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ABSTRACT: Energy decomposition analysis (EDA) is a well-established approach to dissect
the interaction energy into chemically sound components. Despite the inherent requirement
of reference states has been a long-standing object of debate, the direct relation with the
molecular orbital analysis helps in building up predictive models. The alternative molecular
energy decomposition schemes that decompose the total energy into atomic and diatomic
contributions, such as the interacting quantum atoms (IQA), has no external reference
requirements and also the intra- and intermolecular interactions are treated on equal footing.
However, a connection with heuristic chemical models are limited, bringing about a
somewhat narrower predictive power. While efforts to reconcile the bonding picture obtained
by both methodologies have been discussed in the past, a synergic combination of them has not
been tackled yet. Herein, we present the use of IQA decomposition of the individual terms
arising from the EDA in the context of intermolecular interactions, henceforth EDA−IQA.
The method is applied to a molecular set covering a wide range of interaction types, including
hydrogen bonding, charge−dipole, π−π and halogen interactions. We find that the electrostatic energy from EDA, entirely seen as
intermolecular, leads to meaningful and non-negligible intra-fragment contributions upon IQA decomposition, originated from
charge penetration. EDA−IQA also affords the decomposition of the Pauli repulsion term into intra- and inter-fragment
contributions. The intra-fragment term is destabilizing, particularly for the moieties that are net acceptors of charge, while the inter-
fragment Pauli term is actually stabilizing. In the case of the orbital interaction term, the sign and magnitude of the intra-fragment
contribution at equilibrium geometries is largely driven by the amount of charge transfer, while the inter-fragment contribution is
clearly stabilizing. EDA−IQA terms show a smooth behavior along the intermolecular dissociation path of selected systems. The new
EDA−IQA methodology provides a richer energy decomposition scheme that aims at bridging the gap between the two main
distinct real-space and Hilbert-space methodologies. Via this approach, the partitioning can be used directionally on all the EDA
terms aiding in identifying the causal effects on geometries and/or reactivity.

■ INTRODUCTION
Understanding and accurately assessing intra- and intermolec-
ular interactions is one of the main challenges in chemistry. In
fact, the rational design of molecular systems consists of
unravelling the physical origin of a particular chemical
interaction/bond, often inaccessible directly from experiments.
However, a common drawback is the absence of an exact
quantum-mechanical operator that directly describes the
chemical bond, giving raise to different approaches.

Among the number of developments, some methods focus on
the analysis of the electron density in a system (AB) by
comparing it with that from the composing fragments (A and B).
The concept of deformation density1 is commonly invoked in
methods such as Voronoi deformation density charges2 or
charge displacement analysis,3,4 for instance. The electron
density of the AB system is a crucial component in the quantum
theory of atoms in molecules5 (QTAIM). By analyzing its
topology, QTAIM provides a plethora of descriptors that can be
utilized to classify various intra- and intermolecular interactions.

A better option is to focus directly on the energetics of bond
formation and intermolecular interactions. Modern electronic

structure methods are able to predict accurate formation
energies, but the value itself bears little chemical significance.
Energy decomposition schemes aim at decomposing the
molecular (or formation) energy into physicochemical mean-
ingful terms, to shed light into the nature of the chemical
bonding. By comprehending the individual contributions to the
overall energy, it becomes possible to rationally design
molecular systems with desired properties, leading to a more
predictive approach in molecular design.

One of the most widely used methodologies is the Ziegler−
Rauk energy decomposition analysis (EDA),6 derived from the
pioneering work of Kitaura and Morokuma.7 It considers the
formal molecule formation AB (henceforth complex) from
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fragments A and B (atoms or molecular fragments). The overall
stabilization energy (without basis set superposition error
correction) reads as

E E AB E A E B( ) ( ) ( )AB A B
stab = (1)

where E(XY) refers to the energy of the subsystem X at the
optimized geometry of Y. Thus, ΔEstab is the energy of formation
of the system AB from the isolated fragments in their ground
states A and B. Within the EDA formalism, ΔEstab (eq 1) is
decomposed as follows

E E A B E A B, ,stab int
0 0

prep
0 0= [ ] + [ ] (2)

being ΔEint and ΔEprep the so-called interaction and preparation
energy terms, respectively, which are defined as

E A B E AB E A E B, ( ) ( ) ( )AB AB AB
int

0 0 0, 0,[ ] = (3)

