated.

The solvation box is added using the program tleap from the Am-
bertools (Case et al., 2005). With this, the box’s dimensions are se-
lected, and the ff and the water force field are set. In this thesis,
TIP3P water (MacKerell Jr. et al., 1998) model is used. Counterions
(Cl− and Na+) are usually added to set the charge of the whole sys-
tem to zero.

The process of running an MD simulation typically involves the
following steps:

1. Minimization: Once the system is prepared, the energy of
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the system must be minimized by relaxing the positions of
the atoms or molecules. This is done using an optimization
algorithm that iteratively adjusts the positions of the atoms
until the energy of the system is minimized. In the first mini-
mization step, the protein is kept rigid by using restraints or
external forces, minimizing the solvent box. Water molecules
set by the tleap program are arranged in a pattern, which
should be minimized to a more stable conformation. In the
second minimization, the restraints are removed, and the
whole system is minimized. This is especially relevant if
we have modified the crystal a lot (including mutations or
substrates)

2. Heating: After the system has been minimized, the next step is
to heat the system to the desired temperature. This is usually
done by gradually increasing the temperature over a series of
time steps until the desired temperature is reached.

3. Equilibration: After the system has been heated, it is vital to
ensure it has reached thermodynamic equilibrium. This is done
by allowing the system to evolve for a sufficient number of time
steps, during which the temperature, pressure, and other phys-
ical parameters are monitored to ensure they are stable. This
step is typically executed in an NPT ensemble. This is done
because the system and solvent need more volume after the
heating process, so the system is allowed to expand and keep
it at 1atm. The final volume will be fixed (NVT) during the
production run.

4. Production runs: Once the system has been equilibrated, the
actual production run of the MD simulation can begin. This
involves simulating a specified number of time steps, during
which the atoms’ or molecules’ positions and velocities are up-
dated according to the laws of classical mechanics.
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2.1.3 MD Analysis techniques

After the production run has been completed, the simulation results
can be analyzed to study the system’s properties and predict its be-
havior. The type of analysis executed depends on the system and
the property we want to analyze.

• Visual Inspection. It is a good idea to check and visualize the
frames extracted from the MD simulations with a visualization
program such as PyMOL, or ChimeraX. This visual inspection
might be more relevant after we determined key frames of po-
sitions in the aminoacid chain that might be more relevant.

• RMSF of Atomic Coordinates. The Root-Mean-Square Fluc-
tuation (RMSF) measures the average deviation of the posi-
tions of atoms in a molecule from their mean positions. It is
often used to analyze MD simulations to evaluate the flexibil-
ity of different molecule regions. The RMSF is calculated as the
fluctuation of the Root Mean Square Deviation (RMSD) of the
atomic positions from their mean positions over a given time
period. For example, having an MD simulation of a protein
with N atoms, the RMSD for atom i can be calculated as fol-
lows:

RMSD =

√√√√ 1
n

n

∑
j=1

(pi,j − p̄i)2 (2.5)

Where pi,j is the position of atom i at time t and pi is the posi-
tion of atom i at the start of the simulation. The RMSF can be
calculated for each atom in the molecule, allowing us to iden-
tify which regions are more flexible than others. The RMSF can
help understand a molecule’s conformational changes during
an MD simulation and identify potential sites of protein-ligand
binding or other functional groups.

• Computing measurables during the MD. A great technique is
to compute relevant distances between atoms in the system,
angles, or dihedrals. With that, we can evaluate how some
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parts of the system move concerning other parts; we can define
substrate binding distances, attack angles, important torsions
necessary for an event to happen, and much more. We can
also evaluate cavities and spaces in the molecule, such as the
catalytic pocket and the tunnels that connect this with the sol-
vent. To do that, we can use specific softwares such as CAVER
(Pavelka et al., 2015). With this software, we can compute the
presence and absence of tunnels, the narrowest regions of the
tunnel, i.e. bottleneck radius, and the more critical residues
that shape the tunnels.

• Shortest Path Map. The Shortest Path Map (SPM)(Romero-
Rivera, Garcia-Borràs, and Osuna, 2017a; Osuna, 2021) is a
correlation-based tool that explores residue-by-residue corre-
lated movements and inter-residue distances. This generates
a complex graph based on proximity and correlation. The
latter graph is further evaluated by making use of the Dijkstra
algorithm to identify the shortest path lengths. The algorithm
goes through all nodes of the graph and identifies which is the
shortest length path to go from the first until the last protein
residue. The method therefore identifies which edges of the
graph are shorter, i.e. more correlated, and which are more
central for the communication pathway. Only those edges
having a higher contribution are represented, and they are
weighted according to their contribution.

Due to the system’s naturally high amount of variables, we can-
not analyze all distances, coordinates, and angles during the MD
simulations. For example, if one is interested in computing the coor-
dinates of all alpha-carbons of a monomer of HheC during the MD
simulation, the final data array will have the dimensions: 252 atoms,
times three coordinates each, and times the number of frames. This
will exceed the 10 million features if we consider an MD with 10.000
frames. In order to get the essential features of the system and be
able to analyze it, we need to use techniques that reduce the dimen-
sionality of the array, and these techniques are Dimensionality Re-
duction techniques.
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• Non-parametric tests. If one is interested in comparing how
the interactions and distances differ between two different
conditions (or systems), we can use non-parametric tests
to determine which contacts or distances differ the most
to focus the analysis on these key distances. It is essential
to use a non-parametric test because we do not know the
distribution of the data, and the data often does not tend
to follow a normal distribution. The Smirnov-Kolmogorov
test(“Kolmogorov–Smirnov Test” 2008) is a nonparametric
statistical test used to evaluate whether a sample comes from
a particular population. It is based on the difference between
the empirical cumulative distribution function of the sample
and the theoretical cumulative distribution function of the
population. The test determines whether the sample is drawn
from a specific distribution. The test can be used to determine
whether the two datasets come from the same population or
different populations. It is a powerful technique for big sample
size datasets.

• Machine Learning. Other statistical techniques that are ex-
tremely useful for recognizing patterns in the data are machine
learning, and for this thesis, in specific Decision Trees and the
Random Forest were used (Ho, 1995; Ho, 1998). The random
forest algorithm was employed to analyze which distances or
contacts are the most important and correlate the best with a
target distance that we know is important for function. With
that, the parts of the proteins that make possible the selected
event can be elucidated. Random forest is an ensemble method
that trains multiple decision trees on random subsets of the
data and aggregates their predictions to make a final predic-
tion. The idea behind using multiple decision trees is that
they can learn from different parts of the data, and the final
prediction will be more accurate than any individual decision
tree. Using a random forest regressor, many decision trees
are trained on random subsets of the data. For each tree, a
random subset of the features is chosen as the split points
at each node. This helps to decorrelate the trees, which can
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improve the model’s overall performance. During training, for
each tree, the algorithm selects a random sample of the data
with replacement (i.e., it allows some data points to be chosen
multiple times) and uses this sample to fit the decision tree.
The rest of the data is used to estimate the error of the tree. This
process is repeated for each tree in the forest. The algorithm
feeds the input data through each decision tree in the forest
to make a prediction using the random forest regressor. For
each tree, the output of the tree is recorded, and the final
prediction is the average of all the trees’ predictions. Random
forest is a robust algorithm that can handle high-dimensional
data with many features and provide accurate predictions. It
is also relatively faster to train and predict than other machine
learning algorithms. However, it can be prone to overfitting if
the number of trees in the forest is too large.

• PCA, tICA, and t-SNE. Another statistical approach to reduce
dimensionality is by using techniques that can group variables
or features in a new space. The most common and known
technique is Principal Component Analysis (PCA) (Jolliffe and
Cadima, 2016). PCA is a statistical technique used to reduce a
dataset’s dimensionality. It makes this reduction by projecting
the data onto a lower-dimensional space, known as the princi-
pal components while retaining as much variation in the data
as possible. PCA is a linear technique, which assumes that the
data is linear and the relationships between the variables are
linear. It is often used to reduce the complexity of the data, to
make it easier to visualize or to remove noise or outliers from
the data. The following steps are typically taken to perform
PCA:

1. The data is centered, so each feature has a mean of zero.
2. The covariance matrix of the data is calculated.
3. The eigenvectors and eigenvalues of the covariance matrix

are calculated.
4. The eigenvectors are ranked by their corresponding eigen-

values in descending order.
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5. The eigenvectors with the highest eigenvalues are selected
as the principal components.

6. The data is projected onto the principal components to ob-
tain the reduced-dimensional representation of the data.

With this, we obtain the new space where the variables are
grouped so that the ones in the same Principal Component (PC)
reduce the covariance of the data correlatedly.

A similar technique is the Time-Lagged Independent Compo-
nent Analysis (tICA) (Molgedey and Schuster, 1994). tICA is
a variant of Independent Components Analysis (ICA) (“What
is Independent Component Analysis?” 2001) that considers the
temporal dependencies between the variables in the data. tICA
works by shifting the variables in the time series data by a cer-
tain number of time steps and then applying dimensionality
reduction to the shifted data. The resulting independent com-
ponents are called time-lagged independent components (TIC).
These components capture the relationships between the vari-
ables at different time lags. They can identify patterns in the
data that may not be apparent when looking at the data in its
original form and represent the slowest movement in a dimen-
sion [see comparison between PCA and tICA in Figure 2.2].
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FIGURE 2.2: Comparison between the dimensionality reduction techniques
PCA and tICA on a set of dummy data. Using this data, one can see how
tICA finds the slowest movement in the left plot, and how separates the

conformations on the right.

The last dimensionality reduction technique explained in this
thesis will be the t-distributed Stochastic Neighbor Embed-
ding (t-SNE) (Maaten and Hinton, 2008). t-SNE is a nonlinear
dimensionality reduction technique that maps the data points
from a high-dimensional space to a lower-dimensional space,
typically a two- or three-dimensional space while preserving
the relationships between the data points as much as possible.

t-SNE works by measuring the similarities between the data
points in the high-dimensional space and constructing a prob-
ability distribution over the pairs of points. It then optimizes a
low-dimensional representation of the data such that the simi-
larities between the points in the low-dimensional space match
the probabilities in the high-dimensional space as closely as
possible. This creates a low-dimensional space where the di-
vergence between the probability distributions between pairs
of points is minimized. One big downside is that because the
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new space is not created from transforming the original data,
the new dimensions have no functional or physical meaning;
the data is simply grouped in similar data points. t-SNE is a
valuable tool for data exploration and visualization. It has been
widely used to visualize high-dimensional data in various ap-
plications, including natural language processing, image clas-
sification, and gene expression analysis. However, in this thesis
(in particular chapter 4 and 5) it will be explained how t-SNE
was applied in MD analysis for biocatalytic aplications for the
first time.

Finally, once we have the data that we want to analyze further
selected, the Free Energy Landscape (FEL) can be reconstructed
from the new variables created (i.e., Collective Variables (CVs)).
The CVs selected may be distances, angles, or other measurables
selected by visual inspection and RMSF analysis, or even compo-
nents from tICA or PCA (TICs and PCs). By reconstructing the
FEL, we can compute the barriers by assigning energy values to
the different conformations explored based on the density of points
of the 2D histogram of the data. This is done by computing the
thermodynamic integration (−log(p), where p is the probability
computed from the histogram count).

2.2 Experimental Methods for studying enzymatic
systems

Ideally, to check if the theoretical predictions and claims are accu-
rate, experimental assays can be performed. This means that we will
test in the lab computational predictions and measure the effects of
mutations on kinetics, activity, and thermal stability. However, be-
fore setting up the experiments and testing the parameters of the
selected enzymes, these must be produced and purified. It is vital
to understand the basics of creating recombinant proteins, cloning,
and purification.

Recombinant proteins are those produced using genetic engi-
neering techniques (Rosano and Ceccarelli, 2014). There are several
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steps involved in producing recombinant proteins in the laboratory.
In a nutshell the following steps need to be followed:

1. Construct Design: The first step is to design the DNA con-
struct that will be used to produce the protein. This involves
selecting the appropriate expression vector (a piece of DNA
that can replicate in a host cell) and inserting the gene for the
protein of interest into the vector.

2. Construct Cloning: The next step is to clone the construct,
which involves making multiple copies of the DNA construct
in a host cell, such as E. coli or yeast. This is usually done using
a process called transformation, in which the construct is intro-
duced into the host cell using a plasmid (a small, circular piece
of DNA) or a virus.

3. Protein Expression: Once the construct has been cloned, the
host cells are grown in a culture medium under conditions that
favor protein production. The protein of interest is then ex-
pressed in the host cells and secreted into the culture medium.

4. Protein Purification: The next step is to purify the protein from
the culture medium (Wingfield, 2015). This step typically in-
volves several steps, including centrifugation to remove cell
debris, filtration to remove contaminants, and chromatography
to isolate the protein.

5. Protein Analysis: Finally, the purified protein is analyzed and
sequenced to confirm that it is the correct protein and to deter-
mine its purity and activity.

All these steps will be detailed for the HHDH systems studied in
this thesis.

• Construct Design. Most of the proteins produced and con-
structed were done on top of the WT and available genes in
the lab, except for the HheC R18 variant. This is because it is
much better to buy the synthetic gene than to include the 37
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mutations manually. For the other systems that need to be mu-
tated, the DNA of the WT is subjected to site-directed mutage-
nesis using Polymerase Chain Reaction (PCR) and mutagenic
plasmids.

To get the mutagenic PCR, we need to design and prepare the
primers that will change the bases that transcribe into the se-
lected mutagenesis. This is carried out using the PrimerX pro-
gram and ensuring that the melting temperature stays similar.

