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Abstract: Madagascar is a biodiversity hotspot, containing a large proportion of endemic species.
To make conservation efforts more effective, it is necessary to understand the spatial distribution
of this huge biodiversity. In this study, the patterns of morphological variation and diversity in the
adult anurans of Madagascar were evaluated and compared across different climatic regions. These
patterns were investigated for 370 species (2360 specimens), and the variation in 13 morphological
traits obtained from taxonomic databases was assessed. The results revealed differences in body
size distribution across climatic regions and that the most morphologically distinctive species occur
in humid regions. The analysis also showed that anuran assemblages tend to be more species-rich,
more morphologically diverse, and more morphologically clustered in tropical rainforests. These
patterns are attributable to regional variations in the amount and seasonality of precipitation. An
understanding of the complex patterns of spatial diversity could be useful for regional prioritization
in the conservation of Madagascan anurans.
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1. Introduction

The study of the spatial variability in biodiversity has important implications for
defining optimal conservation strategies, especially in those regions where there is evidence
of habitat loss and where areas of valuable biodiversity must be identified rapidly [1].
The biotic communities of humid tropical regions are usually characterized by their high
species richness, but other factors must be considered when defining potential priority
areas for conservation, such as the phylogenetic and trait diversity of the species present in
the candidate areas [2].

Biodiversity loss is one of the fundamental concerns of the current conservation efforts
not only for the direct decline but because the effects on the ecological functioning of the
ecosystems could imply deep consequences [3–5]. The resilience of the ecosystems after
biodiversity loss has been recognized as one of the central goals of both community and
ecosystem ecology, and several concepts, mechanisms and theories have long been devel-
oped: among them, “functional redundancy” [6,7]. Functional redundancy is hypothesized
to promote ecological resilience. Thus, communities with more redundant species (those
that perform similar ecological functions) should be buffered against the loss of individual
species. However, the wideness of this concept requests more evident-based studies [8],
because limited functional redundancy has been observed even in some high biodiversity
communities, where high functional redundancy is expected [9]. In this sense, the studies
of potential functional redundancy (using morphological traits as a proxy to evaluate
functional traits) in rich communities could provide important insights, e.g., [10–12]. For
all of this, the study of the patterns of spatial trait distribution provides pivotal knowledge
to better understand community resilience.

The trait diversity among biotic assemblages is estimated by measuring several shared
external descriptors that are potentially useful in evaluating interspecific interactions
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and species’ niche preferences or as surrogates of their evolutionary relationships [13,14].
Some of these traits may also be functional if they are associated with a higher chance
of survival or the reproductive success of the species [15]. However, this categorization
can be subjective, particularly in groups whose ecology and phenology are not accurately
known [16,17]. Trait diversity can be measured using various indices, which assess the
level of morphological divergence among species and the ranges of trait variations [18].

Madagascar is considered one of the most important of the world’s biodiversity
hotspots, with several new species being described each year [19–21]. Moreover, most
of those species are strictly endemic, and some occur in small, isolated and unprotected
patches [22,23]. In this context, is crucial to enhance the knowledge of Malagasy species in
order to prioritize conservation measures in the most vulnerable regions.

In this study, the variation in the diversity of morphological traits among several
macro-assemblages of anurans from Madagascar was evaluated. This island is a hotspot of
biodiversity and contains numerous endemic lineages because it has long been isolated
from continental landmasses (since 100–80.3 Ma [24,25]). Anurans also account for many
endemic radiations, with about 370 described species (a number increasing at a rapid
pace) [26], which are distributed throughout all the biomes of the island. However, the
species are unevenly distributed, which could be attributed in some cases to recent range
contractions induced by rapid environmental deterioration [27]. Therefore, investigating
the spatial patterns of anuran diversity in Madagascar must remain a priority, because this
group is severely threatened by the progressive degradation of its habitats, illegal trade,
emerging diseases, and the expansion of alien species [28–31].