E A B E A E A E B E B

E E

, ( ) ( ) ( ) ( )AB A AB B

A B

prep
0 0 0, 0,

prep, prep,

[ ] = +

+ (4)

Here, E(A0,AB) represents the energy of fragment A computed at
the optimized geometry of the complex (superindex AB) with a
given electronic configuration (A0), which may not correspond
to that of the ground state for the isolated fragment. Defined as
such, the preparation energy accounts for both the geometrical
distortion of the fragments upon formation of the complex and
the promotion energy from the electronic ground state to the
chosen electronic configurations A0 and B0. One often refers to
strain energy when it only involves the geometrical deformation.
Furthermore, it is necessarily positive (repulsive or destabiliz-
ing) because E(AA) and E(BB) are, by def inition, the ground state
energies of the isolated fragments from both the electronic and
geometric perspective. Instead, ΔEint will be negative (attractive
or stabilizing) if the interaction between the fragments A and B
while forming complex AB is favorable. Importantly, both the
interaction and preparation energies depend on the choice for
the states A0 and B0 as indicated in eqs 3 and 4, being crucial its
appropriate selection (see below for further details).

By introducing additional intermediate (pseudo)states built
up at the optimized geometry of the complex, the interaction
energy is further decomposed. Firstly, one considers a
pseudostate of complex AB formed by the superposition of the
undeformed (frozen) densities associated to the fragments in
states A0 and B0, namely (A0 ∪ B0), with its associated electronic
energy E(A0 ∪ B0). We refer to (A0 ∪ B0) as a pseudostate
because it does not have a well-defined antisymmetric
wavefunction associated to it.6,8 The energy difference with
respect to the deformed fragments read as

E A B E A B E A E B( ) ( ) ( ) ( )0 0 0 0 0 0 0= (5)

which can be further expressed as

E A B E A B E A B( ) , ,0 0 0
elec

0 0
XC
0 0 0= [ ] + [ ] (6)

where the AB superindex has been omitted for clarity. The term
ΔEelec[A0, B0] accounts for the electrostatic interaction of the
frozen electron density of fragment A with the nuclei of fragment
B and vice versa (attractive), the Coulombic repulsion of the
frozen electron densities of A and B and the nuclear repulsion
between A and B.

r
r R

r

r
r R

r

r r r r r

R R

E A B
Z

Z

d
Z Z

, ( ) d

( ) d

( ) ( ) d

i B
A

i

i

i A
B

i

i

A B

i A
j B

i j

i j

elec
0 0

1 2 12
1

1 2

0

0

0 0

[ ] =
| |

| |
+

+

+
| |

(7)

Equation 7 may be also rewritten as

r r r r r r

R R
r

r r r r

E A B V V

Z Z

, ( ) ( ) d ( ) ( ) d

( )

( ) d d

A B B A

i A
j B

i j

i j
A

B

elec
0 0

1

2 12
1

1 2

0 0

0

0

[ ] =

+
| |

i

k

jjjjjjjjjjjjjj
y

{

zzzzzzzzzzzzzz (8)

where the molecular electrostatic potential (MEP) of fragment
A in state A0, VA(r), reads as

r
r R

r
r r

rV
Z

d( )
( )

A
i A

i

i

A 2

2
2

0
=

| | | | (9)

The potential originated from charge clouds is smaller than
the one from point charges (nuclei) so that for neutral species
the MEP of the fragments afford a favorable interaction that, at
chemically relevant distances, overcomes the nuclear repulsion
term.9 In Kohn−Sham density functional theory (KS-DFT)
there is an additional contribution from the exchange−
correlation functional,8,9 which is absent in wavefunction theory.

In a subsequent step, an intermediate state (A0B0) is formed
by Löwdin orthogonalizing the occupied molecular orbitals
(MOs) of the states (A0) and (B0), in order to build a proper
antisymmetrized wavefunction. Orthogonalization is required as
MOs belonging to different fragments are not orthogonal (in
principle one could build a Slater determinant with non-
orthogonal MOs but then the expectation value of the energy
takes a much complicated form). The Löwdin orthogonalization
procedure does not induce charge transfer between the
fragments, as the Hilbert-space based electron numbers of the
interacting fragments are conserved. This will not be the case
when applying a real-space analysis, as will be discussed later.