Once the primers are created, and the mutagenic PCR is per-
formed, the genes are transferred into a plasmid (pET22, pET28,
or psKBAD). This is done using the same restriction enzymes
for the empty plasmid and the gene fragment. Thanks to this,
the ligation reaction is straightforward, and the proper liga-
tion can be tested via agarose-gel electrophoresis. Once done,
each construct is cloned into competent E.coli DH5α(gold) by
heat shock and grown overnight at 37ºC in agar plates with
an antibiotic. Thanks to this, the ligation reaction is straight-
forward, and the proper ligation can be tested via agarose-gel
electrophoresis.

The following day, the colonies can be collected and resus-
pended individually in lysogeny broth (LB) supplemented
with antibiotics. Once the culture is grown, we can extract the
plasmids cloned by the E.coli DH5α(gold) using a miniprep kit
and store it.

• Construct Cloning. In the last step, we cloned the gene in E.coli
DH5α(gold), but that strain is used because it greatly multiplies
the number of plasmids and is unsuitable for protein produc-
tion. To do so, E.coli BL21(DE3) is used. This strain creates lots
of protein once the required inductor (depending on the plas-
mid used) is added to the media.

To do so, the plasmid is cloned into competent E.coli BL21(DE3)
and cultured overnight in agar plates. After that, some LB is
inoculated with a colony from the plate with the corresponding
antibiotic corresponding tho the construct. The amount of LB
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should be at least 1/100 of the final culture. The following day,
the broth is inoculated in the final culture in 0.5L Erlenmeyer
(not more than 40% of the flask needs to be full, E.coli needs
oxygen and agitation). The final culture is set into the incubator
with intense agitation for up to 4 h approx. The culture needs
to grow exponentially when the inductor is inoculated.

• Protein Expression. Once the E.coli BL21(DE3) culture is at ex-
ponential growth, a sample of the culture must be collected
and then the inductor needs to be added to the media. This
will make the production of the protein start inside the cells.
Approximately four hours later, having the culture in agitation
in the incubator at 37ºC or overnight at approximately 30ºC,
the culture can be extracted and centrifuged to separate the
cells from the culture media. After that, the cells are resus-
pended in the minimum amount of buffer and the cell mem-
branes need to be broken. Multiple methods can be used, but
sonicator and french press were used with similar results in
this thesis. After that, the protein should be in the buffer, and
the purification process can start. However, to know if the pro-
tein was induced properly, an SDS-page acrylamide-gel elec-
trophoresis [Figure 2.3] should be done to see if the expected
gel band has appeared after induction compared to the sample
pre-induction.
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FIGURE 2.3: Photo of an Acrilamide-Gel showing all the proteins pre-
induction (-ind), post-induction (+ind), in the insoluble phase (FI) and in
the soluble phase (FS) for both constructs build in pET22 and psKBAD plas-
mids for HheC constructs. Soluble and insoluble phases were separated via

ultracentrifugation

• Protein Purification. The first purification step is centrifuging
the sample at high speed to separate the soluble and the insol-
uble proteins. The first time this is done, samples of the soluble
and insoluble phases are sampled and analyzed via SDS-page.

Further protein purification was done in two different ways,
depending on the presence or not of His-Tag in the construct.
The presence of the His-tag at the end of the protein makes
it easier to purify, thanks to Ni2+ affinity columns. These
columns have a high affinity for the histidine side chains and
can retain the proteins that display the His-tag. Later, the
column is washed with a plain buffer to remove all proteins
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that are not binding in the column. After the column is clean,
a buffer containing imidazole (histidine side chain) is passed
through the column, displacing the protein and eluting it with
high purity. After this, the sample needs to be cleaned using a
desalting column to remove all excess of imidazole.
For the proteins without His-tag, the HHDHs were purified
employing ion-exchange chromatography, being more exact,
anion-exchange chromatography. This chromatography tech-
nique uses a column with fixed cations in the stationary phase.
Then the sample is added with all soluble proteins in the col-
umn and eluded with a buffer. This will make the proteins with
positive and neutral charge elute, and the negatively charged
ones will be attached in the stationary phase. After this, a gra-
dient of the salted buffer will start to elute in the column, and
the concentration of salts will increase gradually, thanks to the
usage of the FPLC machine (ÄKTA pure). Once each protein
reaches the isoelectric point, it will be released into the mobile
phase. All samples collected are tested for activity and also
molecular weight on the SDS page to check when the HHDH
is released.
Later, size exclusion chromatography is used with multiple fi-
nalities: to get the sample even purer, to desalt the sample, and
to verify the oligomerization state of the proteins in solution
(see more in the Results part). Size exclusion chromatography
uses a resin with pores ranging from multiple sizes, making
smaller proteins take more time to elute than bigger ones. With
this, we can separate proteins with different particle sizes and
check whether changes on the oligomerization state induced
by mutations were introduced.

• Protein Analysis. After pure samples for the different HHDHs
are obtained, multiple analyses can be performed to study the
desired properties for each variant.
As mentioned above, the oligomerization state of the different
variants can be analyzed by running size exclusion chromatog-
raphy. This method separates the proteins by particle size. For
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every peak, activity is tested, and SDS-page chromatography is
used to verify the molecular weight of the eluted protein.

Another property we want to measure is the thermal resis-
tance by getting the melting temperature (Semisotnov et al.,
1991). In this thesis, two different methods were used. In the
first one, the absorbance at 280 nm was monitored using a spec-
trophotometer while a water bath was heating the sample. This
is based on the principle that tryptophan (a residue with a high
absorbance at 280nm) is a hydrophobic residue and is mainly
located inside the protein and not exposed to the solvent. Once
the protein starts denaturing, the tryptophans are exposed, and
the absorbance increases. With this, the melting curve can be
generated, and the melting temperature estimated.

Another method is the thermofluor assay (Huynh and Partch,
2015). This assay uses a fluorometer with temperature con-
trol (qPCR machine) and a hydrophobic die like SYPRO orange.
This dye emits light at 570 nm after receiving light at 470 nm,
but only if it is attached to a hydrophobic area because water
inhibits its fluorescence. The die is added to the sample and
into the qPCR machine. Then the temperature gradually rises,
and when the protein unfolds and more hydrophobic residues
start to get exposed, the light emitted at 570 nm increases. The
melting temperature is the temperature at which the fluores-
cence stops increasing its slope; in other words, it is the maxi-
mum value of the first derivative.

Another key property is the catalytic activity of the different
enzymes, which is obtained through the kinetic parameters.
Steady-state kinetic assays (Cleland, 1990) must be done to
fit the data into a kinetic model, such as Michaeli-Menten
or Hill’s, to get kcat and KM or K50 (in Hill’s kinetic model).
Steady-state kinetics refers to the study of enzyme-catalyzed
reactions under conditions in which the concentration of the
enzyme and its cofactor(s) remain constant over time. One
advantage of using steady-state kinetics to study enzyme-
catalyzed reactions is that it allows for the determination of
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the kinetic parameters of the enzyme, such as the maximum
velocity (Vmax) and the substrate concentration at which Vmax
is achieved (KM).

Different assays must be done depending on the reaction we
want to monitor. For the case of the epoxide-ring forming re-
action, the halide-release assay is used. The halide-release as-
say monitors the amount of halide (Cl−) released in the me-
dia. To do so, the reaction is stopped multiple times, adding
large amounts of acid with iron sulfate salts and mercuric thio-
cyanate. The chlorine forms a salt with the mercury, and ferric
thiocyanate is formed in identical stoichiometric amounts as
the chlorine is consumed. Ferric thiocyanate has a peak in ab-
sorbance at 480 nm and can be easily monitored using a spec-
trophotometer, and the concentration can be determined using
a calibrated curve (Najib and Hayder, 2011).

Cl− + Hg(SCN)2 → HgCl2 + 2Fe(SCN)2+ (2.6)

For the kinetic parameters of the epoxide-ring opening reaction
using cyanide, we used a nickel chloride that, in the presence
of cyanide, makes a tetracyanonickelate with absorption at 267
nm. The salt is added and solved in 1M ammonia, killing the
enzyme in the process and stopping the reaction (Schallmey et
al., 2015).
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Chapter 3. Objectives

In this thesis, we aim to understand and rationalize the confor-
mational differences in natural and laboratory-evolved HHDHs and
evaluate how these affect their catalytic activity and available tun-
nels. Computations and experiments are combined to elucidate how
natural and laboratory evolution has yielded synthetically useful
HHDHs.

Computational methods like Molecular Dynamics (MD) simula-
tions and novel dimensionality reduction and feature selection tech-
niques for this field were used and developed to reconstruct the as-
sociated Free-Energy Landscapes (FELs). To properly do this, mul-
tiple objectives were targeted:

• Develop and test a new computational pipeline that describes
most of the variance sampled along the MD simulations in a
human-readable two-dimensional space.

• Apply the new computational pipeline coupled with tunnel-
analysis techniques to explore the effect of the conformational
changes into the tunnels in naturally-occurring HHDHs fami-
lies. The goal is to better understand the tunnels’ effect in the
substrate scope displayed among families and pinpoint critical
residues.

• Decipher the flexibility and conformations that provide the D-
family HHDHs with more thermal stability and often lower
catalytic activity. This was based on the HheD2 designs pro-
vided by Prof. Anett Schmalley’s group.

• Computationally and experimentally study the effect of the
mutations randomly introduced via Directed Evolution (DE)
in HheC to synthesize statin precursors. Experimentally study
the thermal stability, oligomerization, and kinetic parameters
and rationalize the obtained data using long timescale MD
simulations.

Achieving these objectives will bring to the table an effective and
statistically valid computational methodology that can potencially
help researchers to understand, propose, and predict mutations in
HHDHs and by extension to unrelated other proteins.
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4.1 Precedents in CRL in nanomotors: State-of-the-
Art

In recent years, there has been a remarkable growth in the devel-
opment of micro- and nanomotors, particularly in the biomedical
and environmental sectors(Abdelmohsen et al., 2013; Wang et
al., 2019a; Gao and Wang, 2014). The operation of catalytic
micro/nanomotors relies on converting chemical energy into me-
chanical force, leading to active motion(Luo et al., 2018). Enzymes,
which are well-known for their biocompatibility and highly effi-
cient catalysis in biosystems, have emerged as strong candidates
for powering micro/nanomotors. In this regard, various enzymes
such as catalase(Ma et al., 2015), urease(Dey et al., 2015), glucose
oxidase(Ji et al., 2019), acetylcholinesterase(Arqué et al., 2019),
trypsin(Schattling et al., 2017), lipase(Wang et al., 2019b), and multi-
enzyme combinations(Gao et al., 2019) have been explored for the
fabrication of micro/nanomotors. Despite significant progress in
the development of enzyme-powered micro/nanomotors for in
vitro/vivo applications, the impact of catalytic processes on the mo-
tion performance of nanomotors remains an area of concern(Arqué
et al., 2019). Therefore, this part of the thesis aims to explore the
effect of the enzyme dynamics for the development of catalytic
micro/nanomotors and assess the effect of catalytic processes on
their motion performance.

In this chapter of the thesis, Candida rugosa lipase (CRL) has been
studied and used and nanomotor in diferent conditions. CRL is an
enzyme that can catalyze the transformation of triacetin in glycerol
in a highly efficient manner (María et al., 2005). A trait shared
between lipases is that all have a lid domain covering the active
site. This is usually blocking the entrance of the substrate, and the
opening of the lid domain can be a slow event that hampers the
catalysis, and it can be the rate-determining step(Khan et al., 2017).
The CRL enzyme can be inmobilized using different techniques.
The most hydrophobic technique used in this thesis is called OTES
(hydrophobic interactions using trimethoxy-(octyl)silane), and
the hydrophilic technique is called APTES (ionic absortion using
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3-aminopropyltriethoxysilane). Based on the results obtained at
Sanchez’s lab, we were aware that if the hydrophobic method is
used, the enzyme is fixed in an open conformation because most of
the residues in the inner part of the lid domain are hydrophobic.
Otherwise, by using the hydrophilic technique, the enzyme is
trapped in a closed conformation. The awareness of the existing
open and closed conformations within this enzyme makes this
system an ideal reference for the purpose of validating our theo-
retical approach. In this thesis, the change of CRL lid domain, and
its importance in catalysis, will be investigated. To that aim, we
developen a computational pipeline for studying the effect of the
lid conformation in the binding and unbinding events.

4.2 Computational details

4.2.1 System preparation

Open and closed CRL X-ray (PDB code 1CRL and 1TRH) structures
were used as starting points for independent molecular dynamics
(MD) simulations. Protonation states of enzyme residues were as-
signed based on pKa values provided by the H++ server (Gordon
et al., 2005) and detailed information on the catalytic mechanism
was used in order to select the proper protonation state of catalytic
residues. The enzyme was then solvated in a pre-equilibrated cubic
box with a 10 Å buffer of transferable intermolecular potential with 3
points (TIP3P) (Jorgensen et al., 1983) water molecules, adding 1620
solvent molecules. The systems were neutralized by adding 16 ex-
plicit counter ions (Na+). A two-stage geometry optimization was
performed, first minimizing the positions of solvent molecules and
ions by imposing harmonic positional restraints of 500 kcal mol−1Å
−2 on solute molecules, followed by an unrestrained minimization.
Afterward, the gradual heating of the systems was performed by
increasing the temperature by 50 K along six 20 ps sequential MD
simulations (0 - 300 K) under constant volume and periodic bound-
ary conditions. Harmonic restraints of 10 kcal mol−1 were applied
to the solute, and the Langevin equilibration scheme was used to
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control and equalize the temperature. The time step was kept at 1
f s during the heating stages, allowing potential inhomogeneities to
self-adjust. Each system was then equilibrated without restraints for
2 ns with a 2 f s time step at a constant pressure of 1 atm and tem-
perature of 300 K.

