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A B S T R A C T

A large part of the information emitted by contemporary technological devices comes in the form of time
series. The massive commercialization of these kinds of devices has made the study of time series feature
extraction techniques acquire a vital relevance in last years. Two main things are essential when applying
feature extraction techniques to time series: to reduce the dimensionality so it occupies the least amount of
storage memory possible, and to make features that contain the relevant information regarding the nature of
the data set and the goals to be achieved. For this purpose, we propose in this work a brand new technique
called the State Changes Representation for Time Series (SCRTS), which relies on the relevant data associated
with the conditional probabilities of the time series (also known in the literature as Markov model’s features),
and the distribution of its values. This method is length-independent, which means that we can apply it to
time series of different dimensions obtaining the same number of features for each one. Also, it provides a
visual representation of the input data, so it is possible to interpret what makes a certain time series different
from the other. After explaining how it works, we apply it to 3 different wearable accelerometer data sets. This
algorithm reduces the original dimension of the time series considerably (in the best case from 5499 values
to 31), having a good performance in the classification results (in the best chance with an accuracy of 98%).
1. Introduction

The massive commercial usage of wearable devices in the last
few years has provided a wealth of data that can be used in many
applications, such as activity recognition or health monitoring. Since
then, several studies have been carried out applying machine learning
algorithms to classify the data that these devices provide to recog-
nize the activities made by the users, as well as to predict emotions,
stress, epileptic seizures, heart attacks [1–4], and other diseases such
as Parkinson [5], or fall detection in the elderly [6–8], among many
others.

All the data output by these devices is in the form of time series,
this is a succession of values measured in time and arranged chrono-
logically. Since many of these devices are full-day used, the time series
output can be very complex and long, and take up considerable storage
space while adding some complications to the performance of the ma-
chine learning algorithm. So finding features that can take the relevant
information of the time series, though reducing its dimensionality, is a
task of concern [9]. However, the sequential and numeric nature of the
time series makes this task non-trivial. There are no universal feature
selection techniques that work well for all the time series data sets.
Which information is relevant and which is not depends on the context
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of the experiment where the data set comes from and the desired goals
to be achieved.

Another important thing when analyzing and hypothesizing about
the outputs of an experiment or the nature of a data set is to have a
way to visualize and interpret the elements that make a time series
different or similar to another. Most machine learning algorithms do
not return any interpretable information that allows one to understand
their performance, or to come to conclusions about the meaningful
elements of the data set. This makes it of great importance to have a
method that not only selects the relevant features but also provides a
technique to visualize their differences and similarities.

In this paper, we present a simple method of feature extraction
and feature visual representation, which we call State Changes Rep-
resentation for Time Series (SCRTS). Unlike other techniques in the
literature, the SCRTS relies on the relevant data associated with the
time series ‘‘state changes’’ and the distribution of its values in their
respective discretization. These state changes are identified according
to the conditional probabilities of passing from one state to another dur-
ing the time (also known in the literature by the name of Markov Model
Parameters [10–12]), that together with what we call ‘‘states relevance
features’’, which contains the information regarding the importance of
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each state and the distribution of its values, provide the information
needed to represent or characterize a time series. This method is length-
independent, which means that no matter what the dimensions of the
different time series are, we can always apply this technique, and after
that, all the vectors made will be of the same size.

We developed this technique thinking mainly in terms of working
with time series accelerometer data, so we tested our method with
activity recognition data sets. The results obtained are good. In the best
cases, we were able to reduce the dimension of the frames from 5499
to 41, having an accuracy of 88%, which confirms that this method
extracts relevant information regarding this kind of time series, in this
particular context, and with a considerable reduction of the dimen-
sionality, which could be of great utility when dealing with storage
capacity problems. But we also believe that the time series coming
from accelerometer devices is not the only time series that this method
could work well with. This method could be applied in any context
where time series plays a fundamental role, as when wearable sensors
are used to predict heart attacks, epileptic seizures, stress, or anxiety,
among others. The reader can find in this article all the explanations of
how this method works and why, so he or she can understand it and
conclude if it could be useful or not in some other contexts of interest.

Additionally, an important characteristic of this technique is that
enables one to make a comparison of the time series via a visual in-
terpretation of the features. This important characteristic of the SCRTS
method can contribute to a better understanding of the time series data.

This work is divided into 5 main sections. In Section 2 we present
the related works that we consider most relevant and we explain how
we think that our method could contribute. In Section 3 we explain
our methodology detailing the reasons for the feature selection made.
In Section 4 we present the data sets used to test our method and show
and analyze the results. In Section 5 we explain the features visual
representation technique and test it with one of the data sets presented
in the last section. In Section 6 we discuss the possible scopes and
limitations of our method, and we talk about which other different
contexts the SCRTS could be applied in addition to activity recognition.
Finally, in Section 7, we present the final conclusions.

2. Related work

Time series feature extraction (TSFE) is essential for machine learn-
ing effectiveness when applied to time series problems, for two main
reasons: it reduces the storage space, and it allows the machine learning
algorithm to work only with the relevant data so that it can improve
its performance.

The problem is how to know which is the relevant data. What is
relevant and what is not depends on what is wanted to be achieved
and the context related to the data set. There exist many ways to do
TSFE, and each one selects different kinds of features, so their perfor-
mance depends on how well these features represent the information
considered relevant in the context of the experiment.

The Fourier Transform [13] and the Wavelet Transform [14], which
are very classical, could be very useful applied to time series composed
mostly of periodic waves, as it happens with the EEG signals [15] or
the signals related to the light, the electricity, the image, or the sound,
among others. But when it comes to analyzing time series that do not
present a periodic behavior, such as the data extracted from accelerom-
eters, these methods may not take into account features that could be
of importance for the machine learning algorithm performance.