The energy difference between this intermediate step and that
of the previous pseudostate reads as

E A B E A B E A B, ( ) ( )Pauli
0 0 0 0 0 0[ ] = (10)

which upon combination of eqs 6 and 10 leads to the so-called
Pauli repulsion term (ΔEPauli)

8

E A B E A B E A B, , ,Pauli
0 0

Pauli
0 0

XC
0 0 0[ ] = [ ] + [ ] (11)

Hence, the sum ΔEPauli[A0, B0] + ΔEelec[A0, B0] accounts for
the energy change when going from the prepared fragments to
the true intermediate state with orthogonalized but unrelaxed
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MOs, and it is a well-defined quantity in the sense that involves
properly antisymmetrized states

E A B E A B

E A B E A E B

, ,

( ) ( ) ( )
Pauli

0 0
elec

0 0

0 0 0 0

[ ] + [ ]

= (12)

It is worth to note that E A B( )0 0 0 is never considered, as
the E A B,XC

0 0 0[ ] term is not evaluated explicitly. Once the
electrostatic contribution is calculated using eq 7 or 8, the Pauli
repulsion term is readily obtained from eq 12.

In the last step, the MOs of the complex are allowed to relax to
the ground state of the complex. The energy lowering
accompanying this process leads to the so-called orbital
interaction term (ΔEorb), that is necessarily negative (any
intermediate state must be higher in energy than the ground
state)

E A B E AB E A B, ( ) ( )orb
0 0 0 0[ ] = (13)

All the steps along the EDA process are generally illustrated as
in Scheme 1.

Localized orbitals can also be introduced in this type energy
decomposition schemes. In the absolutely localized molecular
orbitals EDA (ALMO-EDA),10−13 the interaction energy is
further decomposed into a frozen-density, polarization and
charge-transfer terms by making use of (variationally optimized)
block-localized orbitals, and explicitly avoiding any reference to
intermediate pseudostates. Natural EDA14 (NEDA) makes use
of the well-known natural bond orbitals (NBO).15−18 In the
symmetry adapted perturbation theory (SAPT) schemes the
interaction energy is perturbationally computed, thus avoiding
the supermolecular approach, and decomposed into physically
meaningful terms.19 For further details about these EDA-like
methodologies we guide the reader to refs 20 and 21.

Alternatively, the total energy of any molecular system can
also be decomposed into intra- and inter-atomic contributions.
Such decomposition does not require external references or
predefined fragments, and treat intra- and inter-molecular
interactions (covalent and non-covalent) on equal footing.
Grouping the one- and two-center terms into intra- and inter-
fragment contributions is only optional, but helpful in the case of
dealing with intermolecular interactions between well-defined
subsystems. The grouping of specific domains within the
interacting fragments also allows the identification of main
contributors and their mutual interactions. In Mayer’s Chemical
Hamiltonian Approach, atomic projector operators are used to

decompose the Hamiltonian into one- and two-center terms.22

Further developments in the Hilbert-space ultimately lead to the
chemical energy component analysis.23 Considering instead a
decomposition of the real-space, the one- and two-electron
contributions to the total energy readily afford one- and two-
center terms that exactly decompose (up to numerical accuracy)
the molecular energy. Such methodologies rely on the
identification of the atom within the molecule (AIM). Salvador
and Mayer first decomposed the Hartree−Fock energy in the
framework of QTAIM,19 paving the way for the nowadays
known as the interacting quantum atoms approaches.24−31

In real-space analysis, a given quantity, F1, expressed in terms
of a one-electron density function, f(r1), is readily decomposed
into one-center (atomic or fragment) contributions

f r r f r rF F( ) d ( ) d
A A

A
1 1 1 1 1 1

A

= =
(14)

by integrating over the respective domains. Similarly, two-
electron quantities decompose into both one- and two-center
components

r r r r r r r r

r r r r

F f f

f F F

( , ) d d ( , ) d d

( , ) d d

A

A B A A

A

A B A

AB

2 1 2 1 2 1 2 1 2

,
1 2 1 2 2

,
2

A A

A B

=

+ = +

(15)

It is worth noting that real-space analysis is not restricted to
non-overlapping disjoint domains such as those of QTAIM,
where each atom is identified by its nucleus and its atomic basin.
The AIM may be more generally represented by continuous
atomic weight functions wA(r) ≥ 0 fulfilling ΣΑwA(r) = 1 so that
the integration of molecular density functions over the atomic
domains are effectively replaced by integrations over the whole
real-space of atomic/diatomic effective density functions

r r r r r r r

r r r r

r r r r r r

r r r r

f w f f

f

w f w

f

( ) d ( ) ( ) d ( ) d

( , ) d d

( ) ( , ) ( ) d d

( , ) d d

A A

A B

AB

1 2 1 2

1 1 2 2 1 2

1 2 1 2

A

B A

(16)