4.2.2 Molecular dynamics

After equilibration in the isothermal isobaric ensemble (NPT), 61
replicas of 100 ns were run for each system in the canonical ensemble
(NVT) for a total simulation time of 6.1 µs. More simulations includ-
ing the substrate (triacetin) in the solvent (10%) were prepared using
the packmol(Martínez et al., 2009) software and 5 replicas of 200 ns
were simulated. All simulations were performed using the Amber
14SB force field (ff14SB) (Maier et al., 2015) using the AMBER16 soft-
ware in the group-owned GPU cluster GALATEA.

4.2.3 Dimensionality reduction and clustering

The pyemma2 software package(Scherer et al., 2015) was used to ex-
tract data from all C-alpha coordinates along the MD simulations
as representative features of the enzyme’s conformational dynam-
ics. A total of 1602 features were extracted for each system. Time-
lagged Independent Component Analysis (tICA) was applied to re-
duce the dimensionality of our data. 390 tIC components were ob-
tained, which account for the 95 % of kinetic variance. No intercon-
version between open and closed CRL structures was found in the
reduced subspace. Later, a second dimensionality reduction tech-
nique was applied, the t- distributed stochastic neighbor embedding
(t-SNE)(Maaten and Hinton, 2008). This technique was used to re-
duce the most informative first 20 tICA dimensions into a new 2D
space and analyze the data in a more feasible way. The Hierarchi-
cal density based clustering (HDBSCAN) algorithm(McInnes, Healy,
and Astels, 2017), with a minimum_cluster_size of 200 and other de-
fault parameters, was used to split the t-SNE space into 183 and 198
clusters for the open and closed systems, respectively.
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4.2.4 Tunnels analysis

The tunnels in a given enzyme structure was determined using
the CaverAnalyst(Jurcik et al., 2018) software . Additionally, the
(un)binding process through the tunnels can be estimated by dock-
ing the substrate and product along different points of the tunnel,
also taking into account the previous conformation and rotation
of the substrate/product and the residues that shape the tunnel.
This was done using the CaverDock software (Vavra et al., 2019).
A 4 Å shell depth, 2.5 Å shell radius, clustering threshold value of
10 and a 0.9 Å minimum probe radius were used as tunnel search
parameters. Transport energy profiles were computed for the CRL
reaction substrate (triacetin).

4.3 Results and discusion

One of the most important and successful ways of understanding
how the dynamism of an enzyme affects the catalytic activity is
through exploring the cavities and tunnels present in the enzyme.
The enzyme requires a proper pocket and tunnels to accommodate
the substrate, the transition state (TS), and the product. Also, this
shape complementary between the active site and TS is key for
lowering the energy barrier(Szefczyk et al., 2004). For the substrate
to enter the active site pocket, the enzyme needs at least one tunnel
connecting the active site and the solvent to let the substrate(s) enter
and undergo catalysis. This event, also known as binding (and in
some cases the unbinding of the product), might be the rate-limiting
step in some cases because the tunnels are not wide enough (usually
depending on the LID domain conformation)(Khan et al., 2017),
the residues that shape the tunnel and pocket are not precisely
positioned for the proper interaction with the substrate, or the
orientation that the substrate enters is not suitable for catalysis.

However, the analysis of the available tunnels on the crystal
structure or generated models does not explain the bigger picture
because, as mentioned in the introduction, the protein moves
and adopts different conformations, which of course, impact the
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tunnels. It is, therefore, desirable to analyze the conformations and
the presence (or absence) of the different tunnels from the multiple
structures sampled in the MD simulations. The tunnels can be
clustered in similar ones, making it possible to identify those that
are more frequently observed.

The strategy used is to explore the different tunnels in the
different conformations sampled from a specific protein is to first
group/cluster together those similar conformations the protein can
adopt. There are multiple ways to do so but to make a rational
clustering taking into account most of the variance that the protein
explores, in this thesis, we decided to use as geometrical features the
information of all coordinates of the alpha-carbons that compose
the protein, in this way we can identify distal regions from the
tunnel that can play a role. Given the high dimensionality of the
data, some dimensionality reduction techniques need to be applied.
In particular, the data is transformed in another space using a
dimensionality reduction technique called tICA. With this, we can
explore the slow movements of the alpha-carbons that took place
during the MD simulations.

The number of dimensions obtained using this method is still
vast, and clustering in this high space may be extremely difficult
and computationally costly. What is typically done is to sample us-
ing only the dimensions involved in the movements affecting the
variables that we think are defining the tunnels. But following this
strategy contradicts the fact that we are interested in determining if
other regions far from active sites or tunnels are affecting the pres-
ence/absence of some of them. Also, some tunnels not present in
the initial structure may not be sampled because of the bias that this
decision will introduce.

To make the analysis as unbiased as possible, we chose to run a
new dimensionality reduction technique which has become popu-
lar in the field of machine learning, the t-SNE. t-SNE creates a new
space where all the variance can be displayed in the new 2 or 3 di-
mensions at maximum [Scheme for the dimensionality reduction:
Figure 4.1].. By the end of this dimensionality reduction, we ob-
tained a new 2D space where all the conformations explored are
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represented, and only the slow movements are present, thanks to
its coupling with tICA. Thanks to this approach, the most frequently
visited conformations can be identified, and the Caver analysis can
be performed. With that, one can explore the conformations present
in the MD simulations and all the tunnels with low bias [Scheme
Tunnel analysis: Figure 4.2].

FIGURE 4.1: Scheme of the MD analysis process. The dataset obtained
from multiple MD simulations for open and closed CRL was reduced us-
ing a two-step process: first, the dimensionality reduction technique tICA
shown in a) and b) was applied for open and closed conformations of CRL,
respectively. It was further reduced into a 2D dimension with t-SNE (c,d)
and clustered with the HDBSCAN method. Each cluster in the t-SNE plots
is colored differently. The four most populated clusters were subjected to

tunnel and ligand binding analysis.
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FIGURE 4.2: Scheme of the substrate binding accessibility profiles. Rep-
resentative open (a) and closed (c) CRL conformations adopted during the
MD simulations are represented as cartoon. LID domain is shown in green,
active site residues in purple sticks, and tunnel T1 and T2 in blue and rasp-
berry solid surfaces, respectively. Ligand transportation energy profiles
(b,d) computed from the most populated clusters after t-SNE reduction.
The mean energy profile for substrate accessibility to the active site com-
puted on multiple MD snapshots is shown with a solid line and the stan-
dard deviation using a shaded region. Mean energy profiles for substrate
accessibility through T1 and T2 tunnels are shown in blue and raspberry,
respectively. The mean tunnel Bottleneck Radius (BR, marked with colored
stars in (b,d), in Angstroms) together with the standard deviation is also

shown.

We first tested this new methodology in collaboration with Prof.
Dr. Samuel Sanchez and applied it to study the lipase protein from
Candida rugosa (CRL) used as a motor for propelling nanoparticles.
Our motivation is to test the effect of the different fixation techniques
used, how this affected the catalysis, and, with that, how the product
was released and the particle propelled.

The obtained specific activities of the nanoparticles in both OTES
and APTES showed, as expected that the activity of CRL in OTES is
much higher than in APTES. To rationalize how the fixation method
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affects the activity and evaluate whether this change in the confor-
mation was affecting the tunnels, we run conventional MD simula-
tions of CRL starting from the open state and closed state. Five repli-
cas of 200 ns including 10% triacetin were simulated to explore the
different open and closed conformations. We monitored the distance
between residue P74 and P443 to monitor the opening and closing of
the lid domain and saw that without restraints in the MD, the open-
ing and closing event of CRL is slow (ms to s time-scale). We did
not see any transition from closed to open or vice-versa[Figure 4.3].
To explore if the substrate affects the open-closed conformational
change, we also executed five replicas from open and closed con-
formations, including 100 mM of triacetin in the solvent. The re-
sults showed that in the presence of triacetin, enhanced flexibility of
the lid domain was observed, but not enough to sample an opening
event in the five 200 ns MD replicas.
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FIGURE 4.3: A plot of the distance between the alpha-carbons of residue
P74 and P443 (that describe the state of the lid open-closed) along the five
replicas of 200 ns MD simulations performed starting from either the open
(shown with a blue line) or closed (red line) conformation of the CRL lid in
water (top panel) and in 100 mM triacetin (down). This distance is ca. 10
Å in the closed conformation, and ca. 30 Å in the open lid conformation.
In water, the closed conformation of the CRL lid is highly stable as the
monitored distance stays at ca. 10 Å the whole simulation time. In contrast
to what is observed in water, the closed state of the lid in 100 mM triacetin
is substantially more flexible and explores partially open conformations of
the lid (the distance is elongated from ca. 10 Å to 21 Å in some of the closed

MD replicas).
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With this in mind, 61 replicas of 100 ns were computed, start-
ing from the open or closed conformation. We also explored the
different conformations sampled and categorized all the open or
closed conformations based on the distance between residues P74
and P443. Still, no opening or closing event was sampled, as ob-
served before. All conformations that started from the open confor-
mation remain open, the same for the closed state. All alpha-carbon
coordinates were extracted, and the tICA dimensionality reduction
was applied. Then, the 20 first dimensions were collected, and t-
SNE was applied, thus obtaining the final 2D subspace where the
data was clusterized.

The clusterization was done by using the HDBSCAN algorithm
(Campello, Moulavi, and Sander, 2013; McInnes, Healy, and Astels,
2017). This algorithm clusters by density and hierarchy between
points. With that, we can sample all the clusters in the t-SNE space
by applying a minimum cluster size of 200 for the HDBSCAN. 183
and 198 clusters[Figure 4.1, c and d] were obtained from the simu-
lations in open and closed conformations, respectively. To obtain all
the tunnels, the CaverAnalyst software was used to explore the tun-
nels of the most representative structure of each cluster. This frame
is obtained from the MD frames, the one closer to the geometrical
centroid of the cluster. With this, we obtained three meaningful tun-
nels that can be sampled in the CRL: T1, T2, and T3.

Finally, to further analyze the tunnels and to obtain statistically
meaningful results, 20 random structures of the most populated
clusters of the open and closed conformations of CRL were further
analyzed with CaverAnalyst. T1 is widely observed in the open
conformations (94% of the structures showed the tunnel), with a
bottleneck radius (BR) of 1.28 ± 0.24Å and an almost barrierless
binding (ca. 2 kcal · mol−1). On the other hand, tunnel T1 is
much less present in the closed conformation (48% of the con-
formations) and showed a narrower 1.10 ± 0.20Å BR and higher
energetic barrier of ca. 13.3 kcal · mol−1 [Figure 4.2, f and h, In blue.
Figure 4.4].
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FIGURE 4.4: Active site comparison between open (a) and closed (b) CRL
conformations. Tunnel T1, in blue, connects the catalytic residues (His449
and Ser209) to the solvent in the open conformation. In the closed confor-
mation, the hydrophobic Val86 and Phe87 residues from the LID domain
approach the active site reducing the dynamic site pocket volume and dis-
favoring the binding of the ligand in the Candida rugosa lipase (CRL) active

site.

Tunnel T2 is always present when T1 is formed but showed a
much narrower 1.04 ± 0.12Å BR for the open conformations. On the
other hand, tunnel T2 is present in 39% of the closed structures sam-
pled and shows a similar BR of 1.01 ± 0.11Å. For this tunnel, the
binding energy barrier is estimated to be higher than in T1, showing
a ca. 26.3 kcal ·mol−1 in the open conformations and 28.8 kcal ·mol−1

for closed conformations [Figure 4.2, f and h. In red]. By using
the CaverAnalyst analysis tools, we could decipher that the residues
that primarily contribute to the higher energy barrier are valine 86
and phenylalanine 87. These residues in the lid domain restrict the
active site accessibility in the closed states.

The T3 tunnel is defined as the T1 tunnel that can escape between
the chains that conform to the lid domain when in a closed confor-
mation, taking a different path. The presence and BR of this tunnel
are small, so they can be considered negligible.
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In this study, we not only demonstrate the role of the dynamics of
CRL for the affective immobilization in nanomotors and the role of
the lid domain in catalysis, but we also developed and showed, for
the first time, a novel and smart way to analyze the multiple confor-
mations that are sampled during the MD simulations. This, coupled
with an efficient computational cost analysis method, like tunnel ex-
ploration, leads to analyzing all the conformational space on this
feature with great statistical sampling. This developed pipeline can
be generally applied in other conformational studies and, concern-
ing this thesis, for deciphering the tunnels on the available HHDHs
families.
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5.1 Precedents in halohydrin dehalogenases: State-
of-the-Art

As mentioned in the introduction, HHDHs share the same catalytic
triad composed of Ser-Tyr-Arg, a halide binding site, and the ac-
tive form is mostly the homotetrameric conformation. They catalyze
the dehalogenation reaction and have some promiscuous activity to-
wards the nucleophile-based epoxide ring-opening reaction, show-
ing different activity, selectivity, substrate scope, and stability.

FIGURE 5.1: Distinct halohydrin dehalogenase (HHDH) structural ele-
ments and zoom of the active site and halide binding pockets based on
the HheC structure. Active site residues are highlighted in wheat color,
halide-binding site in teal, N-terminal loop in light green, C-terminal loop
in purple, and N-terminal 6–7 helices in salmon. In the active site zoom,
potential residues blocking the accessible active site tunnels are depicted

using the same color scheme.

Different classes of HHDHs have been described up to date: A, B,
C, D, E, F, and G (Koopmeiners et al., 2016). In particular, we focused
our study on some representatives of each HHDH family, which
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were selected based on available structures. The selected structures
did not contain any ligand bound, no mutations, and had the best
resolution available. With that, the structures from the PDB con-
sidered were: 1ZMO for HheA2 (from Arthrobacter sp. AD2), 4ZD6
for HheB (from Corynebacterium sp. N-1074), 1PWZ for HheC (from
Agrobacterium radiobacter AD1), 7B73 for HheD2 (from gamma pro-
teobacterium HTCC2207) and 5O30 for HheG (from Ilumatobacter coc-
cineus YM16-304).