There exist other classical statistical methods for feature extrac-
tion like the Singular Value Decomposition (SVD) [16], the Principal
Component Analysis (PCA) [17], or the Linear Discriminant Analysis
(LDA) [18]. These methods use Linear Algebra tools for reducing the
information in the data set. They work well for static data, but when
it comes to time series, they may also lose some relevant information
2

depending on the context. 𝑣
Other techniques create new features to represent the time series
but combine different mathematics elements that are typically used
to measure some particular properties that are not often related to
feature extraction techniques. Using mathematical properties as fea-
tures has been shown to achieve good performances in several cases.
In [19], distance measures like dynamic time warping are combined
with feature-based methods like SAX to create new features, showing
good results.

Mathematical tools such as probabilities are often used for under-
standing situations related to the possible changes in events, but if we
think of a time series as some sort of situation where its values are the
possible events, then the probabilities can describe the possible changes
and, therefore, the behavior of the time series. In [20] conditional
probabilities are used to create a measure that allows to discover some
intra and inter-temporal patterns. These patterns are used as features
in a machine learning algorithm, having a good performance.

Using conditional probabilities as features has shown to work
well in a number of contexts: in [12] conditional probabilities are
used as features in classifications using logistic regression to separate
schizophrenia patients from healthy patients; in [11] this technique
is used to take the relevant information from waist-worn accelerom-
eters from 22 toddlers to recognize the activity they performed, using
random forest; and in [10] conditional probabilities are used to select
the relevant information from many days of wearable device data from
users for monitoring their circadian rhythmicity.

These works achieved good results in the final performance, show-
ing the relevance that the conditional probabilities could have when
used as the feature inputs. They refer to the conditional probabilities’
vector as hidden Markov models because a hidden Markov matrix is
composed of all the conditional probabilities of the system, so it is the
same thing. We refer to them as conditional probabilities for simplicity
reasons related to the vocabulary used in this work.

With the SCRTS technique, we explore the scope of using con-
ditional probabilities as features together with some other features
related to the distribution of the time series values along the states
made in the discretization. We explain the mathematics of this tech-
nique and why we use them, so the reader can then draw his or her
own conclusions about what other contexts this technique might or
might not work well with. This technique comes also with a visual
interpretation of the features which allows us to find differences and
similarities between the time series, which we believe could be very
useful for understanding the nature of the data set, even if other feature
selection technique is used.

3. Methodology

The SCRTS algorithm consists of 6 different steps (shown in Fig. 1)
that we describe in this section. We leave the details of the method for
the visualization and interpretation of the results for Section 5.

3.1. Data collection

Accelerometers are devices that measure the acceleration of move-
ment along the 𝑥, 𝑦, and 𝑧 axes. This means that each accelerometer
returns 3 values with a frequency of 𝜏 seconds. There are many ways
in which we could use these data as inputs to our algorithm, but in this
paper, we limit ourselves to taking a single value for each of these three
values, and we refer to it as the vector magnitude, which is defined as

𝑣 =
√

(𝑎𝑥)2 + (𝑎𝑦)2 + (𝑎𝑧)2, (1)

were 𝑎𝑥, 𝑎𝑦, 𝑎𝑧 are the accelerations measured by the device in axis
𝑥, 𝑦, 𝑧 respectively.

In case we had more than 3 values every 𝜏 seconds, it could be
sed the same vector magnitude, but instead of using just 3 values,
e use more. This is the case of the AReM data set that we describe in
ection 4.1.3, where we use 3 dispositives outputting 3 values each. In
his case, we had 9 values, so the vector magnitude used is

√

(𝑎 )2 + (𝑎 )2 +⋯ + (𝑎 )2. (2)
= 1 2 9
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Fig. 1. SCRTS steps.
3.2. Division into frames

We divide every signal into 𝑘 frames 𝐹1, 𝐹2,… , 𝐹𝑘, so we use them
for the training-test set classification algorithm. It is to note that, with
the SCRTS it is not necessary for all the frames to be of the same size. As
we already mentioned, our method is length-independent, which means
that the final classification result will not be affected if one or more
frames are of different lengths from the rest.

If the data set used is not too big it is possible to use overlapping,
so the final number of frames is higher.

For every frame 𝐹 we refer to its dimension with the letter 𝑑, which
is equal to the number of samples in it. Then, we can denote each frame
F as a vector composed by its vector magnitudes 𝑣𝑖 in chronological
order, to be more precise,

𝐹 = (𝑣𝑖)𝑖≤𝑑 . (3)

3.3. Discretization

In this step of our method, we label the vector magnitudes values,
obtaining a sequence of domain-dependent states from the numerical
time series, so then we can represent each frame as a sequence of states.
This technique is known as time series discretization, and there are many
different ways to do it [21,22].

Any discretization technique could work with the SCRTS. The im-
portant thing is to represent each frame as a sequence of states. We
do not have an optimized way of selecting the discretization or the
number of states. A good choice of these elements can lead to a good
performance of this technique, and vice versa. In activity recognition,
for example, a discretization that works well will be one where ev-
ery state represents a different movement because every activity is a
combination of different movements.

For simplicity, in this work we do a partition of axis 𝑦 so then
we assign one of these partitions to every vector magnitude. In other
words, if we look at the time series, with axis 𝑦 being the vector
magnitude values and axis 𝑥 the time, then we divide the 𝑦 axis in
different cut points, so they represent the beginning or the end of an
interval. So each interval represents a state, as shown in Fig. 2. There
are as many ways to make this division of the 𝑦 axis as there are possible
discretizations, and it depends on the essence of the data set which
could output better results.