The trait diversity among anuran assemblages in Madagascar has been evaluated in
several climatic regions, which are defined by the Köppen–Geiger system [32]. This classifi-
cation is mainly designed to assess the global distribution of vegetation and is therefore
widely used to study large-scale patterns of biotic diversity, including amphibian distribu-
tions [33,34]. According to the Köppen–Geiger classification, the climate in Madagascar
is grouped into tropical subtypes (humid to arid, structured along a northeast–southwest
axis), with an orographic gradient toward humid subtropical–temperate climates in the
central highlands [35]. Similar to other regions of the globe, the vegetation biomes in
Madagascar fit into these Köppen categories [36].

Variations in the species compositions of anuran assemblages among Köppen regions
have been used to test two hypotheses about the causes underlying their morphological
variability [37]. Milder environmental conditions (such as in the humid tropics) should
facilitate a greater range of morphological diversification (hypothesis i) because the species
should be able to occupy a broader range of niches [38]). Moreover, the assemblages in
the humid tropics could be more morphologically clustered (hypothesis ii) because highly
productive and environmentally stable habitats favour closer species packing) [39].

2. Materials and Methods
2.1. Study Region

The study region was the island of Madagascar (southwestern Indian Ocean;
587,041 km2). The island displays remarkable climatic heterogeneity and very rich as-
semblages of amphibians (Figure 1). The climate types are Köppen 1 (climate = Af, tropical
rainforest; 63,656 km2, biome = evergreen rainforest), Köppen 2 (Am, tropical monsoon;
14,552 km2, Sambirano rainforest), Köppen 3 (Aw, tropical savannah; 256,715 km2, dry
deciduous forest), Köppen 6 (BSh, arid hot steppe; 66,499 km2, arid spiny bush), and the
highland climates: Köppen 11 (Cwa, temperate, dry winter–hot summer; 86,616 km2),
Köppen 12 (Cwb, temperate dry winter–warm summer; 62,898 km2), Köppen 14 (Cfa,
temperate, no dry season–hot summer; 32,531 km2), and Köppen 15 (Cfb, temperate, no
dry season–warm summer; 8783 km2) [20]. The mean values for the mean annual tem-
perature, accumulated annual precipitation (Figure 2), and precipitation seasonality for
each of these Köppen categories were obtained from the WorldClim2 database [40], using
Quantum-GIS [41].
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vation, which restricted the occurrence of a species to the elevation ranges provided in 

the literature [42]. When a Köppen region represented <15% of the area of occurrence of 

Figure 1. Köppen climatic regions (A) and anuran species richness (B) in Madagascar. In panel B,
warmer colors indicate greater species richness. Köppen regions are based on Beck et al. (2018) [35]
and species richness was generated from IUCN range polygons (2023). The north arrow (A) indicates
the direction of north.
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Figure 2. Climatic variability in Madagascar. The figure shows the variations in the mean annual
temperature (◦C) and the accumulated rainfall per year (mm) according to the Köppen types or
regions. Blue lines indicate the distributions of climatic values for each Köppen region.

2.2. Species Data

The data on the distributions of species were based on the International Union for
Conservation of Nature (IUCN) distribution polygons [42] except for a few species for
which these polygons were not available and for which occurrence data were obtained from
the type localities. The presence of each species within a climate type was determined by
the intersection of the IUCN polygons, the Köppen types, and the terrain elevation, which
restricted the occurrence of a species to the elevation ranges provided in the literature [42].
When a Köppen region represented <15% of the area of occurrence of a species, this region
was discarded to prevent overestimates of the niche extent, which is an error that can arise
in data generated with range polygons [43].
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The morphological features of the native species of frogs were obtained from tax-
onomic literature sources [44–50]. Most of the species descriptions had been produced
by a small group of authors and therefore follow a homogeneous methodology. In total,
data were collected for 2360 specimens of 370 species of frog (Supplementary Table S1).
The morphological variables used to compute the diversity indices are shown in Table 1,
and they included body size (snout–urostyle length; SUL) and 12 ordinal descriptors of
relative hind-limb length, toe webbing, skin texture, and other characteristics. These char-
acters were chosen based on their availability in the taxonomic descriptions, although
some might be relevant to species fitness such as body size, toe webbing, digital tips,
relative hind-limb length, and skin texture [51]. Dorsal colouration, although potentially
important, was excluded because its inter-individual variability is high [44]. No frogs
were handled or collected during the study, and the species data were collected only from
literature databases.