Such atomic weight functions can be derived from a variety of
Hirshfeld-type approaches32 or even mathematical constructs
borrowing elements of QTAIM theory.33 Whether the AIM are
allowed to overlap or not might be to some extent matter of
taste. Using one or another AIM only has an effect on the actual
numerical values obtained for the terms obtained by the IQA
decomposition, but not on their definition and physical
meaning.

Since the Born−Oppenheimer energy is entirely written in
terms of one- and two-electron energy density functions, IQA
naturally affords the decomposition of the molecular energy of a
complex AB into atomic and diatomic contributions as

E AB( )
i

i
i j i

ij
,

= +
< (17)

where the εi and εij terms account for the static net atomic and
pairwise atomic interaction energies, respectively. The atomic
and diatomic terms can be further grouped according to the

Scheme 1. Energy Components of the EDA Process with the
Corresponding Intermediate States and Pseudostates for the
Formation of Complex AB from the Isolated Fragments A
and Ba

aE(XY) refers to the energy of subsystem X at the state and optimized
geometry of Y.
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composing fragments A and B, so that the total energy of the
complex can be simply expressed as

E AB( ) A B AB= + + (18)

where

A
i A

i
i j A

ij

AB
i A j B

i B j A

ij

,

= +

=

(19)

and

T V V

V V V V
A A AA AA

AB AB AB AB AB

en ee

en ne nn ee

= + +

= + + + (20)

Each of the intra- and inter-fragment energy term is built upon
the physical components of the electronic energy, i.e. kinetic,
electron nuclear attraction, nuclear repulsion and electronic
repulsion. The latter may be further decomposed into the usual
Coulomb, exchange and correlation contributions. One
peculiarity of the IQA-type approaches is that the actual
formulation depends upon the particular electronic structure
method that is used to compute the molecular energies in the
first place. Appropriate formulations have been developed for
Hartree−Fock24,26,34 and correlated methods (including
CASSCF and CI,27 MP228,35 and Coupled Cluster29,30,36).
Non-perturbative approaches explicitly require the second order
reduced density matrix, which is not available in most electronic
structure codes. Curiously, the KS-DFT case is the most
problematic one because of the exchange−correlation energy
nature. Within wavefunction theory framework, the exchange
energy is expressed as a two-electron non-local contribution,
that naturally decomposes into both one- and two-center terms.
The later are essential to account for the stability of the diatomic
bonding interactions.21 In KS-DFT, the exchange−correlation
energy is essentially written in terms of the exchange energy
density as

r r rV ( ), ( )... dxc xc 1 1 1= [ ] (21)

so that the straightforward real-space decomposition only
affords one-center (atomic) terms. Different approaches have
been introduced to (approximately) recover the chemically
meaningful diatomic components from Vxc.

25,31

Both EDA and IQA methodologies independently have been
extensively used in the literature to gain deeper insight into the
nature of the chemical bond and to characterize intra- and
intermolecular interactions, allowing to understand and improve
chemical reactivity, shedding light to the chemical-bonding
picture of non-trivial systems and even most recently suggesting
a new type of bond.37−42 Recent efforts have been made trying to
express some of the EDA-derived descriptors in the framework
of real-space analysis, i.e. without recurring to any artificial
intermediate pseudostates. In this direction, in 2006 Martiiń
Pendaś et al. compared the behavior of IQA to that of other
decomposition schemes (e.g. EDA, NEDA and SAPT) for a
series of hydrogen-bonded dimers.43,44 The authors decom-
posed the interaction energy between the two monomers A and
B (Eint

AB) into the sum of classical electrostatics (Vcl
AB) and

exchange−correlation (Vxc
AB) contributions. They observed that

the interaction was governed by the exchange−correlation, thus

highlighting the importance of the covalent picture. On the
other hand, the deformation energy of the proton acceptor
moieties correlated well with the intermolecular charge transfer
and classical electrostatic energy derived from IQA. Further-
more, by making use of the fragment’s promolecular, polarized
(by locating point charges) and fully relaxed densities, they
observed that in weakly-bonded (almost non-overlapping)
systems the quantities defined by other energy decomposition
schemes, i.e. SAPT, KM, EDA and specially NEDA, can be
obtained to a good approximation from the inter-fragment (AB)
IQA terms. For instance, the electrostatic energy from NEDA
was found to be roughly equivalent to the total inter-fragment
interaction from IQA.44