Given a set of cut points

𝐶𝑃 = {𝑐𝑝0, 𝑐𝑝1,… , 𝑐𝑝𝑛}, (4)

such that 𝑐𝑝0 < 𝑐𝑝1 < ⋯ < 𝑐𝑝𝑛, we can generate a set 𝛴 of 𝑛 states, each
state 𝑆𝑖 ∈ 𝛴 representing an interval of the vector magnitudes values
made by the cut points, as follows:

𝑆1 = [𝑐𝑝0, 𝑐𝑝1),

𝑆2 = [𝑐𝑝1, 𝑐𝑝2), (5)
⋮

𝑆 = [𝑐𝑝 , 𝑐𝑝 ].
3

𝑛 𝑛−1 𝑛
Then, we say that a vector magnitude 𝑣 is of state 𝑆𝑖 if 𝑣 ∈ 𝑆𝑖, in
other words, if 𝑐𝑝𝑖−1 ≤ 𝑣 ≤ 𝑐𝑝𝑖. Thus, given a set of states 𝛴, we can
represent each frame 𝐹 by a sequence of states

𝑆(𝐹 ) = {𝑆1, 𝑆2,… , 𝑆𝑑}, (6)

where 𝑆𝑡 ∈ 𝛴, and the supra-index 𝑡 indicates the chronological
position of the state in the frame and 𝑑 the frame’s dimension (as we
said in Eq. (3)).

3.4. Conditional probabilities

In probability theory, the conditional probability is a measure of
the probability of an event occurring knowing that another event has
already occurred [23]. In this method, we use conditional probabilities
as part of the features representing the frames. The reason for that is
because the conditional probabilities reflect the ‘‘jumps’’ from one state
to another, giving a description of the changes or the ‘‘stays’’, showing
which jumps were more common in each frame, and which states stay
longer without changing. This provides good information about the
‘‘behavior’’ of the time signal because it describes how the intensity of
the movements changed over the period, thus allowing the machine
learning algorithm to easily find differences between the activities
performed. It also provides a graphical and easy way to visualize these
differences, as we will see in Section 5.

Given a frame 𝐹 of our time-signal represented by 𝑆(𝐹 ) = {𝑆1, 𝑆2,
… , 𝑆𝑑}, the conditional probability of getting state 𝑆𝑏 after being in state
𝑆𝑎 in 𝐹 , with 𝑆𝑎, 𝑆𝑏 ∈ 𝛴, is defined as

P𝐹 (𝑆𝑏 | 𝑆𝑎) =
Car𝐹 (𝑆𝑎, 𝑆𝑏)

Car’𝐹 (𝑆𝑎)
, (7)

being Car𝐹 (𝑆𝑎, 𝑆𝑏) the cardinal of (𝑆𝑎, 𝑆𝑏) in 𝑆(𝐹 ) = {𝑆1, 𝑆2,… , 𝑆𝑑},
that is, the number of times that 𝑆𝑎 is followed by 𝑆𝑏 in 𝑆(𝐹 ); and
Car’𝐹 (𝑆𝑎) the number of times that 𝑆𝑎 appears in {𝑆1, 𝑆2,… , 𝑆𝑑−1} ⊂
𝑆(𝐹 ).

Therefore, we calculate all the conditional probabilities for each
frame, which gives us a total of 𝑛2 features per frame in each case
(being 𝑛 the total of states, as we mentioned in Eq. (4)). Thus, we use
these features to make a new vector for representing the information
contained in frame 𝐹 . We call 𝐶(𝐹 ) to the vector made with all the
conditional probabilities of 𝐹 . That is,

𝐶(𝐹 ) = {P𝐹 (𝑆𝑖 | 𝑆𝑗 ) ∶ 𝑖, 𝑗 ≤ 𝑛}. (8)

𝐶(𝐹 ) is also known as Stochastic Matrix, or Markov Matrix. But
in this case, for organizational reasons, instead of using a matrix, we
represent 𝐶(𝐹 ) as a vector.

3.5. States relevance features

Although 𝐶(𝐹 ) has the information about the ‘‘jumps’’ and ‘‘stays’’
of the states in the time series, it does not say anything about the
‘‘relevance’’ of each state in the frame. In other words, the conditional
probabilities have the information about which state changes are more
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Fig. 2. A piece of a time signal, with axis 𝑦 being the size of 𝑣 and axis 𝑥 the time. In this case, the axis 𝑦 is divided into 4 different states, but any number of states is possible.
likely to happen in 𝑆(𝐹 ), but they do not have the information about
which states are more likely to appear in it. However, if we want
to create a vector that contains most of the state’s changes relevant
information so that the machine learning algorithm can have a good
performance, then we should probably include relevant data regarding
the states’ appearance in the frame. To that end, we make use of two
features that are related to each other but have some considerable
differences: the state’s probabilities, and the state’s weights.

3.5.1. State’s probabilities
As is well known by probability theory [23], for each 𝑆𝑖 ∈ 𝛴, the

probability of state 𝑆𝑖 to come out in frame 𝐹 is:

P𝐹 (𝑆𝑖) =
Car𝐹 (𝑆𝑖)

𝑑
, (9)

with Car𝐹 (𝑆𝑖) being the number of times that 𝑆𝑖 appears in 𝑆(𝐹 ), and
𝑑 being the dimension of 𝑆(𝐹 ). Therefore, we refer to the set of all the
state’s probabilities of a frame 𝐹 as 𝑃 (𝐹 ), that is to say

𝑃 (𝐹 ) = {P𝐹 (𝑆1),P𝐹 (𝑆2),… ,P𝐹 (𝑆𝑛)}. (10)

Then, 𝑃 (𝐹 ) has the information about how many times each state has
appeared in 𝑆(𝐹 ).