Table 1. Species traits used in the study. For each trait, the range and an interpretation are shown.

Trait Range Interpretation Trait Range Interpretation

Snout–urostyle length 8.0–125.6 Body size (mm) Number of toes
3
4
5

Miniaturization
Miniaturization
Ancestral

Finger–pads
0
1
2

Absent
Slightly enlarged
Distinctly enlarged

Dorsal skin

0

1

2

Smooth–finely granular
Disseminated
tubercles–ridges
Roughly granular

Hand webbing
0
1
2

Absent
Reduced
Developed

Supra–ocular
tubercles

0
1
2

Absent
Small
Large

Foot webbing

0
1
2
3

Absent
Reduced
Developed
Fully webbed

Limb tubercles
0
1
2

Absent
Heel–elbow
Arms–legs

Tibiotarsal joint
reaching

0
1
2
3
4

Forelimb
Tympanum
Eye
Nostril
Snout tip

Ventral coloration

0
1
2
3
4

White/unpigmented
Dark spotted
Grey–amber
Dark
Intensely colored

Outer metatarsal
tubercle

0
1

Absent
Present Pupils

0
1
2

Vertical
Horizontal
Horizontal indistinct

Femoral glands 0
1

Absent
Present

2.3. Data Analyses

The analyses evaluated (i) the variability in body size and in trait diversity across the
Köppen regions, and (ii) the association between trait variability and climatic conditions.
First, the distribution of body size (= SUL) for the species of Madagascar anurans was
compared among the Köppen regions using density functions. This type of nonparametric
analysis is suitable when a continuous variable does not follow a normal distribution [31],
as in the case of SUL (Shapiro–Wilk W = 0.812, p = 2.48 × 10−56). The pairwise differences
were determined with equality tests [52], and the p-values were adjusted for multiple
comparisons using the standard Bonferroni correction [53]. This analysis was performed
using the sm package [54] in the R environment [55].

Then, the spatial variation in trait diversity was investigated. Three diversity indices
were estimated: one was estimated directly from the trait matrix, the species distinctiveness



Ecologies 2023, 4 503

(SD), and the other two evaluated the differences between the observed patterns and those
expected under the null distribution, i.e., Faith’s diversity (PD) and the mean pairwise
distances (MPD). In both indices, the standardized effect size was also estimated: the
standardized effect size of Faith’s diversity (SES PD) and the standardized effect size of
the mean pairwise distances (SES MPD), respectively [56–58]. These diversity indices were
chosen because they are computed from distance matrices and tolerate cases with missing
values [59]. SD measures whether a species is more or less similar in its traits to another
species [58]. This index was calculated from Gower distances [60] because the trait matrix
includes both quantitative and ordinal variables. To build these distance matrices, greater
weight was assigned to quantitative variables than to ordinal ones [61]. The distance
matrices were constructed after 10,000 resamplings, thus avoiding the error associated
with estimates based only on measures of the central tendency of the species [62]. These
analyses were performed using the funrar package [63] in R.

The variability in the diversity patterns was evaluated by estimating SES PD and SES
MPD. These metrics estimate the diversity of an assemblage irrespective of the species
richness [42]. SES PD is an indicator of trait richness and assesses whether there is an
underdispersion (negative SES and p < 0.05) or overdispersion (positive SES and p > 0.95)
of traits in a group of species [63]. SES MPD is an indicator of species divergence and
assesses whether the species that form an assemblage are morphologically clustered (pos-
itive SES and p > 0.95) or overdispersed (negative SES and p < 0.05). Thus, for a given
number of species, positive values of SES MPD are related to higher redundancy than
negative ones [63]. The statistical significance of the differences between the observed and
expected values was obtained after 1000 randomizations generated with an independent
swap algorithm [63]. These analyses were performed using the package picante [63] in
R. The diversity indices were correlated with the climatic mean values for the Köppen
climatic regions (mean annual temperature, accumulated precipitation, and seasonality of
precipitation) using Spearman’s rank-order correlation coefficient [64].