Hereafter more details of the selected examples of HHDHs under
study are provided.

HheA2 is 97.1% similar to HheA isolated from Arthobacter sp.,
although another HheA has also been crystalized from Corynebac-
terium sp. HheA enzymes showed low enantioselectivity and pre-
ferred long-chain aliphatic molecules (C4-C5) as substrates. This is
proposed to be due to a bigger substrate-binding pocket (Jong et al.,
2006). The crystalized HheA enzymes show a 97.1% sequence iden-
tity but only 34% compared to the widely studied HheC. The prefer-
ence for aliphatic substrates and the low selectivity made the HheA
family of enzymes unsuitable for industrial applications.

The HheB studied in this thesis is from Corynebacterium sp. N-
1074, and it is the only one reported in the PDB. The other HHDH
B-type that has been studied in more detail is the HheB2 from My-
cobacterium sp. GP1. These enzymes have 95% sequence identity
and only show four differences in the sequence, but despite that,
HheB shows much higher R-enantioselectivity than HheB2. In pre-
vious studies (Watanabe et al., 2015) three out of these four differ-
ences have been linked with the changes in the enantioselectivity of
HheB. From a structural point of view, the 2nd and 3rd alpha helix
(using HheC nomenclature, see Figure 5.1) are disordered structures
in HheB.

HheC is the most studied enzyme from the HHDH family. The
enzymes of the C-family show high S-enantioselectivity and prefer
aliphatic and short substrates (C2-C3). They show only 20-30% of
sequence identity with the other mentioned HHDH families and
have many structural differences, mainly the N-terminal helix and
C-terminal that cover the opposite active site [see Figure 5.1]. This

64



5.1. Precedents in halohydrin dehalogenases: State-of-the-Art

C-terminal part from the monomer in the diagonal is located on the
top of the catalytic active site and includes bulky residues, like tryp-
tophan 249, described as regulators of the entrance tunnels and sub-
strate scope (Schallmey et al., 2015). It has been discussed that this
terminal part may play a role in describing the selectivity, crucial
role in the substrate binding and thermal stability. With that, muta-
tions in the entrance near this region have been done to make HheC
accept more significant and aromatic substrates and alter the selec-
tivity (i.e., W249F mutation)(Tang et al., 2003).

For some time, these three families of HHDHs were the only ones
known, but thanks to adding new motifs in the PHI-BLAST algo-
rithm, new sequences were described, and new HHDHs had been
and are being described (Schallmey and Schallmey, 2016; Schallmey
et al., 2014; Koopmeiners et al., 2017). From these, the D, E, F, and G
have been discovered, but only HheD2 and HheG have been crys-
tallized(Koopmeiners et al., 2017).

The D subclass of HHDHs contains many enzymes, and several
of them show remarkable thermal stability and also high activity.
HheD2 is the only one that has been crystallized. As explained for
HheB, from a structural point of view, the HheD2 presents the 2nd
and 3rd alpha helix (using HheC nomenclature, see Figure 5.1) dis-
ordered. HheD2 shows high activity but low thermal stability as
compared to the other members of the same family. The molecular
basis of this stability/activity trade-off will be explained in the next
chapter of this thesis.

Finally, the last family of HHDHs for which a crystal structure
is available is HheG. This enzyme is more distantly related to the
other HHDHs in the phylogenetic tree and shows low identity with
other HHDHs, but is structurally similar. It is similar to HheC but
has no C-terminal part covering the active site, contains a disordered
2nd alpha-helix, and an extra helix in the halide-binding site. HheG
from Ilumatobacter coccineus shows high activity towards sterically
demanding cyclic epoxides compared to all other HHDHs tested
(Koopmeiners et al., 2017). This broader substrate scope is accom-
panied by a rather good enantiomeric excess, especially with azide.
This enzyme has lower activity using cyanide as a nucleophile and,
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in this case, shows low stability and enantioselectivity. These fea-
tures can be explained thanks to the prominent and solvent-exposed
active site, as shown also below.

5.2 Computational details

5.2.1 System preparation

The selected HHDHs were prepared and simulated without any
ligand and in tetrameric conformation. Protonation states of en-
zyme residues were assigned based on pKa values provided by
the H++ server (Gordon et al., 2005). The enzymes were then
solvated in a pre-equilibrated cubic box with a 10 Å buffer of
transferable intermolecular potential with 3 points (TIP3P) water
molecules(Jorgensen et al., 1983), resulting in the addition of ap-
proximately 27,000 solvent molecules per protein. The systems were
neutralized by the addition of approximately 32 explicit counter
ions (Na+).

A two-stage geometry optimization was performed, first min-
imizing the positions of solvent molecules and ions, by imposing
harmonic positional restraints of 500 kcal mol−1 Å −2 on solute
molecules, followed by an unrestrained minimization. Afterwards,
a gradual heating of the systems was performed by increasing
the temperature 50 K along six 20 ps sequential MD simulations
(0-300 K) under constant volume and periodic boundary conditions.
Harmonic restraints of 10 kcal mol−1 were applied to the solute,
and the Langevin equilibration scheme was used to control and
equalize the temperature. The time step was kept at 1 f s during the
heating stages, allowing potential inhomogeneities to self-adjust.
Each system was then equilibrated without restraints for 2 ns with
a 2 f s time step at a constant pressure of 1 atm and temperature of
300 K.
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5.2.2 Molecular dynamics

All simulations were done using the Amber 99SB force field
(ff99SB-ildn)(Lindorff-Larsen et al., 2010) After equilibration in the
isothermal-isobaric ensemble (NPT), 5 replicas of 250 ns were run
for each system (i.e., 1.25 µs per HHDH subclass) in the canonical
ensemble (NVT) yielding a total MD simulation time for all systems
of 6.25 µs. The graphics processing unit (GPU) version of pmemd
in Amber16 was used for the MD simulations, which were executed
on the in-house GPU cluster GALATEA.

5.2.3 Dimensionality reduction and clustering

The MD simulations were analyzed as monomers in order to make
it more feasible. To do so, all MD simulations were separated into
four different simulations for each monomer and were aligned,
thus multiplying the simulated time analyzed by four (5 µs for
each system and 25 µs in total). MD simulation trajectories were
post-processed with the pyemma2 software package(Scherer et al.,
2015). Alpha-carbon coordinates of the aligned protein subclasses
at each nanosecond of MD simulation were used as initial fea-
tures, resulting in 182,250,000, 168,000,000, 189,000,000, 168,000,000,
192,750,000 extracted values (features x frames x replicas) for the A2,
B, C, D2, and G HHDH subclasses, making the statistical analysis
unfeasible. Subsequently, the time-lagged Independent Component
Analysis (tICA)(Molgedey and Schuster, 1994), with a lag time τ
set to obtain the minimum number of reduced dimensions, was
applied to reduce the dimensionality of the initial MD features.
After applying tICA, we further reduced the dimensionality of the
data by applying the t-Distributed Stochastic Neighbor Embedding
(t-SNE)(Maaten and Hinton, 2008) method to the 20 most informa-
tive tICA dimensions. These 20 most informative tICA dimensions
describe the 25% of the total variance. The resulting 2D t-SNE
space was clustered with the hierarchical density based clustering
(HDBSCAN) algorithm(McInnes, Healy, and Astels, 2017), with a
minimum cluster size of 200 and other default parameters, resulting
in 133, 126, 134, 124, 119 clusters for the A2, B, C, D2, and G variants,
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respectively. By applying the t-SNE dimensionality reduction, less
than 75% of the variance was lost.

5.2.4 Tunnels analysis

CaverAnalyst(Jurcik et al., 2018) was used to compute substrate en-
try channels for the 10 most populated HDBSCAN clusters of each
HHDH variant. For each t-SNE cluster, the nearest MD snapshot
was extracted with the mdtraj software(McGibbon et al., 2015) for
the analysis of accession tunnels, thus spanning the whole dynami-
cal space of the enzyme. The parameters used for the tunnel search
were 4 Å shell depth, 2.5 Å shell radius, clustering threshold value of 3.5
and a 1 Å minimum probe radius were used as tunnel search parame-
ters.

5.2.5 Decision trees

All possible minimum distances between residues were defined
as input features, defining the shape of the corresponding tunnel
and the presence/absence of the studied tunnel as a target feature.
We used a Python pipeline to standardize the input data and
select the best Random Forest(Breiman, 2001) parameters for the
classification. MD data was randomly split into a training set (80%)
and test set (20%). We used Python packages Numpy (Harris et al.,
2020), Pandas (pandas_dev_team, 2020), Scikit-Learn (Pedregosa
et al., 2011), and Matplotlib (Hunter, 2007) for data manipulation,
machine-learning, and visualization.

5.3 Results and discusion

As mentioned in the previous chapter, a new computational protocol
to study the conformational space of active site tunnels in enzymes
was developed, which we also applied in HHDHs. With this, we
aim to get insights into the different classes of HHDHs known and
understand the role of structural and dynamic differences of the en-
zymes for their application in the rational design of HHDHs.
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The X-ray structure of HheC was analyzed in the tetrameric state
to see the effect of the C-terminal part on the tunnels. For that, Cav-
erAnalyst was used in the system in the tetrameric and monomeric
state. In contrast to previously suggested, no significant effect of the
C-terminal part of the residue W249 on the tunnels was observed.
With this information in hand, the subsequent analysis only consid-
ered the monomers (although all the simulations were run in the
tetrameric state, as mentioned before).

FIGURE 5.2: Computational protocol used to reconstruct the conforma-
tional landscapes of the different HHDH subclasses. It is based on a
two-step process consisting of first applying to the MD dataset the linear
time-Independent Component Analysis (tICA), followed by the applica-
tion of the non-linear t-distributed Stochastic Neighbor Embedding (t-SNE)
method. In this fashion, the high dimensional MD dataset is reduced into

a 2D space that is subsequently clustered using HDBSCAN.

As mentioned in the previous project with CRL (See Chapter 4),
the data from the MD simulations was collected, more specifically,
the alpha-carbon coordinates. Then, tICA was performed to get the
slowest movements sampled during the MD simulations, and then
t-SNE and HDBSCAN clustering was applied [Figure 5.2].
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Evaluation of the dynamical differences between the selected subclasses
of HHDHs.

The first point to evaluate is the most flexible areas of the differ-
ent HHDHs and understand how these changes in flexibility might
affect activity, substrate scope, and stability. To that end, we first
analyzed the conformational differences obtained using the tICA di-
mensionality reduction technique. As we can see in the represen-
tative overlays in the Figure 5.3 and Figure 5.4, the most flexible
HHDHs are the ones that have the widest active site, i.e., HheA2
and HheG. The regions separated by the active-site pocket contain
the catalytic residues (active site) and the halide binding site.
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FIGURE 5.3: Representation of the 10 most populated MD conformations as
described by the t-SNE technique for the different HHDH subclasses ana-
lyzed: HheA2 and HheB. The 10 different conformations (each one colored
differently) are projected on the tICA conformational landscapes. The most
flexible parts of the enzymes are marked and numbered accordingly. The
active site (AS) and halide binding pocket (HP) locations are marked with

a green and blue discontinuous circle, respectively.

For all the HHDHs studied in this chapter, the slowest movement
sampled is the so-called “breathing” or open-closed conformational
change of the halide binding site. This change implies that the halide
binding site is positioned farther away from the active site (i.e., open
state) or closer/collapsing on top of the active site region (i.e., closed
state).
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FIGURE 5.4: Representation of the 10 most populated MD conformations as
described by the t-SNE technique for the different HHDH subclasses ana-
lyzed: HheC, HheD2, and HheG. The 10 different conformations (each one
colored differently) are projected on the tICA conformational landscapes.
The most flexible parts of the enzymes are marked and numbered accord-
ingly. The active site (AS) and halide binding pocket (HP) locations are

marked with a green and blue discontinuous circle, respectively.
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For the HHDHs that have the extra helices (2nd and 3rd) in the
N-terminal part (i.e., HheC and HheG), high flexibility in this area
is also observed. Still, the most flexible enzyme explored is HheG,
which presents a highly disorganized N-terminal region.

On the other side of the equation, we have HheB. This HHDH
has a relatively limited conformational heterogeneity as it only ex-
hibits a moderate “breathing” of the halide-binding site region, but
but a rigid binding site region. These changes in conformational dy-
namics may be relevant to explain the high catalytic proficiency that
HheB has.

Finally after the tICA was performed and explored, the 20 most
contributing TIC dimensions were used as input for the t-SNE algo-
rithm and clusterized using the HDBSCAN. The ten most populated
clusters of the t-SNE were transformed into the tICA spaces again to
evaluate if the t-SNE and subsequent clusterization successfully rep-
resented the explored flexibility. All t-SNE clusters appear to be in
well-defined energy minima in the tICA space (see Figure 5.3 and
Figure 5.4), thus confirming that the t-SNE dimensionality reduc-
tion faithfully represents the protein dynamics (colored clusters in
Figure 5.2).

By analyzing the most populated clusters in the t-SNE space, we
can extract that most of the variance included for HheA2 comes from
the halide-binding site (residues 170-210) and the loop located close
to the catalytic Tyr146 (Residues 80-95). HheD2 shows similar be-
havior for the halide-binding site residues (170-190) and catalytic re-
gion (130-150) but it is not as flexible as HheA2.

For HheC, the most populated conformations mainly involve
motions from the N-terminal region (residues 32-36) mentioned
before and the halide-binding site region. On the other side, for
HheG, this N-terminal part is much more disorganized (residues
30-50), showing more flexibility, interacting with the residue Tyr13.
This disorganization is the slowest relevant movement in this
system. This residue is close to the active and halide-binding sites
and may play an essential role in catalysis. HheG also presents a
“breathing” movement like HheA2 and HheD2.