3.5.2. State’s weights
We are also interested in the information regarding the distribution

of the vector magnitudes along their respective states for each frame 𝐹 .
To this end, first of all, we need a function that works as a measurement
of how close a vector magnitude is to the midpoint of its respective
state. In other words, we are looking for a function 𝑓𝑖 ∶ [𝑐𝑝𝑖−1, 𝑐𝑝𝑖] →
[0, 1] such that the closer a vector magnitude 𝑣 is to the midpoint of
its respective state 𝑆𝑖, the closer 𝑓𝑖(𝑣) is to 1; and the closer 𝑣 is to the
border of 𝑆𝑖, the closer 𝑓𝑖(𝑣) is to 0. So then, for each state 𝑆𝑖 we can
sum all the values 𝑓𝑖(𝑣) for all 𝑣 in 𝑆𝑖 and normalize the result. On one
hand, this sum would express the distribution of the vector magnitudes
in 𝑆𝑖; and on the other hand, if we make a comparison between all the
states, it would express the importance, or ‘‘weight’’ that state 𝑆𝑖 has
in frame 𝐹 .

In other words, for every state 𝑆𝑖 ∈ 𝛴, we look for a radial
function [18] 𝑓𝑖 ∶ [𝑐𝑝𝑖−1, 𝑐𝑝𝑖] → [0, 1], such that
{

𝑓𝑖(𝑐𝑝𝑖−1) = 𝑓𝑖(𝑐𝑝𝑖) = 0,
𝑓𝑖(mid𝑖) = 1,

(11)

being 𝑐𝑝𝑖−1 and 𝑐𝑝𝑖 the boarders of the state 𝑆𝑖 (as we already men-
tioned in Eq. (5)), and mid𝑖 the midpoint of 𝑆𝑖, to be more precise,

mid𝑖 =
(𝑐𝑝𝑖 + 𝑐𝑝𝑖−1)

2
. (12)

Although any radial function would work well, for simplicity we
use the one that we call the normalized inverted distance (NID), which
we define next. First of all, we define the distance from the midpoint to
the top of state 𝑆𝑖 as

dis = |mid − 𝑐𝑝 |, (13)
4

𝑖 𝑖 𝑖
or, what is the same,

dis𝑖 = |mid𝑖 − 𝑐𝑝𝑖−1|. (14)

Now, for every 𝑣 belonging to a state 𝑆𝑖, the normalized inverted
distance of 𝑣 to its respective midpoint mid𝑖 of 𝑆𝑖, is

NID𝑖(𝑣) = 1 −
|mid𝑖 − 𝑣|

dis𝑖
. (15)

So, it is easy to see that the normal inverted distance is a radial function
that satisfies Eq. (11), in other words,
{

NID𝑖(𝑐𝑝𝑖−1) = NID𝑖(𝑐𝑝𝑖) = 0,
NID𝑖(mid𝑖) = 1.

(16)

Thus, let us say that 𝑄𝐹 (𝑆𝑖) = {𝑣1, 𝑣2,… , 𝑣𝑞} is the set of all the vector
magnitudes of the frame 𝐹 laying in state 𝑆𝑖, then, we finally define
the weight of state 𝑆𝑖 in 𝐹 as follows:

W𝐹 (𝑆𝑖) =

⎧

⎪

⎨

⎪

⎩

∑𝑞
𝑗=1 NID𝑖(𝑣𝑗 )

𝑑
, if 𝑄𝐹 (𝑆𝑖) ≠ ∅;

0, if 𝑄𝐹 (𝑆𝑖) = ∅.
(17)

Therefore, we refer to all the state weights of a frame 𝐹 as 𝑊 (𝐹 ), that
is to say,

𝑊 (𝐹 ) = {W𝐹 (𝑆1),W𝐹 (𝑆2),… ,W𝐹 (𝑆𝑛)}. (18)

3.6. Empty features cleaning

The SCRTS is, as its name indicates, a method for representing time
series. In other words, our goal is to extract all the relevant data of the
frames so they can be represented as vectors for a machine learning
algorithm. We construct these vectors with the conditional probabilities
𝐶(𝐹 ), the state’s probabilities 𝑃 (𝐹 ), and the state’s weights 𝑊 (𝐹 ). We
call the representation vector 𝑅(𝐹 ) to the vector made with 𝑃 (𝐹 ), 𝐶(𝐹 )
and 𝑊 (𝐹 ). The dimension of these vectors depends on the number of
states, so let us call 𝑑𝑖𝑚(𝑉 ) to the function that returns the dimension
of a vector 𝑉 , then:

𝑑𝑖𝑚(𝐶(𝐹 )) = 𝑛2; (19)
𝑑𝑖𝑚(𝑃 (𝐹 )) = 𝑑𝑖𝑚(𝑊 (𝐹 )) = 𝑛. (20)

So, till now, the dimension of 𝑅(𝐹 ) is:

𝑑𝑖𝑚(𝑅(𝐹 )) = 𝑛2 + 2𝑛. (21)

As we can see, the dimension of 𝑅(𝐹 ) depends only on the number
of states 𝑛, and is independent of 𝑑, the original dimension of 𝐹 , which
means that our method is length-independent.