Pendaś et al. also critically analyzed the concept of steric
repulsion from an IQA perspective.45 The authors argued that
Pauli repulsion is inherently dependent on the fragment’s
reference states in EDA. They applied IQA to decompose the
Hartree−Fock interaction energy into fragment’s deformation
and inter-fragment interactions

E E

V V( )

A B
AB

A
A A

A B

AB AB

int def

,self ,self
0

cl xc

= +

= + +
>

> (22)

where the latter is further decomposed into its classical
electrostatic and exchange−(correlation) contributions. The
authors concluded that the Pauli repulsion is readily captured in
the increase of the fragment’s deformation energies of the
intermediate (properly antisymmetrized) states. In the case of
rotational barriers, the hyperconjugative effects are captured by
the inter-fragment exchange contribution, enhanced due to
electron delocalization. All in all, they show a certain degree of
correspondence between EDA or NBO descriptors and those
steaming from IQA.

More recently, Racioppi et al. walked a reverse path. Instead of
recovering EDA descriptors from IQA, they rearranged the EDA
contributions to match those of IQA analysis.46 In particular, in
their pseudo-IQA energy decomposition the EDA contributions
of Pauli repulsion, orbital interaction and electrostatic to the
interaction energy are regrouped into overall variations of the
kinetic, classical electrostatic and exchange−correlation con-
tributions

E E E E Eint bind
EDA

Kin cl xc= + + (23)

The same terms can be obtained by considering the usual
reference-state IQA, which is based on decomposing the binding
energy between two fragments A and B (ΔEbind

IQA) by subtracting
the IQA terms from the fully relaxed complex’s state from those
obtained for the isolated fragments at the complex geometry.
The authors showed excellent agreement between the like terms
of both schemes in illustrative hydrogen bond and donor−
acceptor interactions.46

In this work, we pursue a different path, namely to enrich the
conventional EDA approach by applying an IQA decomposition
to each of the EDA terms of the interaction energy. Thus, in the
EDA-IQA scheme we introduce herein, the electrostatic, Pauli
repulsion and orbital interaction energy terms are decomposed
into intra- and inter-atomic contributions, that can be further
grouped into intra- and inter-fragment contributions.
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■ THEORY
Let us consider again the formation of the complex AB from
fragments A and B. The application of eqs 14−16 to the
complex’s final ground state (AB) readily affords the real-space
decomposition of the interaction energy into intra- and inter-
fragment terms, namely

E A ABint int, int,B int,= + + (24)

where

AB E A

AB E B

AB

( ) ( )

( ) ( )

( )

A A A

B B B

AB AB

int,
0

int,
0

int,

=

=

= (25)

For clarity, in the previous equation and henceforth we omit
the explicit dependence of the EDA term on the reference states
(A0 and B0). The Δεint,A and Δεint,B account for the energy gain/
loss by the fragments when going from their isolated reference
state to their ef fective state within the final complex. It is worth to
note that in the context of real-space analysis, these
contributions do not only originate from changes in the MOs
upon complex formation, but also by the fact that the fragments
share the physical space once the complex is formed (in
intermolecular interactions the second effect should be
dominant). In ref 44 the authors refer to these terms as
fragment’s electronic deformation energies. We will adopt here
this nomenclature, so that Δεint,A ≡ Δεdef.el,A and Δεint,B ≡
Δεdef.el,B.

On the other hand, the term Δεint,AB describes the energy gain
upon complex formation that can be purely ascribed to inter-
fragment interactions. The net interaction energy is thus seen as
a balance between the prize the fragments must pay to share the
physical space and be electronically prepared, and the gain
originating from the new interactions that were absent before
the complex’s formation.