Contrary to the previously mentioned HHDHs, HheB displays
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an entirely different conformational behavior. The protein is tightly
packed, and only minor rearrangements on the halide-binding
site residues are observed (residues 170-190). The most populated
clusters from the t-SNE fall into similar conformations in the tICA
spaces, thus explaining the observed conformational rigidity of this
protein.

74



5.3. Results and discusion

FIGURE 5.5: Representation of the three major tunnels that exist in (A)
HheA2, (B) HheB, (C) HheC, (D) HheD2, and (E) HheG: T1 shown in
brown, T2 in blue, and T3 in dark purple. The key elements that deter-

mine T2 formation in the different subclasses are highlighted.

75



Chapter 5. Conformational Landscapes of Halohydrin Dehalogenases
and Their Accessible Active Site Tunnels

TABLE 5.1: Mean tunnel bottleneck radius (BR, in Å) for each HHDH sys-
tem computed on a representative structure of each cluster center. n.d. =

not defined

HHDH Tunnel T1 Tunnel T2 Tunnel T3

HheA2 1.8 ± 0.4 1.6 ± 0.6 n.d.
HheB 1.9 ± 0.6 1.8 ± 0.8 n.d.
HheC 2.0 ± 0.3 1.3 ± 0.2 1.0 ± 0.02
HheD2 1.8 ± 0.5 1.7 ± 0.4 n.d.
HheG 2.2 ± 0.4 1.9 ± 0.5 1.8 ± 0.5

Evaluation of the impact of conformational heterogeneity on the avail-
able tunnels

After the analysis of the conformational heterogeneity of the
HHDHs studied, we used this data to evaluate the impact of
the conformational dynamics on the entrance tunnels, as well as
evaluate if these changes might be correlated with the different
activity and substrate scope that these enzymes display. To do so,
we computed the tunnels of the 10 most representative clusters of
each t-SNE frame using the CAVER software. We then extracted
how predominant the tunnels are for the different HHDHs and the
Bottleneck Radius for each tunnel (BR, i.e., narrower region of the
tunnel).

We obtained up to three tunnels that we called T1, T2, and T3
[Figure 5.5]. T1 is the central tunnel, which takes the shortest path
from the active site to the solvent, going straight upwards, and has
a similar shape for all HHDHs studied. This T1 is hypothesized to
be affected in HheC by the C-terminal part of the neighboring chain,
but the angle shown makes it not disturbed by the other chain. Also,
the “breathing” motion observed in the dynamics of the enzyme
does not affect the presence or shape of the T1 tunnel. The bottle-
neck radius of tunnel T1 ranges between 1.8 and 2.2 Å [Table 5.1],
with the latter being the biggest in HheG subclass.
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T2 and T3 are side tunnels that may appear in the different con-
formations if the side chains of the surrounding residues display
a certain conformation that does not block the entrance: H11, F12,
I84, Y185, F186, and the N-terminal residues (using HheC nomen-
clature). T2 is a tunnel that exits the active site from the front (see
Figure 5.5) and is regulated by the residues H11 and F12. If the con-
formation allows it, a slightly different T2 tunnel (named T2’) can
be formed, which goes under the halide-binding site residues. T2 is
present in HheC but is narrower by the effect of the N-terminal loop
and helix residues. These data correlate well with the high activity
of the D and G HHDHs toward bulkier and di-substituted epoxide
substrates (Calderini et al., 2019).

T3 is only present in HheC and HheG, with a very small BR for
HheC. T3 is defined by a T2 from the other side of the loop formed
by the residues 80-90, being I84, the residue that permits the pres-
ence of T3 in HheC.

To compute the frequency of frames that show a specific tunnel,
we assume that all frames in the same cluster share the same tunnels
as the representative frame. We can make this assumption thanks to
the clustering scheme used that groups together similar frames. It is
also known how close they are in the tIC spaces after transforming
them. We computed the weighted mean in the following way:

f =
∑n

i=1 δi pi

M
∗ 100 δi

{
⇒ 0 if tunnel is not present
⇒ 1 if tunnel is present

(5.1)

where M is the total number of clusterized frames, pi is the num-
ber of frames in the cluster, and n is the number of clusters in each
system.

From this data, we can extract that the tunnel T1 is wildly shown
in all HHDHs, making it the main tunnel [Table 5.2]. T2 tunnel is
hardly found in A2 and B HHDHs but is much more predominant
in the others and has a frequency of more than 90% in the case of
HheG. On the other side of the spectra, tunnel T3 is not present in
most HHDHs: in only 36.2% of the frames in HheC, and it is much
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TABLE 5.2: Computed tunnel frequency for each HHDH subclass. n.d. =
not defined

HHDH Tunnel T1 Tunnel T2 Tunnel T3

HheA2 92.4% 12.3% n.d.
HheB 97.6% 25.7% n.d.
HheC 96.9% 77.5% 36.2%
HheD2 88.0% 71.1% n.d.
HheG 97.6% 91.8% 65.8%

more present in HheG (65.8%).
We hypothesized that tunnel T2 prevalence might be related to

the conformational changes in the studied HHDHs. To understand
better the motions and regions of the enzymes that regulate the pres-
ence and BR of T2, we applied random forest classifiers to elucidate
the heavy atom distances that modulate tunnel T2 formation. The
input data for the decision trees were the distances between all com-
binations possible of contacts between heavy atoms that shape the
tunnels at any point. The table of residues containing residues that
at any point shape the tunnel was obtained using CaverAnalyst. On
the other hand, the feature that the decision tree has to predict is the
presence or absence of the tunnel T2 for the selected frame through
the random forest classifier algorithm. With this, we obtained the
contacts between heavy atoms that define the presence or absence
of tunnel T2 for each HHDH.

For HheA, T2 formation is greatly influenced by the side chains
of the residues Tyr184 (from the halide binding loop), Arg84 (from
the loop close to the catalytic residues that delimit the T3 shape in
HheC), and other residues from the same regions. These two regions
are the most flexible and are involved in the “breathing” movement.

For HheB, the presence or absence of tunnel T2 mainly depends
on Tyr166. Only when Tyr166 is displaced out of the active site
pocket, the tunnel T2 is available. Because HheB and the region
of the Tyr166 are rigid, this explains the low frequency of T2 for
HheB. The tunnel T2 in HheC is mainly defined by residues in the
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protein’s most flexible regions: the N-terminal loop (5-14) and the
halide binding site, specifically, the residue Pro183. For the HheD2,
the tunnel T2 is usually short and only limited by the residues in the
N-terminal loop, specifically Phe17, and residues close to the active
site (65-80) also play a role in this system.

Finally, in HheG, the tunnel T2 is defined between the halide-
binding site residues and the loop close to the catalytic residues.
However in this enzyme, the catalytic pocket is wider than in the
other HHDHs, and the distance between the catalytic residues and
the halide-binding site of the protein is considerably bigger, thus ex-
plaining the high prevalence of this tunnel for HheG (92%). Also,
the flexible N-terminal part in HheG does not play a role in tunnel
T2.

Altogether, studying the flexibility between the HHDHs families
has revealed essential regions on the enzymes that may play an
important role in defining the different displayed properties. Some,
like HheB, are much more rigid than others, but all of them show
a “breathing motion” of the halide binding site. This motion
brings closer the halide-binding site residues with the catalytic-site
residues and thus allows the enzyme to adopt closed conformations
of the loop. This open-closed transition was originally thought to
be affecting the main tunnel (T1). However, after inspecting the
tunnel dynamics in all HHDHs employing this new computational
protocol using t-SNE coupled with Caver, we observed that tunnel
T1 remains unaffected by this motion. Indeed it is tunnel T2 the
most affected by this breathing, thus suggesting a key role of T2 for
the observed differences in substrate scope and activities displayed
in the HHDHs’ subclasses.
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6.1 Halohydrin dehalogenase type D: State-of-the-Art

From the new families obtained in the previous studies using a new
query for BLAST search in the databases, the most extensive fam-
ily of HHDHs that was found was the D(Schallmey et al., 2014).
HHDHs type-D show a high melting temperature and can catalyze
the reactions at higher temperatures than most of the HHDHs fam-
ilies previously known. They display low catalytic proficiency for
converting ethyl 4-chloro-3-hydroxybutyrate into ethyl 4-cyano-3-
hydroxybutyrate. However, there is one exception, which is HheD2.
This HHDH shows lower thermal stability than the rest of the mem-
bers of the same class and displays ten times greater catalytic activ-
ity than most HHDHs in the D family. The melting temperature of
HheD2 is 38ºC, 17-24ºC inferior to that of the other enzymes in the
same family(Wessel et al., 2021).

These differences are remarkable, considering the high sequence
identity among all enzymes in the family ( >67%). To rationalize
the sequence variations that make the differences in behavior, the
HheD2 was crystalized and studied in Prof. Anett Schalley’s lab.
As described in the previous chapter, there are some structural dif-
ferences between HheD2 and other HHDHs from different families,
and the sequence identity is low. Still, the tetrameric form, the halide
binding site, and catalytic residues are conserved. In this project, we
were intrigued to evaluate if conformational dynamics could explain
the different thermal stability and activity of HheD2.

6.2 Computational details

6.2.1 System preparation

The selected HHDHs were prepared and simulated without any lig-
and and in tetrameric conformation. Amino acid protonation states
were predicted using the PropKa software(Olsson et al., 2011). Then,
the enzyme was solvated in a pre-equilibrated cubic box with a 10
Å buffer of TIP3P water(Jorgensen et al., 1983) molecules using the
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AMBER16 leap module. The systems were neutralized by addition
of explicit counterions (Na+).

A two-stage geometry optimization approach was performed.
The first stage minimizes the positions of solvent molecules and ions
imposing positional restraints on solute, and the second stage is an
unrestrained minimization of all the atoms in the simulation cell.
The systems are gently heated using six 50 ps steps, incrementing
the temperature 50 K each step (0–300 K) under constant volume
and periodic boundary conditions. Extra heating step of 30 K was
performed for the 330 K MD simulations.

In order to control the temperature, Langevin thermostat was
used. All systems were equilibrated without restrains for 2 ns at
a constant pressure and temperature.

6.2.2 Molecular dynamics

After system equilibration, all MD simulations were performed un-
der NVT ensemble, performing at 60 ns per day in our in-house GPU
cluster GALATEA (Nvidia GTX1080). In particular, five replicas of
500 ns were carried out for each system and temperature, adding up
to 15 µs (7.5 µs at each temperature) of accumulated MD simulation
time. MD simulations were done using the David E. Shaw modifi-
cation of the Amber 99SB force field (ff99SB-ILDN)(Lindorff-Larsen
et al., 2010).

All analysis done was carried out in Jupyter-notebook environ-
ment (python), using mdtraj(McGibbon et al., 2015), pytraj (Am-
bertools 16)(Roe and Cheatham III, 2013; Nguyen et al., 2016) and
pyemma(Scherer et al., 2015) libraries. tICA features included in this
manuscript are alpha-carbon coordinates.

6.3 Results and discusion

In Prof. Anett Shallmey’s lab, they constructed several modifications
in HheD2 to enhance thermal stability using two approaches. The
first was using the FoldX online server(Schymkowitz et al., 2005) in
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the AlanineScan mode and comparing ∆Gs for each residue if mu-
tated to an alanine. In the end, the residue showing a lower ∆∆G
was D198. Looking at the 3DM databases, for HHDHs in this po-
sition, Asp is one of the less frequent amino acid, being the most
common residues: isoleucine and valine. The most uncommon one
is leucine. The mutants HheD2 D198I, D198V, and D198L were then
selected for experimental validation(Wessel et al., 2021).

The second approach was to replace the region that shows the
highest β-factors of the protein (highest mobility) with the ones
found in the thermally more stable HHDHs, in this case, HheD3
and HheD5. Therefore the most solvent-exposed helices (αE and αF)
in the halide-binding site of HheD2 were replaced with the helix of
HheD3 and HheD5, thus creating the variants HheD2 helixD3 and
HheD2 helixD5. Both strategies generated more thermally stable
enzymes but at the expense of lowering their catalytic rates.

To understand the molecular mechanism that makes these en-
zymes more thermally stable and less active, we computationally
evaluated the system HheD2, HheD2 D198V, and HheD2 helixD3.
To better understand the protein’s thermal stability, MD simulations
were performed at 27 and 57 ºC by including an extra heating step in
the heating process. At 57 ºC, we expected the mutants to have ac-
tivity, as opposed to the WT (based on the experimental data). Five
replicas of 500 ns were done for each system at different tempera-
tures, leading to 15 µs of accumulated MD simulated time (2.5 µs
(5*500 ns) x 3 systems x 2 temperatures). The first analysis done
was to check the RMSF for the molecules at 27 and 57 ºC. The most
flexible regions are the helices αE and αF in the halide-binding site
and the loop on top of the catalytic site, similar to the same behav-
ior explored in the previous chapter (i.e., the so-called “breathing
motion”). However, looking at the data at 57 ºC, the helices in the
halide-binding site present much higher flexibility[Figure 6.1].