Therefore, the training-test matrix for the machine learning will
have all the 𝑅(𝑃 ) vectors of each frame 𝐹 as rows. This means there
will be a column for each conditional probability, for each probability,
for each weight, etc. So if one of these columns has more than 75% of
zeros, it means that the feature represented in this column is probably
irrelevant for representing the time series, and it could also bring some
noise to the machine learning performance. Therefore, what we do in



Computers in Biology and Medicine 167 (2023) 107595A. García-Pavioni and B. López

a
m
m
c

4

d
a
a
m
l

w
t
t
o
a
w
f
e

4

e
c

4

w
a
s
w

t
d
o

Table 1
Data sets descriptions.
Data set Sample frequency (Hz) Num. of participants Num. of activities Num. of states

Wristband acc. 0.1 8 2 5
Chest acc. 52 15 5 6, 7, 8
AReM 60 15 5 7, 9, 11, 13
Table 2
Data sets with their respective ANN architectures: number of hidden layers, number of nodes, activation functions, optimizers, learning rates, loss functions, and number of epochs.

Data set Hidden layers Nodes Act. f. Opt. Learning r. Loss f. Epochs

Wristband acc. 8 12 Relu/Adam Adam 0.001 binary c. 40
Chest acc. 3 64/16 ReLU/Sotmax Adam 0.001 binary c. 40
AReM 3 64/16 ReLU/Sotmax Adam 0.001 binary c. 40
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this process called ‘‘empty features cleaning’’, is to seek these columns
(the ones with more than 75% of zeros) and eliminate them.

This process would probably reduce the dimension of the training-
test matrix even more. As a result, the representation vector of each
frame would probably reduce its dimensionality. In other words, we
can rewrite Eq. (21) as

𝑑𝑖𝑚(𝑅(𝐹 )) ≤ 𝑛2 + 2𝑛. (22)

In most cases the reduction of the dimension of the training matrix
fter this process is considerable, as we show in Section 4.2. The
agnitude of this reduction depends on the distribution of the vector
agnitudes along the different states, so it varies according to the

ontext.

. Results

To test our method, we used three different accelerometer
atabases. The good thing about accelerometers data is that every
ctivity is made up of different motions, so each motion can be seen as
state, so the features made with the SCRTS method express how these
otions were combined in each activity, what can lead to the machine

earning algorithm to find clear differences between them.
In all the cases we labeled the frames of the activity to be classified

ith 1, and the rest of the activities with 0, and once we had done
he training and the test set, we applied random oversampling [24] in
he training set to level the number of frames labeled with 1 with the
nes with 0. We trained an artificial neural network (ANN), and the
ccuracy, the true positive rate (TPR), and the true negative rate (TNR),
ere calculated. This procedure was executed 20 in each case, and the

inal results were calculated as the average of the results obtained in
ach of the 20 performances.

.1. Data sets

In this section we present the data sets used in this work for
xperimental reasons (shown in Table 1) and the ANN used for the
lassifications (shown in Table 2).

.1.1. Wristband accelerometers data set
This data set [25] was collected from an experiment we conducted,

here 8 participants used an Actigraph accelerometer wristband for
pproximately 9 days, having a total of 1582 h of time series data. The
ampling frequency used in the accelerometers was 𝜏 = 0.1 Hz. The goal
as to identify the frames where the person worked at the office.

We made 3 different experiments to test different ways of using our
echnique in this data set. For the first experiment classification, we
ivided the time series into 15-minute frames (where the dimensions
f the frames are 𝑑 = 90), the second into 30-minute frames (𝑑 = 180),

and the third into 60-minute frames (𝑑 = 360).
For the discretization, we tried with the different cut points pro-

vided by Actilife, which resulted in the usage of different numbers of
5

states. After comparing the final results, we chose the Freedson Adult
1998 cut points [26], because of its performance, which gives us a total
of 5 states (i.e., 𝑛 = 5).

We applied our method to represent each frame with its respective
vector 𝑅(𝐹 ), and then we randomly shuffled them together and split
hem into the training set (75%) and the test set (25%).

The ANN used had 8 hidden layers of 12 nodes and the Relu
ctivation function in each layer. The output layer was dense with 2
odes and the Sigmoid activation function. The optimizer was Adam
ith a learning rate of 0.001 units; the loss function was the binary

rossentropy and the number of epochs was 40.

.1.2. Chest accelerometers data set
This data set [27] collects data from single wearable accelerome-

ers mounted on the participants’ chests. 15 participants performed 5
ifferent activities to be classified: working at the computer, standing,
alking, climbing stairs, and talking while standing. The sampling

requency used in the accelerometers was 𝜏 = 52 Hz.
We divided each activity’s time series into 3 frames. The frames

urned out to have different dimensions from each other in most cases
which is not a problem, because, as we already said, our algorithm is
ength-independent), with an average of 𝑑 = 5499.

We performed a k-means clustering with all the vector magnitudes
of all the time series to choose the states’ cut points. After trying with
different numbers of states, we chose 6, 7, and 8 states for the time
series discretization (i.e., 𝑛 = 6, 𝑛 = 7, and 𝑛 = 8) because of its
performance in the final results.

We made one leave-one-out classification for each activity, leaving
one participant for the test and using the rest to train the ANN.

The ANN used had 3 hidden layers: the first one with 64 neurons
and the ReLU activation function, and the second and third ones with
16 neurons, also with the ReLU activation function. After the last
hidden layer, there is a dropout of 0.2 units. The output layer was
a dense layer with 2 nodes and the Softmax activation function. The
optimizer was Adam with a learning rate of 0.001 units; the loss
function was the binary crossentropy and the number of epochs was
40.