3. Results

The results of the test of equality between two density functions revealed that the
distribution of body size was not homogeneous across the Köppen regions (Table 2),
although most of the measured specimens were between 25 and 50 mm SUL in all regions
(Figure 3).

Table 2. Results of the test of equality between densities (Bonferroni adjusted p-values), compar-
ing the distribution of the snout–urostyle length for different species of Madagascar frogs. Kop,
Köppen types.

Kop1 Kop2 Kop3 Kop6 Kop11 Kop12 Kop14

Kop1
Kop2 0.0
Kop3 0.0 0.0
Kop6 0.700 0.196 1.00
Kop11 0.0 0.0 1.00 1.00
Kop12 0.0 0.0 1.00 1.00 1.00
Kop14 0.0 0.0 0.0 1.00 0.0 0.0
Kop15 0.0 0.0 0.0 0.308 0.0 0.0 0.0

The tree generated from the Gower distance matrix is shown in Figure 4 and identifies
genera with greater morphological divergence, such as Mantidactylus and Boophis, whereas
the other taxonomic groups are more morphologically uniform (Figure 4). The estimates
of species distinctiveness showed that morphologically very distinctive species occur
in Köppen regions 1, 12, and 14 (Figure 5). The analysis indicated that SES Faith’s PD
was smaller than expected in Köppen regions 2 and 3 (trait underdispersion), and these
results were highly significant (Table 3). The SES MPD values indicated that the species
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tended to be morphologically clustered in Köppen region 1 and overdispersed in Köppen
regions 15 and 6, although the results for these latter regions were not highly significant
(Table 4). The results of Spearman’s correlation revealed that these patterns of variability
are attributable to an effect of precipitation rather than of temperature. In this sense, the
amount of precipitation was positively associated with the presence of morphologically
distinctive species (95th percentile of SD) and with species-rich and morphologically
clustered assemblages (Table 5).
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Table 3. Estimation of Faith’s trait diversity (PD) metric, standardized effect size of Faith’s diversity
(SES PD) and its statistical significance (p). The percentages indicate the proportion of results in which
the p-value (quantile) of observed PD vs. null communities was <0.05 or >0.95 after 1000 resamplings.
N taxa, number of species. Positive values in SES PD indicate greater functional richness.

N Taxa PD SES PD p < 0.05% p > 0.95%

Köppen 1 129 4.472 1.295 0.0 26.2
Köppen 2 27 1.309 −2.518 98.2 0.0
Köppen 3 76 2.764 −2.465 95.0 0.0
Köppen 6 7 0.621 −0.680 8.4 0.0
Köppen 11 61 2.715 −0.122 0.0 0.0
Köppen12 82 3.412 0.915 0.0 6.2
Köppen 14 150 4.815 0.996 0.0 7.8
Köppen 15 65 2.684 −1.085 15.3 0.0

Table 4. Estimation of mean pairwise distances (MPD) metric, standardized effect size of mean pair-
wise distances (SES MPD) and its statistical significance (p). The percentages indicate the proportion
of results in which the p-value (quantile) of observed MPD vs. null communities was <0.05 or >0.95
after 1000 resamplings. N taxa, number of species. Positive values in SES MPD indicate greater
trait clustering.

N Taxa MPD SES MPD p < 0.05% p > 0.95%

Köppen 1 129 0.208 2.615 0.0 99.8
Köppen 2 27 0.176 −0.796 0.0 0.0
Köppen 3 76 0.179 −1.190 8.5 0.0
Köppen 6 7 0.137 −1.331 49.0 0.0
Köppen 11 61 0.186 −0.461 0.0 0.0
Köppen12 82 0.191 0.014 0.0 0.0
Köppen 14 150 0.195 0.766 0.0 0.0
Köppen 15 65 0.172 −1.749 65.7 0.0

Table 5. Spearman’s coefficient (rs) evaluating the correlation between two climatic variables (annual
mean temperature and accumulated precipitation per year) and the diversity indices. N taxa, number
of species; FD, trait distinctiveness; SES PD, standardized effect size of Faith’s diversity; SES MPD,
standardized effect size of mean pairwise distances. Statistically significant associations are shown in
bold (alpha = 0.1).