Further conformational analysis was done by computing the
tICA on the alpha-carbon coordinates of the enzymes. This revealed
three different conformations that the enzymes can explore: X-ray-
like, A, and B conformations [Figure 6.2]. These two new A and
B conformations disrupt the halide-binding site differently. In A,
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the halide-binding site is completely unfolded and disorganized,
making the enzyme not preorganized for catalysis. In the B con-
formation, the halide-binding helices site completely collapses on
top of the catalytic residues, thus undergoing a drastic “breathing”
motion leading to a fully occluded state not optimal for catalysis.
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FIGURE 6.1: Common conformational space (shown in grey) for WT and
helixD3 variant reconstructed by applying the dimensionality-reduction
technique tICA to the combined (WT and helixD3) MD trajectories at 57
°C (five replicas of 500 ns, i.e., 2500 ns for each system). The x- and y-axis
correspond to the first identified tIC components (tIC0 and tIC1), describ-
ing the slowest kinetically relevant conformational changes observed along
the MD runs. The different conformations were visited at high tempera-
ture (57 ºC) (color range: initial MD frames are shown in purple, whereas
final ones are shown in yellow). All simulations start at the X-ray structure
(marked with a black arrow). The simulation evolves towards minima A
in the WT trajectory. For the helixD3 variant, one of the MD simulations
also progresses towards A, whereas in the other MD trajectory, minima B

is explored.
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All these new conformations [Figure 6.2] are sampled in the MD
simulations performed at higher temperatures, whereas the ones at
standard conditions remain in the X-ray-like conformations [Fig-
ure 6.2]. The variant HheD2 D198V showed conformations closer
to A. As mentioned before, in the A conformation, the enzyme has
no functional halide-binding site. This D198V mutation disrupts
the hydrohen-bonding between the residue D198 and Q160. This
hydrogen-bond stabilized the loop region 170-186, which contains
the helices αE and αF. Such hydrogen-bond disruption makes the
halide-binding site substantially more flexible, thus explaining the
lower activity shown, especially at higher temperatures.

However, HheD2 helixD3 experimentally showed excellent ther-
mal stability(Wessel et al., 2021) and no drastic activity reduction.
This engineered variant can also explore the A and B conforma-
tions in the MD simulations. This B conformation is characterized
by the slow motion of the αE and αF helices towards residues 68–74,
thus leading to the highly occluded state due to the drastic “breath-
ing” motion. This is motivated by the hyper flexibility of the αE
and αF helices and the prior breakage of the D198-Q160 hydrogen-
bond. However, multiple new polar and hydrophobic interactions
were found between the new colliding regions thanks to the mod-
ifications introduced in the halide-binding site helixes. This new
conformation explains the enhanced thermal stability thanks to the
increased buried surface area(Schymkowitz et al., 2005; Schallmey
et al., 2013).
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FIGURE 6.2: Representative conformations extracted from energy min-
ima A and B compared with the starting X-ray structure. Catalytic triad
residues are displayed in yellow, the halide-binding site residues in purple,
and the teal residues establish new interactions in the thermostable confor-
mation. In particular, tIC0 describes the unfolding of the halide binding
pocket, whereas tIC1 describes the slow motion of the αE and αF helices

towards residues 68–74.

In summary, the D198V variant disrupts the hydrogen-bond in-
teraction between D198-Q160. This increases the flexibility of the
residues 170-186, but due to the lack of mutations introduced in
the HheD2 helixD3 variant, the B conformation cannot be stabilized.
This observation explains the reduced thermal stability of the single
mutant variant compared to the helix3 variant and results in very
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low catalytic activity. However, the rearrangement of the helices αE
and αF in variant helixD3 at higher temperatures requires the break-
ing of the hydrogen-bond between D198 and Q160. Consequently,
we proposed to Prof. Anett Schallmey’s group to study the combi-
nation of the two mutants because the mutations may have a syner-
gistic effect. Indeed, the new HheD2 D192V helixD3 exhibited 90%
relative activity at 60ºC but with a very low base activity. This can
be explained by this new enzyme’s ability to explore all A and B
conformations freely.
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7.1 Halohydrin dehalogenase type C: State-of-the-Art

Of all the attempts done to engineer HheC, the most successful is the
one from Fox et al.(Fox et al., 2007) In this work, they performed DE
on HheC from Agrobacterium tumefaciens to obtain the best catalyst
for their use in the pharmaceutical industry, particularly for the syn-
thesis of statin drugs. This study from Codexis used an algorithm
called ProSAR to select neutral, beneficial, or harmful mutations
during the different rounds of DE. With this approach, a new library
including the beneficial and neutral plus novel random mutations
are included in the DE process, thus generating improved variants
(round) along the DE evolutionary pathway [See Figure 7.1]. This
process finishes until an enzyme fulfilling the desired activity to-
wards ethyl (S)-4-chloro-3-hydroxybutyrate [Overall reaction in Fig-
ure: 1.3], superior selectivity and stability for the tested conditions.
In this study, they performed 18 rounds of DE, thus yielding the
HheC mutated protein (named HheC R18) that includes 37 muta-
tions. HheC R18 and the previous evolved variants have mutations
all around the protein, and because of how DE works, what are most
of the mutations doing in the enzyme is not known, but all are ben-
eficial in some way.
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FIGURE 7.1: Scheme of the Directed Evolution (DE) from (Fox et al., 2007).
In this scheme, the structures of the different variants obtained are shown.
The number of mutations is displayed in parenthesis, and the position of
the mutations is shown in spheres. In blue the mutations introduced on the
round 3 or prior, in orange, the mutations introduced between round 3 and
9, in purple the mutations introduced between round 9 and 17, and finally

the mutations introduced in the round 18 of DE in green.

Some of the mutations included in the last HheC R18 variant
were previously studied as single points variants and are known for
the effect they have on the protein(Schallmey et al., 2015; Tang et al.,
2002; Guo et al., 2015). However, the role of many other mutations is
hypothesized. One example is the mutation T143A, which was stud-
ied in a previous study and is known to enhance catalytic activity
11-fold(Schallmey et al., 2015). The mutations M245V and C153S en-
hance the stability of the enzyme by impeding unwanted disulfide-
bond formation(Tang et al., 2002). The mutation P84V enhances the
enantioselectivity towards the R epoxide(Guo et al., 2015). In a pa-
per from Prof. Janssen, they studied a variant from the ProSAR ex-
periment that was not selected, but showed better activity and much
higher thermal stability(Schallmey et al., 2013). In that paper, they
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described the effect of many of the mutations present. Hereafter
the mutations for the thermostable mutant that are found in HheC
R18 are discussed. F86W, H201W, V205Y, Q87R, and P135S enhance
the stability of the tetrameric conformation by generating new inter-
actions between monomers, thus stabilizing the tetrameric confor-
mation. Also, mutations Q37H, K38Q, G99D, and K121R increase
electrostatic effects on the surface, making the protein more water-
soluble and stable. F86W affects the binding of bulkier substrates by
limiting W139 mobility. F82A and A83P allow a productive binding
of the epoxide, thus enhancing the activity and changing selectivity.
Mutation P185Y stabilizes the cis-peptide bond in the halide-binding
site. This cis-peptide bond is vital for interacting with the halide,
water, or another nucleophile in the active site. The mutations A83P,
P84V, and P135S use the fact that prolines have less flexible dihedrals
to either increase flexibility in desired areas by modifying the pro-
lines for some other amino acids or adding rigidity by introducing
the conformationaly restricred proline.

Even with all that information extracted from the crystal struc-
ture and using FoldX calculations, the effect of most of the 37 muta-
tions found in R18 is still unknown. The complex interactions and
synergistic effects they may have, has also not been explored.

7.2 Computational details

7.2.1 System preparation

HheC WT and variants were prepared with ligand and in dimeric
and tetrameric conformation. Amino acid protonation states were
predicted using the PropKa software(Olsson et al., 2011). Then, the
enzyme was solvated in a pre-equilibrated cubic box with a 10 Å
buffer of TIP3P water(Jorgensen et al., 1983) molecules using the
AMBER16 leap module. The systems were neutralized by addition
of explicit counterions (Na+). The ligand was parameterized using
the antechamber and parmchk programs from ambertools16(Case et al.,
2005). The charge values were obtained by single point Hartree-
Fock(Seaton, 1977) calculations using Gaussian 09 software(Frisch
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et al., n.d.) using the 6-31G∗ basis set(Rassolov et al., 2001). Other
parameters were extracted from the General Amber Force Field
(GAFF)(Wang et al., 2004)

As in previous chapters, a two-stage geometry optimization ap-
proach was performed. The first stage minimizes the positions of
solvent molecules and ions imposing positional restraints on solute,
and the second stage is a unrestrained minimization of all the atoms
in the simulation cell. The systems are gently heated using six 50
ps steps, increasing the temperature 50 K each step (0–300 K) under
constant volume and periodic boundary conditions. Extra heating
step of 30 K was performed for the 330 K MD simulations.

In order to control the temperature, Langevin thermostat was
used. All systems were equilibrated without restrains for 2 ns at
a constant pressure and temperature.

7.2.2 Molecular dynamics

All simulations were done using the Amber 99SB force field
(ff99SB-ildn)(Lindorff-Larsen et al., 2010) After equilibration in the
isothermal-isobaric ensemble (NPT), 3 replicas of 2000 ns were run
for each system in the canonical ensemble (NVT). After that, the
MD data is obtained is analysed and the free energy is expanded by
selecting new starting points of shorter MD simulations from the
less explored areas in order to sample all the conformational space
as possible. This is known as adaptive sampling (Bowman, Ensign,
and Pande, 2010). After several rounds of sampling, 126 µs were
obtained from the dimeric systems and 280 µs between HheC and
HheC R18 in the tetrameric conformation.

The graphics processing unit (GPU) version of pmemd in Am-
ber16 was used for the MD simulations, which were executed on the
in-house GPU cluster GALATEA.

96



7.2. Computational details

7.2.3 MD analysis

Dimeric systems

To understand backbone movements that might be affected by the
dynamics of the enzyme, distances between alpha-carbons were se-
lected as features for tICA analysis of the dimeric systems. Because
the number of features is equal for all systems, tICA space was com-
puted together with all the variants and later split for its evaluation.
We used Python packages Numpy (Harris et al., 2020), Pandas (pan-
das_dev_team, 2020), pyemma (Scherer et al., 2015), and Matplotlib
(Hunter, 2007) for data manipulation, statistics, and visualization.

Tetrameric systems

Initially, the analysis intended in this chapter was to build a Markov
State Model (MSM)(Chodera et al., 2007; Bowman, Huang, and
Pande, 2009; Husic and Pande, 2018) of all the conformations
obtained during the MD simulations to elucidate the changes in
activity allong the different DE variants: WT, R9 and R18. Trying
multiple collective variables (CV) were not successful. We observed
that the most evolved variants are much more rigid and stable in
only one conformation (especially for the tetramerical systems)
compared to HheC WT or less evolved variants. The MSM was
therefore not build because at least 2 conformations are needed.
Although there is no MSM built, the extensive MD simulated data
can be analyzed to rationalize the change in proficiency.

Data was extracted from the MD simulations and sequencial
tICA dimensionality reduction was used by using the pyemma
software(Scherer et al., 2015). The input data for this analysis i.e.,
CVs was focused on the set of binding distances along the MDs
that have a major influence in the proper binding of the cyanide
and epoxide substrates in the active site. In order to rank this set of
parameters, all distances between carbon-alpha were computed and
using random forest regressor (RFR)(Breiman, 2001), were ranked.
The best 30 are selected as CVs. The initial data was randomly
split into a training set (80%) and test set (20%). We used Python
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packages Numpy (Harris et al., 2020), Pandas (pandas_dev_team,
2020), Scikit-Learn (Pedregosa et al., 2011), and Matplotlib (Hunter,
2007) for data manipulation, machine-learning, and visualization.

The tICA space is build using the 30 CVs selected distances
and the surface is clusterized using the kmeans(Jin and Han, 2010)
algorithm and 400 random cluster-centers. After this, the Markov
macroclusters are build with 2 conformations for the WT system.
2000 frames from each most stable conformation of each macro-
cluster were extracted and all contacts between all residues were
computed for these frames. Smirnov-Kolmogorov non-parametric
test(“Kolmogorov–Smirnov Test” 2008) was used to explore the
most divergent contacts on each macrocluster sampled, The 20 most
divergent features were then used as input for generating the new
tICA space.

7.3 Experimental details

Kinetic experiments were carried out by Ms. Sophie Staar (Günther)
under supervision of Prof. Dr. Anett Schallmey, head of the Bio-
chemistry group of the Technische Universität Braunschweig.

All other experiments were carried out by Mr. Miquel Estévez-
Gay under supervision of Prof. Dr. Anett Schallmey in the Tech-
nische Universität Braunschweig with the help of Mr. Marcel Staar,
or under supervision of Dr. Marc Ribó in the Universitat de Girona
with the help of Mr. Alejandro Romero in the Enginyeria de pro-
teines (Protein engineering) group.

7.3.1 Protein production

Escherichia coli strains DH5α and BL21 (DE3) Gold (Thermo Fisher
Scientific, Darmstadt, Germany) were used as hosts for cloning and
heterologous protein production, respectively. HheC WT and mu-
tant genes were expressed from pET28a(+) and pBAD-based vectors,
utilizing a T7 promoter. For the kinetics experiments, an N-terminal
hexahistidine tag (His-tag) fusion was included. For stability and
oligomerization experiments, the proteins did not include a His-tag.
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For heterologous production of HheC, 500x2 mL TB media (4
mL ∗ L−1 glycerol, 12 g ∗ L−1 peptone, 24 g ∗ L−1 yeast extract) sup-
plemented with kanamycin or ampicilin (based on the vector) was
inoculated using 10% (v/v) of the respective overnight culture. Pro-
tein expression was directly induced by adding IPTG or L-arabinose
(based on the expression system). After 3 h incubation (37 °C, 200
r.p.m.), cells were harvested by centrifugation (4400 g, 20 min at 4
°C) and cell pellets were stored at -20 °C until further use.