4.1.3. AReM data set
This data set [28] collects the data from approximately 15 indi-

viduals using three accelerometers: one at each ankle, and one in
the chest. Unlike the wristband accelerometers data set and the chest
accelerometers data set, in this data set 9 values were used for the
vector magnitude, as shown in Eq. (2). A total of 5 activities were
performed to be classified: bending, cycling, lying, sitting, and walking.
The sampling frequency used in the accelerometers was 𝜏 = 60 Hz.

As with the chest accelerometers data set, we performed k-means
clusterings for generating the states for the time series discretization,
but in this case, we tried from 3 to 13 clusters (i.e., 𝑛 = 3 to 13). After
this, we chose the number of states with the best performance, which
are 7, 9, 11, and 13.

We ran 10 experiments for each activity made, one for each dis-
cretization. We did not apply any division to the original frames,
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Table 3
Results using the SCRTS method with the wristband accelerometers data set.
T (min.) States 𝑑𝑖 𝑑𝑓 Acc. (%) TPR (%) TNR (%)

15 5 90 8 79 83 78
30 5 180 8 81 82 81
60 5 360 12 84 81 85
Table 4
Results using the SCRTS method with chest accelerometers data set.
States 𝑑𝑖 𝑑𝑓 A1 A2 A3 A4 A5

Acc. (%) 66 67 88 69 69
6 5499 31 TPR (%) 46 52 71 45 38

TNR (%) 71 67 91 75 77

Acc. (%) 68 71 85 74 74
7 5499 34 TPR (%) 46 43 73 44 41

TNR (%) 74 77 88 81 82

Acc. (%) 67 72 88 74 76
8 5499 41 TPR (%) 41 40 77 38 39

TNR (%) 74 80 90 83 85
a
0
a

instead, we used each frame as originally was. The original dimension
of the time series of each activity was 𝑑 = 480.

For each classification, we applied our algorithm to represent each
frame with its respective vector 𝑅(𝐹 ), and then we randomly shuffled
them together and split them into the training set (75%) and the test
set (25%).

For each classification, we used the same ANN architecture used
with the chest accelerometers data set, already detailed.

4.2. Performance results

In this section, we show the downstream impact of our method
when using the features obtained in a classification task (activity recog-
nition). As all the data sets are different from each other, we decided to
try different ways of testing our algorithm depending on the data set,
so in each experiment, the results are presented in different ways.

In Table 3 the results of the wristband accelerometers data set are
provided. We compare the dimension of the frames before applying
the SCRTS method (𝑑𝑖), the dimension of the frames after applying the
SCRTS method (𝑑𝑓 ), the accuracy (Acc.), the true positive rate (TPR),
nd the true negative rate (TNR) according to different values of the
rame lengths 𝑇 = 15, 𝑇 = 30, and 𝑇 = 60 min. We can see that, with
ur method, frames of 𝑇 = 60 min perform better than doing it with
= 15 and 𝑇 = 30 min.
In Table 4 we show the average of the frame dimensions before

pplying our method (𝑑𝑖), the dimension of the frames after applying
our method (𝑑𝑓 ), the accuracy, the TPR and the TNR for each activity
lassification made with chest accelerometers data set. These activities
re: working at the computer (A1), standing (A2), walking (A3), going
p/down stairs (A4), and talking while standing (A5). We present
he results of the classifications made with 6, 7, and 8 states, which
chieved the best performance after trying with 3 to 9 states. As
e can see, using 8 states performs better than 6 and 7 states, and

he dimensionality reduction is also remarkable. The activity that has
erformed better with all the discretizations is walking (A3).

In Table 5 we show the activities of the classification made with
ReM data set, the number of states used that had the best perfor-
ance, the dimension of the frames before applying our method (𝑑𝑖),

he final dimension obtained after applying our method (𝑑𝑓 ), the TPR,
he TNR and the accuracy of the classification performance. The best
esults are with the activity ‘‘cycling’’, followed by ‘‘walking’’ and
‘laying’’. The difference between the performance of this data set and
he last two is remarkable, and this may be due to several reasons,
mong them: the usage of 3 accelerometers instead of one, outputting
values instead of just 3; wearing the dispositive on the ankle instead

f the wrists, which have shown to have a better performance in other
xperiments as well [29]; or maybe because the experiment presents
6

ess noise. 𝐵
Fig. 3. Comparison of average weights for cycling (left) and walking (right).

5. SCRTS features visual representation

The problem with making a classification using ANNs is that ANNs
do not provide an explanation or an easy interpretation of what kind
of aspects make a class different from the others. But using the SCRTS
algorithm allows us to visualize some attributes that could be very
useful when drawing conclusions. Next, we explain how this features
visual representation technique works.

5.1. Average weights comparison

Let us 𝑆𝑟 ∈ 𝛴 being a state, and 𝐹1, 𝐹2,… , 𝐹𝑘, the frames division
of some activity in the data set, then we can define the average weight
of state 𝑆𝑟 as

W(𝑆𝑟) =
W𝐹1 (𝑆𝑟) + W𝐹2 (𝑆𝑟) +⋯ + W𝐹𝑘 (𝑆𝑟)

𝑘
.

So, W(𝑆𝑟) represents the average of the weights of all the frames
in their respective activity, and it has a value between 0 and 1 for all
𝑆𝑟 ∈ 𝛴. So we can compare these averages and guess which states were
more weighty in each activity.