In a similar fashion, by applying again eqs 14−16 to the
complex’s intermediate state (A0B0) one can also obtain an
analogous decomposition of the orbital interaction EDA term,
namely

E A B ABorb orb, orb, orb,= + + (26)

where

AB A B

AB A B

AB A B

( ) ( )

( ) ( )

( ) ( )

A A A

B B B

AB AB AB

orb,
0 0

orb,
0 0

orb,
0 0

=

=

= (27)

The intra-fragment terms account for the net energy gain/loss
upon relaxing the wavefunction from the intermediate state to
the ground state of the AB complex. This relaxation comes with a
change in the electron density. If the underlying AIM definition
depends upon this scalar (e.g. QTAIM, TFVC or iterative
Hirshfeld approaches), these terms contain also a contribution
from the change on the boundaries of physical space going from
AB to A0B0. The latter could be removed by using the same AIM
definition for states AB and A0B0. In the QTAIM context that
means integrating the density functions of state A0B0 on the
atomic basins obtained from the AB state. In the case of
overlapping AIM schemes, it implies using the same atomic
weight functions throughout. Such strategies have been already

used in the context of QTAIM and fuzzy atoms in similar
contexts.44,47,48 In the present case, since it is actually impossible
by construction to use the same AIM definition for the complex
and the isolated fragments, we opt for using the AIM definition
derived from each state.

The IQA decomposition of state (A0B0) readily affords an
analogous decomposition of ΔEPauli + ΔEelec, by taking the
isolated fragment states A0 and B0 as reference. On the other
hand, since each term in ΔEelec involves the electron density
and/or potential from different fragments (see eq 7), one may
argue that this term is entirely of intermolecular nature. In that
case, ΔEelec would contribute solely to the inter-fragment term,
and consequently one would have the following decomposition
for ΔEPauli
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AB AB
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However, such scheme is not satisfactory neither numerically
nor conceptually. The main concern is that ΔεPauli,AB thus
defined mixes up real-space and Hilbert-space quantities, while
in this case they behave quite differently. Indeed, as mentioned
above, there is no net charge-transfer between fragments A and B
when building the intermediate state A0B0 according to Hilbert-
space analysis (e.g. Mulliken and Löwdin populations add up to
the number of electrons of each fragment). This is not the case
when performing a real-space analysis (using disjoint or fuzzy
domains), again because the fragments within the complex share
the physical space

r r r rN N( ) d ( ) dA A B B
A B

0 0 0 0

(29)

Hence, the frozen density of isolated fragment A when
brought to the complex’s geometry does not entirely belong to
fragment A, and similarly for fragment B. This influences the
numerical values obtained using eq 27 and, for consistency, this
effect should be also taken into account when applying the real-
space analysis to the other EDA terms, and in particular to
ΔEelec. One should essentially ignore the original allegiance of
the fragment’s frozen densities and treat the integrand in the
exactly same manner as one does it with the electron-nuclear and
the Coulombic contributions to the energy in the conventional
IQA scheme, namely
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(30)

Here, we introduce the fragment’s net electrostatic potentials
VA

net(r) and VB
net(r). They are different from the electrostatic

potentials VA(r) and VB(r) of eq 9, because in the electronic
term the integration is carried out within the fragment’s domain.
Since only part of the fragment density is used, VA

net(r) > VA(r).
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Figure 1 depicts the topology of the net electrostatic potentials
and fragment’s densities along the inter-fragment distance for
NaCl and water dimer. In the vicinity of the nuclei, the
electrostatic potential is large and positive, as the electronic part
cannot compensate for the nuclear term. At longer distances
from the nucleus, the net potential slowly decays to zero.
However, in the case of a strong acceptor or an anionic fragment,
since there is an excess of electron charge compared to the
nuclear one, the net potential becomes negative, and tends to
zero from below (see light orange curves in Figure 1). This effect
is much more pronounced when the donor of charge is anionic
(Cl− vs H2O). On the other hand, there is a fraction of electron
density of B that penetrates into A (i.e. wA(r)ρB0(r)) and vice
versa. It corresponds to the dark orange and dark blue curves in
Figure 1. As expected, the density of the charge donor penetrates
more and deeper into the acceptor region than the other way
around. The interaction of that density from B with the net
potential of the acceptor A results in the electrostatic
contribution assigned to A, Δεelec,A. It corresponds to the
integration of the grey curve in Figure 1b. This term is negative
for the acceptor (notice the negative sign on the r.h.s. of eq 30)
and can be significant if the density of the donor is able to
penetrate deep into the acceptor’s domain. However, in the case
of the donor, the net potential can be negative in the region
where it interacts with the density penetrating from the acceptor