7.3.2 Protein purification

With His-tag

Protein pellets were resuspended in 50 mM Tris·SO4, 500 mM
Na2SO4, pH 7.5 buffer and cell membranes were broken by soni-
cation. After centrifugation (11000 g, 30 min at 4 °C) and filtration,
purification of resulting enzymes was performed by immobi-
lized metal affinity chromatography using a 5 mL HisTrap HP
column (Cytiva, Marlborough, United States of America) and an
Äkta Pure FPLC system (Cytiva) according to a published pro-
tocol(Koopmeiners et al., 2016). HheC-containing fractions with
the highest protein purity, as determined by SDS-PAGE, were
pooled and afterwards desalted using PD-10 columns (Cytiva) and
Phosphate buffer (pH 7.5, 4 mM EDTA, 7.1 mM β-mercaptoethanol).

Without His-tag

Protein pellets were resuspended in 50 mM Tris·SO4, 500 mM
Na2SO4, pH 7.5 buffer and cell membranes were broken by french
press. After centrifugation (11000 g, 30 min at 4 °C) and filtration,
purification of resulting enzymes was done by collecting the soluble
phase and anion-exchange chromatography using a HiTrap column
(GE Healthcare, Freiburg, Germany) on an Äkta Pure FPLC system
(GE Healthcare) using NaCl up to 1 M. The corresponding target
peak eluded at 0.37 M NaCl and was tested by SDS-page. After
ion-exchange, size-exclusion chromatography was performed in
orger to get a extra pure sample, swap the Cl− ions with Tris-SO4
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50mM pH 7.5, 4 mM EDTA, 7.1 mM β-mercaptoethanol buffer and
test the oligomerization state (more on the results section). To so
so, Superdex 200 Increase 10/300 GL column (Cytiva) and an Äkta
Pure FPLC system (Cytiva).

7.3.3 Thermal Stability assays

Thermofluor assay was used using the purified protein, including
the SYPRO orange dye. Using the QuantStudio™3 real-time cycler
(Thermo Fisher Scientific), the light emited by the dye was moni-
tored while increasing the temperature gradualy up to 95 ºC.

A JASCO J810 instrument equipped with a Peltier temperature
control module attached to a thermal bath was used in order to mon-
itor the proteins UV-absorbance (260 and 280 nm) while heating the
sample.

7.3.4 Halide-release kinetics

Halide-release kinetics was monitored using pure ethyl (S)-4-
chloro-3-hydroxybutyrate ((S)-4-C-3-HB) in the halide-release assay
described in literature(Schallmey et al., 2015). The reaction was
monitored by checking the absorbance at 480 nm. With this strategy,
the amount of chlorine is monitored, thus knowing how much of
the corresponding (S)-ethyl-2-(oxiran-2-yl)acetate (2-OAA) epoxide
is produced.

7.3.5 Epoxide-opening kinetics

The epoxide ring opening reaction was monitored by monitoring
the formation of the hydroxynitrile product by GC (GC-2010 Plus,
Shimadzu). Product formation was quantified on the basis of a stan-
dard curve for product. Chemical background activities in control
reactions without enzyme were subtracted before fitting.

In order to get the get the kinetic parameters of both epoxide and
cyanide, the other substrate was kept at fixed concentration at least
5 times more concentrated than the K50 value.
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7.4 Results and discusion

To rationalize the effect of the introduced mutations in HheC R18,
our goal in this project was to study the effect of the mutations in-
troduced in HheC and their effect on the enzyme conformational dy-
namics using multiple replicas long timescale MD simulations and
also experimental evaluation.

7.4.1 Experimental evaluation of HheC WT and R18

It was not known experimentally whether the introduced mutations
had an impact on the enzyme oligomerization state, thermal stabil-
ity, and kinetic constants. In this chapter of the thesis, these parame-
ters were explored and compared between WT and variants in order
to know the effect of the mutations introduced.

Changes in the oligomerization state of HheC WT and R18

To experimentally evaluate the oligomerization state of HheC and
HheC R18, we produced the two proteins using recombinant genes
without including His-tag. The proteins were purified using ion
exchange chromatography [Figure 7.2]. The amount of produced
protein was significant, and with only this purification step (tested
by SDS-PAGE), a significant amount of protein with enough purity
was obtained. However, a calibrated size-exclusion chromatogra-
phy was used to explore the oligomerization states of the proteins
(WT and R18) and to further purify them [Figure 7.3]. Interestingly,
HheC WT shows the peaks for the monomeric and tetrameric con-
formation. These peaks were then isolated and analyzed further to
understand if this is a stable equilibrium between conformations or
if these are stable. After a day, the oligomerization states were mea-
sured again, obtaining similar results. Significantly, HheC WT re-
covered the dimeric conformation after purifying, lyophilizing, and
solubilizing it again. This event did not happen in HheC R18, where
we observed tetrameric conformation after the ion exchange purifi-
cation and after one hour after solubilizing. HHDHs are reported as
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part of the SDS family and are usually reported active as dimer or
tetramer(Hylckama Vlieg et al., 2001), but HHDH’s primary active
conformation is the tetrameric state(Jong et al., 2003). The results
suggest that HheC R18 has a much more stable tetrameric confor-
mation.

FIGURE 7.2: Output of an ion-exchange chromatography for the purifi-
cation of HheC. On the X axis it is displayed the volume of liquid phase
eluded, in blue, the absorbance at 280 nm and in orange the gradient of

buffer A (without salts) and B (with salts).
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FIGURE 7.3: Output of a Size-Exclusion chromatography (gel filtration) for
the purification of HheC and study of the oligomerization state. On the
X axis it is displayed the volume of liquid phase eluded. The line in blue

indicates the absorbance at 280 nm at every point of the filtration.

Thermal stability assays of HheC WT and R18

To obtain the thermal stability data, we purified HheC and HheC
R18, followed by monitoring the absorbance at 260 and 270 nm
while heating the samples. With this technique, one can monitor
how the absorbance increases thanks to the unfolding events occur-
ring in the protein that expose the usually buried aromatic residues,
thus being solvent-exposed [Figure 7.4]. With this experiment, we
observed how both HheC WT and HheC R18 showed high thermal
stability, but measuring the exact melting temperature value was
not straightforward with this procedure.
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FIGURE 7.4: Spectra at 260 and 280 nm of HheC while increasing gradually
the temperature. We can observe that the thermal resistance is high, but it

is difficult to decipher T1/2.

Additionally, we used the thermofluor technique to evaluate the
thermal stability more accurately and obtain the melting tempera-
tures for both WT and R18. To do so, we used the SYPRO orange die
and a qPCR machine. We computed the melting temperatures (T1/2)
in triplicate. This T1/2 is the temperature where half the protein is
unfolded. This point is where the melting curve is at half the maxi-
mum value, and the slope is at its maximum value. Therefore to cor-
rectly compute it, we obtained the position where the first derivative
is at the maxima. The median value of all three replicates indicated
that all two present a melting temperature of approximately 73ºC.

Thanks to the experimental assays, we know that HheC WT
shows high thermal stability, which was not modified along the
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rounds of DE. Finally and most importantly, what remained to be
elucidated was how activity towards the main and promiscuous
reaction was modified. It is known and reported by Fox et al.(Fox
et al., 2007) that HheC R18 shows a much higher conversion in the
overall reaction [Figure 7.5] (ethyl (S)-4-chloro-3-hydroxybutyrate
to ethyl (R)-4-cyano-3-hydroxybutyrate using cyanide), but how
kinetic parameters are affected for any of the two reactions was not
previously studied.

FIGURE 7.5: ChemDraw scheme of the overall reaction catalyzed by HheC.
The reaction shows the conversion of ethyl (S)-4-chloro-3-hydroxybutyrate
(1) to ethyl (R)-4-cyano-3-hydroxybutyrate (3) using cyanide. This is done
in 2 reactions, the first one produces the corresponding epoxide (2) and

releases clorine (Cl−)

Kinetic characterization of HheC WT and R18

For the first dehalogenation reaction, the data shows a Michaelis-
Menten distribution for both HheC WT and HheC R18 [Figure 7.6].
HheC WT shows better kcat and KM values, thus making HheC WT
an overall 15 times more effective. Knowing that HheC R18 was
evolved to perform both reactions consecutively but was specially
engineered for enhancing the second promiscuous reaction, this
worst dehalogenation activity found in HheC R18 is not unexpected.
Interestingly, despite the tetrameric state of the protein, the shape of
the kinetics did not change into a Hill equation, so no cooperativity
between monomers is needed at this stage.
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FIGURE 7.6: Kinetic data obtained from HheC WT and HheC R18. The data
is represented in a Michaelis-Menten distribution. With this data, kcat and

KM are obtained for the dehalogenation reaction.

Regarding the promiscuous epoxide-ring opening reaction using
cyanide, Nickel chloride was used to track the cyanide consumption.
This is done by measuring absorbance at 276 nm. For this reaction,
pure 2-OAA is used as a substrate, and NaCN as CN− source. To
get the kinetic parameters for the epoxide and cyanide, we kept one
of the substrates at a high concentration to make it not affect the
kinetics. The other was added at different concentrations to obtain
the kinetic values. After measuring the kinetic values of the cyanide,
it was clear that to measure the kinetics of the epoxide correctly, it
was necessary to use a high concentration of cyanide. This was not
done at five or ten times more than the KM of the cyanide for safety
reasons, so only two times the KM values for the cyanide were used.
With that, it is important to note that while kinetic values may not
be highly accurate, they are still sufficiently precise for the purpose
of comparison.

The results showed that HheC R18 has more than one hundred
(100) times higher catalytic activity towards cyanide and one hun-
dred and thirty (130) times more thowards 2-OAA [Figure 7.7]. In
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both cases, the significant increase is in the kcat value. Another in-
teresting observation is that for both cyanide and 2-OAA, the kinet-
ics follow a Hill–Langmuir formula and not Michaelis-Menten with
Hill constant (nH) of 3.36 and 1.43 values, respectively. Otherwise,
regarding the kinetics values of HheC WT, only cyanide follows a
Hill equation (nH=3.03), and epoxide follows the typical Michaelis-
Menten. We used Hill to fit the data in all the cases to make the data
comparable.

FIGURE 7.7: Kinetic data obtained from HheC WT and HheC R18. The
data is represented in a Hill distribution. With this data, kcat and K50 are
obtained for both 2-OAA and cyanide on the epoxide-ring opening reac-

tion.
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Therefore the mutations introduced in HheC to obtain HheC R18
yielded a much higher activity towards the promiscuous reaction.
The rates for the epoxide-ring opening reaction are equal or higher
as in the HheC WT, making it not the promiscuous reaction any-
more. The mutations increased the catalytic efficiency by increasing
kcat and not KM or K50. The other parameter that increased is the
Hill constant (nH). This parameter is what defines cooperativity be-
tween subunits(Weiss, 1997). For this second reaction, nH for the
binding of the epoxide is 0.96 for HheC WT and 1.43 for HheC R18.
This means that there is a higher cooperativity between subunits on
the R18 variant. One way to understand positive cooperativity (1 <
nH < number of active sites) in the Hill equation is that it is easier
to have an effective binding event in one monomer if there is effec-
tive binding in another active site (understanding effective binding
as the event of having the substrate well positioned for catalysis). If
there is negative cooperativity (0 < nH < 1), it is more challenging to
have effective binding if there is a substrate in another active site.

Monitoring the cyanide consumption, we measured that the Hill
parameter is much higher in HheC WT but even higher for HheC
R18, being 3.03 and 3.36, respectively. This means that for this re-
action when effective binding happens for the cyanide, it is highly
probable to have another cyanide in another active site. In the case of
HheC R18, the value is almost at its maximum (4); which means that
the binding event of cyanide is significantly increased when cyanide
molecules are bound in the other active site, making it almost simul-
taneous binding.

7.4.2 Computational exploration of the conformational land-
scape of HheC WT and R18

More than one-hundred µs of simulated MD time in the tetrameric
system (HheC WT and R18) for each variant was accumulated to
evaluate the conformational dynamics of HheC WT and R18 and
understand their different catalytic activities (see below). However,
we also included the analysis of the dimeric (AB) system because
we experimentally observed that HheC WT is also found as a dimer
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(as shown by the size-exclusion chromatography) and has been de-
scribed previously in SDR-family enzymes and HHHDs.

Capturing global conformational dynamics of HheC WT, R9, and R18 in
the dimeric state

All the systems simulated in this chapter have cyanide, and the 2-
OAA epoxide initially bound in the active sites. For the long 2000
ns MD simulations, both epoxide and cyanide unbind the active site
early in the MD simulations for all systems.
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FIGURE 7.8: Free Energy Landscapes obtained from the MD simulations
of the systems in the dimeric oligomerization State. With a black dot is
marked the position of the X-ray of HheC WT in the tICA space. Individual
plots for each system are created, and on the top-right there is the FEL

generated using all data of all variants together.

HheC WT has a main conformation not far from where the crys-
tal structure lies[Figure 7.8]. All conformations in HheC dimer are
not drastically different from each other, and none show any con-
siderable deformation or movement of the enzyme. HheC R9 shows
two main conformations; it maintains the X-ray-like conformation,
and another one where the big helix that holds the catalytic residues
Tyr145 and Arg149 are displaced, which are not well positioned for
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catalysis. Regarding HheC R18, the X-ray-like structure is also ex-
plored, but now another predominant conformation has been sam-
pled. In this new conformation, the halide-binding site is completely
disrupted and reorganized due to a massive opening of the catalytic
pocket. In this new conformation, catalysis is unlikely to happen
because the halide binding site and catalytic residues are entirely
disorganized. Compared to HheC R9, the barrier of going from the
X-ray-like conformation to the disorganized one in HheC R18 is al-
most barrier-less7.8.

The results from the MD simulations in the dimeric conformation
seem to be paired with the experimental results in the oligomeriza-
tion state. HheC is stable in X-ray-like conformations. However,
HheC R9 and R18 are not. Also, we know that the mutations in-
cluded in the first half of the DE process already destabilized the
dimeric conformation in HheC. Also, the dimeric conformations fail
to stabilize a conformation with the substrates in the active site, also
pairing with the reported data suggesting that the dimeric confor-
mation is not active.