Temperature Precipitation Prec. Seasonality

N Taxa
Spearman’s rs −0.405 0.670 −0.524
p 0.329 0.069 0.197

Mean SUL
Spearman’s rs −0.286 −0.478 0.151
p 0.501 0.231 0.571

Mean FD
Spearman’s rs −0.286 0.693 −0.452
p 0.501 0.057 0.267

P95 FD
Spearman’s rs −0.149 0.746 −0.671
p 0.725 0.035 0.075

SES PD
Spearman’s rs −0.495 0.278 −0.524
p 0.213 0.504 0.197

SES MPD
Spearman’s rs 0.021 0.740 −0.476
p 0.961 0.036 0.243

4. Discussion

In this study, the spatial patterns of morphological diversity among the adult forms of
anurans in Madagascar were evaluated for the first time. The analyses revealed important
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differences in the morphological diversity across the main climatic regions, which can be
attributed largely to variations in the amount and seasonality of precipitation. Equality tests
are sensitive to variations in the extremes of density curves [52]; therefore, the test differ-
ences imply that the relative frequencies of body sizes are distributed non-homogeneously
across the Köppen regions throughout Madagascar. This result suggests that certain ranges
of size are likely to be more adaptive in some climate zones; for example, larger sizes may
be more adaptive in drier regions.

Trait richness showed remarkable variation in tropical regions, decreasing significantly
under the drier and seasonal conditions in Köppen regions 2 and 3. Although it cannot
be completely ruled out that in Köppen 2 region, where may also be a consequence of its
relatively small geographic extent, this result indicates that the amount of rainfall limits
the morphological diversification of Madagascan anurans. Therefore, the Madagascan
anuran assemblages tend to be more species-rich, more morphologically diverse, and more
morphologically clustered in its tropical rainforests. In other words, the assemblages with
higher species richness tend to show higher morphological redundancy.

Many species of tropical amphibians show low tolerance for wide variations in ambient
temperature and relative humidity, and species richness tends to be higher where these
fluctuations are smaller [65]. Greater species richness may also be facilitated by closer
species packing, perhaps as a consequence of higher biomass productivity [66] or the
ability of these frogs to efficiently exploit the three-dimensional structure of rainforest
habitats [67,68]. The origin of the tropical rainforests in eastern Madagascar may date back
to the Eocene, and this long-term stability may underlie the enormous biotic diversity
of these forests [69]. In the case of anurans, these long periods of evolution may also
have increased their opportunities for adaptive radiation both in their adult and larval
forms [70].

Our results were probably influenced by the morphological traits selected for the
study and the presence of some missing values. The morphological traits examined in the
taxonomic descriptions were those available in the literature, although some were thought
to be functionally relevant (e.g., body size, relative hind-limb length, and skin texture).
Additional studies will be required in the future to verify the results of this study, with
traits selected expressly for their functional roles, and the patterns of diversity within and
outside postulated rainforest glacial refugia should be compared [71]. This approach will
provide greater insight into the environmental drivers that regulate the biodiversity in
these extremely rich tropical anuran assemblages, including the historical evolution of their
forest habitats [71].

Currently, most conservation plans are solely focused on generic indicators such as
species richness without considering other dimensions of biodiversity or even species
threats [72–74]. The information provided by this study could easily be implemented when
designing conservation strategies, having a direct impact on the efficiency of the resources
invested in amphibian conservation or even protecting the most singular regions.

5. Conclusions

Consistent patterns of species richness and morphological diversity on the island
of Madagascar have been identified, and these are particularly marked in the eastern
tropical rainforests of the island. Assemblages with high morphological redundancy are
potentially more resistant to environmental changes and biological invasions, favouring the
preservation of unique evolutionary lineages [75]. Therefore, the protection of rainforests
must be a priority for the conservation of amphibians in Madagascar, as has already
been indicated for other groups of vertebrates on this island, including chameleons and
lemurs [76,77]. Focusing on the methods used to calculate diversity metrics, the results of
the present study emphasize the potential utility of taxonomic databases for exploratory
studies of patterns of diversity in highly diverse tropical communities.
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