In Fig. 3 we show the comparison between the average weights of
the activities ‘‘cycling’’ and ‘‘walking’’ from AReM data set, using 7
states (𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 , 𝐺). For simplicity we multiplied the original
verage weights by 100, then the values in the graphic are not between
and 1 as originally stated, but between 0 and 100, so the differences

nd similarities are bigger and easier to be seen.
The vector magnitude cut points of these 7 states are: 𝐴: [0, 15.88];

: [24.77, 34.9); 𝐶: [34.91, 40.68); 𝐷: [40.68, 45.08); 𝐸: [45.08,
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Table 5
Results using the SCRTS method with AReM data set.
Activity States 𝑑𝑖 𝑑𝑓 TPR (%) TNR (%) Acc. (%)

Bending 7 480 33 87 97 95
Cycling 13 480 71 100 100 100
Laying 13 480 71 93 98 97
Sitting 9 480 47 68 90 85
Walking 11 480 63 100 98 98
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49.26); 𝐹 : [49.26, 54.84); 𝐺: [54.84, 67.19). In Table 5 we only showed
the results of classifying the activity ‘‘bending’’ using these cut points,
but we showed the results of classifying ‘‘cycling’’ and ‘‘walking’’ using
13 and 11 states respectively, instead of 7. The reason we use 7 states
for showing the visual representation of the features in this section is
that for the comparison we need to use the same cut points in the
activities frames, and using 7 states we obtained a TPR of the 88%, a
TNR of the 98% and an accuracy of the 97% for ‘‘cycling’’; and a TPR of
a 100%, a TNR of the 97% and an accuracy of the 98% for ‘‘walking’’,
which in the classification of both ‘‘cycling’’ and ‘‘walking’’ as a whole,
has a better performance than using 13 or 11 states.

As we can see in Fig. 3, after the empty features cleaning process
(Section 3.6), only 5 states’ weights were relevant for the training-test
matrix: W(𝐵),W(𝐶),W(𝐷),W(𝐹 ) and W(𝐺).

We can see that both ‘‘cycling’’ and ‘‘walking’’ have similar weights
or state 𝐹 , but there are several differences between the weights
f states 𝐷 and 𝐺. These similarities and differences can help us to
nderstand and make conclusions about the essence of the activities.
or example, if we had to make a classification having only these two
ctivities, we could look at the weights of each frame and conclude:

• if the frame’s activity has more than a value of 11 in W(𝐷) and
less than 9 in W(𝐺), then it is probably ‘‘cycling’’;

• if the frame’s activity has less than a value of 11 in W(𝐷) and
more than 9 in W(𝐺), then it is probably ‘‘walking’’.

In this example, we only use the weight features of states 𝐷 and 𝐺
for making the differentiation, because it is where the differences are
most visible, but to differentiate from other activities of the data set,
the other weight states features would probably be needed.

We can also look at this graphic and interpret why one activity
is different from the other. For example, if we think as states B and
C as light movements, D as moderate movements, F as aggressive
movements, and G as very aggressive movements, we can conclude
that:

• both activities have very few moments doing light movements;
• cycling has more moderate movements than walking;
• both have many moments doing aggressive movements;
• walking has more ‘‘very agressivve’’ movements than cycling.

It should be noted that accelerometers do not measure the speed of
the movement but the acceleration, which is the change of the speed
or direction of the movement. This is probably why walking has more
‘‘very aggressive movements’’ than cycling, because the ankles when
walking change the direction of the movement faster, while, when
cycling, the movement is more constant.

5.2. Probabilities comparison

With this method we can also compare the probability features of
the different activities, looking for similarities and differences that help
us to understand the classification made.

Let us 𝑆𝑟 ∈ 𝛴 being a state, and 𝐹1, 𝐹2,… , 𝐹𝑘, the frames division
of some activity in the data set, then we can define the mean probability
of state 𝑆𝑟 as

P(𝑆 ) =
P𝐹1 (𝑆𝑟) + P𝐹2 (𝑆𝑟) +⋯ + P𝐹𝑘 (𝑆𝑟)

.

7

𝑟 𝑘 u
Fig. 4. Mean probabilities of cycling (left) vs. walking (right).

Fig. 5. Comparison of the D-state conditional probabilities of cycling (left) vs. walking
(right).

It is easy to mathematically prove that, if we sum the mean proba-
bilities of all the 𝑛 states in 𝛴, this is equal to 1, that is

P(𝑆1) + P(𝑆2) +⋯ + P(𝑆𝑛) = 1. (23)

This allows us to visualize all the mean probabilities in a pie chart.
hen, we can compare the mean probabilities of different activities to
et conclusions about their differences and similarities, as we already
id with the average weight.

In Fig. 4 we show the pie chart of the mean probabilities from the
ctivities ‘‘cycling’’ and ‘‘walking’’. Instead of using the values between
and 1, we multiplied the probabilities by 100 so that we could put

hem in the pie chart as a percentage.
As we can see, there is a correlation between the values of the

verage weights and the mean probabilities, but while the second one
ives us an idea of the times that a state appears in the frames, the
econd one gives us an idea of the dispersion of the vector magnitudes
long the different cut points.

The same can be done with the conditional probabilities. Let us
𝑟, 𝑆𝑞 ∈ 𝛴 being states, and 𝐹1, 𝐹2,… , 𝐹𝑘, the frames division of some

activity in the data set, then we define the mean conditional probability
of getting state 𝑆𝑞 after being in state 𝑆𝑟 as

P(𝑆𝑞|𝑆𝑟) =
P𝐹1 (𝑆𝑞|𝑆𝑟) + P𝐹2 (𝑆𝑞|𝑆𝑟) +⋯ + P𝐹𝑘 (𝑆𝑞|𝑆𝑟)

𝑘
.