Capturing global conformational dynamics of HheC WT, R9, and R18 in
the tetrameric state

We also explored HheC WT and R18 in the tetrameric oligomeriza-
tion state. Our analysis also started with long MD simulations and
progressively sampling other conformations in rounds of ten repli-
cas of 200 ns simulations. In this case, only HheC WT and HheC
R18 were computed (due to the higher computational cost of the
tetrameric calculations). Interestingly, as opposed to the dimeric
state backbone analysis using alpha-carbon distances shows a much
better stabilization of HheC R18 than HheC WT. HheC R18 displays
a single conformation resembling the X-ray structure with the halide
binding and active site pockets properly preorganized for cataly-
sis[Figure 7.9].
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FIGURE 7.9: FEL obtained from the MD simulations of the systems in the
tetrameric oligomerization State. Individual plots for each system are cre-
ated. On the left, the FEL for the HheC WT and on the right the FEL of

HheC R18.

It should also be mentioned that binding distances for cyanide
and 2-OAA are much shorter for both systems than those found in
the dimeric simulations, and there are no unbinding events at the
start of the simulations. By computing the binding distances for each
chain, one can find similar trends for monomers A and C in HheC
WT. Still, HheC R18 improves binding distances in monomers B and
D, specifically in cyanide binding. Because of this phenomenon and
the higher Hill coefficient found for R18 in the cyanide epoxide-ring
opening reaction, we explored the allosteric effect that this event
might have using the Shortest Path Map (SPM) tool(Romero-Rivera,
Garcia-Borràs, and Osuna, 2017b).

The SPM highlighted in HheC WT essential residues (Tyr178
and Leu179) in the halide-binding site and connected them to the
catalytic and closeby residues of the opposite monomer (Tyr145,
Ala104, and Leu105) [Figure 7.10]. During the path, residues Lys122
and Val113, mutated in HheC R18, are selected, and Asp97, Asn114,
Val116, Met120, Arg123, Ser144, Ala159, Lys162, and Gly164 are
residues that are mutated in HheC R18 and interact with residues in
the SPM path. This path seems essential for describing the allosteric
communication existing between monomers and mutating residues
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in this pathway seems to be incrementing the allosteric effect in
HheC R18.

FIGURE 7.10: 3D representation of the SPM results obtained from the MD
simulations of HheC WT.

Capturing active site conformational dynamics of HheC WT and R18

To rationalize the increase in kcat between HheC WT and HheC R18,
we created a new set of features to focus more on catalytically im-
portant events (rather than global conformational dynamics). Due to
having four active sites, the simulations were analyzed as monomers
and aligned with each other. To have a better set of features, Random
Forest Regressors (RFR) were used to extract those alpha-carbon dis-
tances that explain the better binding of cyanide and 2-OAA.
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For cyanide binding, the distance between CN− and the N of
Tyr177 in the halide-binding site is computed and used as a target in
the RFR.

The output shows that three regions are of great importance: the
loop and the end of the N-terminal alpha-helix (11-14, more specif-
ically, Gly13), residues in the alpha-helix close to the catalytic Argi-
nine (99-105), and the colliding residues in the loop close to the cat-
alytic residues (specifically Ile81).

The 30 distances with higher prediction values from the RFR are
then used as features for the new tICA space. This new tICA space
describes the different conformations represented by the previously
described areas that are sampled [Figure 7.11]. HheC R18 stabilizes
one conformation, but HheC WT samples two other barrierless con-
formations. Because all residues have fundamental interactions be-
tween side chains, and by using alpha-carbon interactions, we are
not explicitly considering the conformation-defining CVs. In or-
der to achieve that, 2000 frames of each conformation in HheC WT
were extracted, and all contacts between residues were computed.
Then, to decipher the ones that vary the most between the differ-
ent conformations, the distribution of the contact distances between
conformations were compared using the Smirnov-Komogorov non-
parametric test.
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FIGURE 7.11: Free Energy Landscape (FEL) obtained from the MD sim-
ulations of the systems in the tetrameric oligomerization State using as
features/collective variables the residue contacts selected by the Smirnov-
Kolmogorov analysis. The new tICA space has been created with all data
together and after splitted in order to obtain the individual plots for each
system. On the top, the FEL for the HheC WT and on the bottom the FEL
of HheC R18. HheC WT samples A, B, C and D conformations, and HheC
R18 stabilizes A conformation mainly and part of the B conformation (but
not stable). In red are the conformations in higher in energy, and in blue to

purple the most sampled and stable conformations.
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TABLE 7.1: Distances explored in the A-D conformations in HheC WT and
in all simulated time. CN− binding distance is the distance between the nu-
cleophyle and the Tyr177, 2-OAA binding distance is the distance between
the oxigen on the epoxide and the catalytic Tyr, and finally, the preorgani-
zation distances are the mean distances between side-chains of the catalytic

residues.

HheC WT CN− binding 2-OAA binding Preorganization

A 8.9 ± 7.2Å 19.2 ± 13.1Å 5.1 ± 2.2Å
B 16.7 ± 14.5Å 24.4 ± 13.4Å 4.7 ± 1.6Å
C 13.1 ± 12.9Å 21.3 ± 13.3Å 4.8 ± 1.9Å
D 19.6 ± 13.2Å 24.3 ± 14.3Å 4.7 ± 1.7Å
Total 14.7 ± 12.3Å 20.9 ± 13.3Å 4.8 ± 1.8Å

By ranking the results, the contacts between residues that de-
scribe the most differences between conformations are unveiled.
Unsurprisingly, most of the contacts are between residues in the
previously mentioned regions, but some take more importance,
such as Asn79, and Asp80, the catalytic residues, and nearby
residues like Thr134 and Ile130.

To get a new tICA space with greater detail, the data obtained
was used to describe a new space. This new space has more defined
conformations, but HheC R18 stabilizes only one conformation com-
pared to HheC, which explores multiple [Figure 7.11].

In this new space, the binding of the epoxide, the cyanide, and
the preorganization of the active site are explored. Distances on each
minimum were computed and compared.

In the A conformation (shared by HheC WT and HheC R18),
HheC R18 shows smaller distances between catalytic residues, sim-
ilar to the ones in the HheC WT X-ray structure (4.2Å). For HheC
WT, the conformations B, C, and D show better preorganization
distances for catalysis (arround 4.6-4.9Å) [See table 7.1]. On the
other hand, looking at the cyanide-binding distances, HheC WT
shows much shorter distances between the cyanide and the catalytic
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TABLE 7.2: Distances explored in the A-B conformations in HheC R18 and
in all simulated time. CN− binding distance is the distance between the nu-
cleophile and the Ala177, 2-OAA binding distance is the distance between
the oxigen on the epoxyde and the catalytic Tyr, and finally, the preorgani-
zation distances are the mean distances between side-chains of the catalytic

residues.

HheC R18 CN− binding 2-OAA binding Preorganization

A 12.30 ± 11.26Å 12.27 ± 9.45Å 4.66 ± 1.72Å
B 14.64 ± 10.61Å 15.21 ± 9.79Å 4.92 ± 1.94Å
Total 13.51 ± 11.63Å 12.11 ± 9.11Å 4.70 ± 1.77Å

residues in the A conformation. This means that there is no confor-
mation in HheC WT where we can observe properly preorganized
catalytic distances and also good CN− binding distances[Table 7.1].
For HheC R18, CN− binding distance in minimum A is still smaller
than the one in the other conformation B, but the mean value is
higher than HheC WT. Finally, the distance between 2-OAA and
the catalytic residues is also smaller in conformation A [Table 7.2].
Although the mean distances are quite high (and also standard
deviation) in HheC R18 there is a higher ammount of frames with
both CN− and 2-OAA below 4Å (3.25% of frames in conformation
A for HheC R18, as oposed to 1.65% frames in conformation A for
HheC WT). This data is in line with the superior activity of HheC
R18 with respect to the WT .

Thanks to all the data obtained during the MD simulations and
the thorough analysis done, the regions of the enzyme that are en-
hancing the catalytic activity, stability, and oligomerization state are
now known. tICA analysis played a crucial role to decipher the
slow movements that define the catalytically active conformations
in HheC and the R18 variant. The SPM unveiled the allosteric path-
ways that explain the great cooperativity observed in the wet lab
by studying the enzyme kinetics. Additionally, the positions that
play a higher role in the communication pathway are now identi-
fied thanks to the correlation-based SPM analysis.
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We expect that altogether this data and the further analysis of the
mechanisms that are involved in the better performance of HheC
R18 will be relevant to pinpoint and design new positions to ratio-
nally design improvedHheC variants displaying higher stability and
broader substrate and reaction scope.
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In this thesis, we described the conformational changes among
natural and laboratory-evolved HHDHs. We evaluated the effect
of the differences in sequence due to natural and laboratory-
introduced mutations and how these impact properties like activity
or thermal stability. This analysis was done based on the synergistic
combination of computations and experiments.

Computational pipelines based on Molecular Dynamics (MD)
simulations, novel dimensionality reduction techniques in the
field, and feature selection techniques were developed and applied
along the thesis, which showed to be successful in unveiling and
characterizing the key conformational changes and multiple confor-
mations sampled during the MD simulations. These computations
were complemented by multiple experimental assays to better
characterize the physical properties of the laboratory-evolved HheC
variants of importance for the synthesis of statin drugs.

Hereafter, a summary of the main conclusions extracted from this
thesis is presented:

• In Chapter 4, a computational pipeline based on different di-
mensionality reduction techniques for identifying the key con-
formational changes explored through multiple MD simula-
tions was first developed and tested in non-HHDH enzymes.
This protocol, coupled with tunnel analysis calculations, was
found to reliably match the experimental data provided by our
collaborators.

• In Chapter 5, the previously developed protocol, coupled
with tunnels-analysis, was applied in wild-type HHDHs
enzymes representative from different families for the first
time. We described three main tunnels in HHDHs and ratio-
nalized the main structural differences among families in the
halide-binding site, N-terminal helices, and loops and how
these changes affected the available tunnels. A “breathing”
motion of the halide binding and active sites was found, which
regulates the formation of one of the tunnels named T2. Based
on that, we identified the most crucial residue contacts for
defining these T1-T3 tunnels and proposed through machine
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learning techniques some possible positions for enhancing the
substrate scope of HHDHs.

• In Chapter 6, the thermal stability of HheD2 and some re-
lated mutants HheD2 D198V and HheD2 helixD3 were studied.
We computationally explored the different conformations that
these enzymes can explore at 27 and 57 °C temperatures. By
rationalizing the newly explored conformations, we unveiled
the mechanism by which the HheD2 enzyme enhances its ther-
mal stability. The effect of the mutations and helixD3 transfer
was also investigated. D198V mutation breaks a crucial hydro-
gen bond that stabilizes the helices αE and αF and leads to the
collapse of the halide-binding site into the opposite side of the
enzyme. The exchange of the helices αE and αF stabilized this
collapsed conformation. As both modifications showed a sim-
ilar effect, we hypothesized that both mutations could have a
synergistic effect. This was validated experimentally by Prof.
Anett Schallmey’s group.

• In Chapter 7, the laboratory-evolved HheC R18 was char-
acterized both experimentally and computationally. The
experimental characterization involved the measurement of
the melting temperature, oligomerization state, and kinetic
parameters for the natural and promiscuous reaction. These
assays indicate that the introduced mutations along the Di-
rected Evolution campaign did not alter the thermal stability
(as both WT and R18 share the similar melting temperature),
but instead affected the oligomerization state, cooperativity be-
tween monomers, and the kinetic constants (especially the kcat
for the promiscuous reaction). To understand the molecular
mechanisms that make the protein more stable as a tetramer,
have higher kcat towards cyanide and (S)-ethyl-2-(oxiran-2-
yl)acetate without losing thermal stability, we performed long
timescale MD simulations with the dimeric and tetrameric
systems. From the MD simulations, we observed that the
evolved variants adopt non-competent conformations as
dimers compared to the WT enzyme. The exploration of the
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allosteric pathways through the Shortest Path Map (SPM)
that provided the evolved variant with higher cooperativity
between active sites was used to identify the key amino acids
and regions involved in modifying the catalytic efficiency
of HheC and HheC R18. The analysis of key distances of
active site preorganization, and cyanide and epoxide binding
between both WT and R18 systems show a higher percentage
of catalytically productive events for HheC R18 in line with its
superior activity for the promiscuous reaction.

These conclusions fully accomplished the objective of exploiting
the flexibility of the different HHDHs families, as well as the tunnels
they present. Insights on the key residues and regions that might
have a stabilizing effect, affect the substrate scope, or even activ-
ity of the catalyst. This was achieved by fulfilling the other objec-
tives of creating a new computational protocol in order to describe
the variance in the tunnels and conformations in a statistically ac-
curate manner. With this, the most complex system in the family of
HHDHs (the most studied and with the most reported mutations,
HheC) was studied with the aim of understanding the role of the
mutations introduced by the DE protocol.

HheC and variants were studied and new data was reported like
thermal stability, activity, or oligomerization state as well as differ-
ences in the conformational dynamics, which was not reported in
the literature. The mid-term goal is to design new HHDH variants
with improved activity towards non-natural epoxides and nucle-
ophiles. This is work will continue in order to prove the usefulness
of the computational protocols reported here. All of this taking into
account the limitations of the methods, the simplification required in
forcefield simulations, limitation in the protonation state of residues,
and still the difficulty to obtain a large amount of simulated time in
order to get all possible conformations and make accurate and real-
istic predictions of experimental data.

All this work done and the data published in this thesis will
hopefully help future researchers working in the HHDHs or even
any other protein to design improved variants.
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