A, so it might result in a (small) positive Δεelec,B contribution, as

shown by the yellow curve in Figure 1b in the case of Cl−.
In the case of the inter-fragment contribution one obtains
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Figure 1. Potential and electron density profiles for NaCl and water dimer along the Na−Cl and the intermolecular H···O bonds, respectively. (a)
Topology of rV ( )A

net
0 (light blue), rV ( )B

net
0 (light orange), r rw ( ) ( )B A0 (dark blue) and r rw ( ) ( )A B0 (dark orange). (b) Topology of

r r rw V( ) ( ) ( )A B A
net0 0 (grey) and r r rw V( ) ( ) ( )B A B

net0 0 (yellow). Atomic (fuzzy) domains depicted as surface, yellow for A and green for B. Bond
critical point depicted as red vertical line. Geometries and wavefunctions evaluated at the BP86-D3(BJ)/def2-TZVPP level of theory. Fragment
definition: A = Na+, B = Cl− (NaCl) and A = HO−H, B = OH2 (H2O···H2O).
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The numerical value of this contribution will account to which
extent the net potential of fragment A penetrates into fragment B
and vice versa, compensated by the point charge nuclear
repulsions. As we will see, this term can be positive of negative.
In any case, one can readily see that

E A B ABelec elec, elec, elec,= + + (32)

It is fair to note that Jimeńez-Grav́alos and Suaŕez recently
achieved a similar decomposition of the electrostatic interaction
in the QTAIM framework for a different purpose.49 They did
not explicitly considered fragment’s electrostatic potentials, but
it can be seen that their Eele

A(ρA
0, ρB

0) and Eele
B(ρA

0, ρB
0) terms

correspond to our Δεelec,A and Δεelec,B, respectively. Jimeńez-
Grav́alos and Suaŕez further decompose the inter-fragment
electrostatic contribution into a dominant term Eele

AB(ρA
0, ρB

0)
that tends to the overall ΔEelec at long distances, and a residual
one Eele

BA(ρA
0, ρB

0) which, together with the intra-fragment
contributions, accounts for the charge-penetration energy. We
shall see that Δεelec,AB from eq 31 also converges smoothly to
ΔEelec at long inter-fragment distances, so for the present
purpose we do not consider such additional decomposition.

Subtracting the contributions of eq 32 from those originating
from the IQA decomposition of ΔEPauli + ΔEelec finally yield the
appropriate real-space decomposition of the Pauli repulsion
term
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Fulfilling again the sum rule

E A B ABPauli Pauli, Pauli, Pauli,= + + (34)

The final EDA picture is completed by the inclusion of the
preparation energies from eq 4 and, if required, a dispersion
correction. In the case of the semiempirical dipole−dipole
model of Grimme, the dispersion correction is added to the
interaction energy and has no influence in the intermediate
steps, being trivially decomposed by construction as

E E A E A E B
E B E AB

E E E

( ) ( ) ( )
( ) ( )

A AB B

AB AB

A B AB

disp disp disp disp

disp disp

disp, disp, disp,

= +
+

+ +
(35)

This will not be the case if one uses more sophisticated
density-dependent dispersion corrections such as VV10.50

Finally, the basis set superposition error (BSSE) correction
can be estimated a posteriori via the counterpoise formula,51,52

which is also additive

E E A E A E B E B

E E

( ) ( ) ( ) ( )A AB B AB

A B

BSSE

BSSE, BSSE,

= +
+ (36)

Summarizing, the present approach affords a real-space fully
additive decomposition into intra- (A or B) and inter-fragment
(AB) contributions of all terms occurring in the EDA scheme

Table 1. Fragment (IQA) Decomposition of the ΔEelec Term From EDA of the Systems Studieda

A = acceptor B = donor
r r( ) dB

A
0 r r( ) dA

B
0

Δεelec,A Δεelec,B Δεelec,AB ΔEelec

H2O H2O 0.050 0.043 −6.1 −0.6 −2.2 −8.9
H2O MeOH 0.055 0.050 −6.8 −0.9 −1.6 −9.4
MeOH MeOH 0.058 0.052 −7.2 −1.1 −1.3 −9.7
H2O NH3 0.080 0.045 −10.2 −0.4 −2.3 −12.9
NH4

+ H2O 0.077 0.060 −26.7 −2.3 1.9 −27.2
Li+ H2O 0.062 0.012 −26.7 0.1 −7.3 −33.9
Na+ H2O 0.051 0.022 −17.5 0.2 −8.1 −25.4
K+ H2O 0.039 0.042 −11.0 0.6 −8.5 −19.0
NH4