We can also mathematically prove that the sum of all the mean
onditional probabilities is equal to 1, to put it in another way,

P(𝑆1|𝑆𝑟) + P(𝑆2|𝑆𝑟) +⋯ + P(𝑆𝑛|𝑆𝑟) = 1, (24)

or all 𝑆𝑟 ∈ 𝛴. So, as we did with the mean probabilities, we can
ompare the mean conditional probabilities of the different activities

sing pie charts.
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Fig. 6. Comparison of the G-state conditional probabilities of cycling (left) vs. walking
(right).

Fig. 7. Comparison of the C-state conditional probabilities of cycling (left) vs. walking
(right).

In Figs. 5, 6, 7, and 8 we show the pie charts of the mean conditional
probabilities of the activities ‘‘cycling’’ and ‘‘walking’’. As we did with
the mean probabilities, we multiply the results by 100 so we can see
them as percentages.

In some of these pie charts, there were some probabilities with
values minor than 1%, so since these values are negligible with respect
to the rest of the probabilities, adding difficulties to visualizing the
data, we have decided to remove them and distribute these small values
among the rest of the probabilities of its respective pie charts, so then
we have a better visual representation.

We could do the same that we did with the example of the weights,
in other words, we could make a comparison between each pie chart
and conclude some of the percentages that a frame should have to be
classified as ‘‘cycling’’ or ‘‘walking’’.

For example, we could see in Fig. 6 all the conditional probabilities
P( ⋅ |𝐺) and say:

• when cycling, after a ‘‘very aggressive’’ movement there is a
21.84% probability that the next movement is also ‘‘very aggres-
sive’’, and a 78.16% (the remainder probability) that the next
movement will be smoother;

• when walking, after a ‘‘very aggressive’’ movement there is a
33.8% probability that the next movement is also ‘‘very aggres-
sive’’, and a 66.2% that the next movement will be smoother;

• In both cases, after a ‘‘very aggressive’’ movement the next move-
ment would be probably ‘‘aggressive’’.

There are many ways of interpreting these graphics depending on
he study being done.

. Discussion

The SCRTS algorithm has been shown to perform well in extracting
he essential features for the activity classification over accelerometer
ata, while also considerably reducing the frame’s dimensionality. This
ethod also allows us to visualize the selected features’ differences and

imilarities in graphics and pie charts, giving rise to the possibility of
nalysis and drawing conclusions about the downstream classification
ask (i.e., the activities classified in our case studies).
8

t

Fig. 8. Comparison of the F-state conditional probabilities of cycling (left) vs. walking
(right).

In this work, we used the vector magnitude (Eqs. (1) and (2)) for
the clustering, thus obtaining the states. If we only use the vector
magnitude we are only considering the magnitude of the resultant
acceleration of the movement made in the activity, ignoring the di-
rection of the movement. In the activities classified in this paper, the
magnitude of the resultant acceleration was relevant, and not so much
the direction of the motion, so the classifications were good. But there
may be other types of classifications where it is important to take into
account where the movement was going, so it would be important to
consider all the outputs of the device as a single vector before doing
the discretization into states. This is left for future work.

We believe that our method can be of great use especially for long-
time series, not only because the dimensionality reduction is consider-
able, but also because the features 𝐶(𝐹 ), 𝑃 (𝐹 ), and 𝑊 (𝐹 ) are increas-
ngly accurate in representing each frame as more vector magnitudes
re used to compute them.

In some cases it may be that 𝑃 (𝐹 ) and 𝑊 (𝐹 ) do not contribute much
n comparison to 𝐶(𝐹 ), this we believe could happen in classifications
here there has been some complexity in the movements made by

he users, that is, in classifications where there has been an important
ariation among the different movements (states). We believe that, on
he contrary, in classifications with little variation in the movements,
he features 𝑃 (𝐹 ) and 𝑊 (𝐹 ) should play a more important role, as is
he case of the data sets we worked with in this paper.

The SCRTS features visual representation technique can be very
seful since it shows important differences and similarities between the
lasses that otherwise, in most cases, it is very difficult, or not possible,
o note. This allows us to make interpretations and draw conclusions
hat could be very useful for our work.

Although this algorithm is particularly intended for activity classi-
ication, we think it can be used in completely different contexts. We
ill try our technique in different contexts in future works.

. Conclusions

The massive commercialization of wearable devices has made the
tudy of time series feature extraction gain much attention in the
ast few years. As these devices are normally used daily, they require
toring huge amounts of data. Then, finding the proper features that
an take the relevant information of the time series, thus reducing its
imensionality, and keeping storage needs under sustainable levels, is
task of concern. With this aim, this work proposes the SCRTS method,
hich is based on three kinds of time series features: conditional
robabilities, state probabilities, and state weights.

We tried our method with 3 different accelerometer data sets. We
pplied clustering for the discretization in 2 of these data sets, and
ctilife’s cut points in the other. We used ANN for the classification in
ach case. In the best performances, we had a dimensionality reduction
rom 5499 to 31, with an accuracy of 88%, a TPR of 71%, and a
NR of 91%; or a dimensionality reduction from 480 to 63 with an
ccuracy of 98%, a TPR of 100%, and a TNR of 98%. Therefore,

he features extracted with the SCRTS had been shown to represent
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correctly the important elements of a time series in the context of
activity classification using wearable accelerometers.

Our method includes a visual representation tool of the main dif-
ferences of the time series features, which could be very useful when
analyzing the data sets, or when driving conclusions about the classifi-
cation process.

We have shown the scope of the SCRTS method applied to ac-
celerometer data sets. In future works we would like to try this method
with other kinds of time series data sets to see its scope and limits
in other contexts, as well as to expand the SCRTS method in other to
consider all the dimensions of the input vectors as a whole.
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