+ C4H4S 0.139 0.041 −32.9 −2.5 22.0 −13.4
NH4

+ C6H6 0.122 0.044 −29.3 −1.9 17.4 −13.8
NH4

+ C4H4O 0.108 0.041 −27.1 −2.3 17.2 −12.1
NH4

+ C4H4NH 0.124 0.046 −32.6 −2.4 15.8 −19.2
Li+ C6H6 0.069 0.014 −28.7 −0.3 12.7 −16.4
Na+ C6H6 0.042 0.021 −13.2 −0.1 0.0 −13.3
K+ C6H6 0.047 0.049 −12.8 −0.2 1.4 −11.5
C6H6 C6H6 0.080 0.080 −1.8 −1.8 1.2 −2.4
C5H5N C6H6 0.082 0.078 −2.5 −1.8 1.3 −3.0
C4H4N2 C6H6 0.083 0.078 −3.4 −1.7 2.0 −3.1
DMA C6H6 0.089 0.073 −3.8 −1.7 1.5 −4.0
C6H6 C6H6 (T) 0.054 0.044 −1.9 −0.9 0.9 −1.9
C6H6 C6H5F 0.021 0.015 0.0 0.1 0.5 0.7
C6H6 C6H5Cl 0.028 0.060 −0.9 0.1 0.3 −0.5
C6H6 C6H5Br 0.099 0.074 −1.2 −0.1 0.2 −1.1
C6F6 F− 0.145 0.046 −6.1 13.2 −21.8 −14.7
C6F6 Cl− 0.187 0.038 −6.5 5.6 −10.3 −11.2
C6F6 Br− 0.099 0.074 −8.0 3.7 −7.2 −11.5

aAll the energies are given in kcal/mol. DMA = dimethylacetamide.
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(37)

■ COMPUTATIONAL DETAILS
All KS-DFT calculations were performed with the Gaussian16
A03 software,53 using the gradient corrected BP86 functional
from Becke and Perdew,54,55 including dispersion correction to
the electronic energy by means of Grimme D356 with Becke−
Johnson (BJ) damping function,57 and the Ahlrichs def2-
TZVPP full electron basis set.58 Geometry optimizations were

performed without symmetry constrains for all systems.
Stationary points were characterized by computing analytical
Hessians, obtaining zero imaginary frequencies in all cases
(minima).

To construct all EDA states, the wavefunctions of the dimer
and the isolated fragments at the optimized and dimer
geometries were evaluated with Gaussian16. The pseudostate
(A0 ∪ B0) electronic structure was constructed using the MOs of
the isolated fragments at the dimer geometry. This step was
performed with the local program APOST-3D,59 providing its
electronic structure information in a formatted checkpoint
(.fchk). Transformation of the formatted into unformatted
(.chk) checkpoint file was realized with the unfchk tool from
Gaussian. Finally, its associated total energy was extracted using
the created chk file as starting guess and forcing to skip the SCF
procedure (e.g. SCF = (MAXCYCLE = −1) keyword in

Figure 2. Energy evolution (in kcal/mol, y-axis) of ΔEelec (yellow) and its IQA-decomposed terms, i.e. Δεelec,A (blue), Δεelec,B (orange) and Δεelec,AB
(grey), along the dissociation pathway (in Å, x-axis) of H2O···H2O, Li+···H2O, NH4

+···H2O, Li+···C6H6, Na+···C6H6 and C6F6···F− molecular systems.
Equilibrium distance marked with a vertical line.
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Gaussian16). In these calculations the symmetry use was fully
disabled to prevent any atomic basis set position difference.

Energy decomposition calculations were also performed with
the APOST-3D code using the TFVC atomic definition.33 For
the production results, one-electron numerical integrals were
realized using 150 radial (Gauss−Legendre quadrature60) and
974 angular Lebedev−Laikov61 grid points per atom, while two-
electron numerical integrals have been performed using 150
radial and 590 angular grid mesh. Numerical error minimization
of the one-center two-electron contributions was performed
using the zero-error strategy.62

■ RESULTS AND DISCUSSION
We have considered the set of intermolecular complexes from
ref 20, that essentially includes hydrogen bonded species, cation-
dipole, cation−π, halogen−π and π−π interactions between
dimers. In addition, we have also considered several anion-π
complexes from Quiñonero et al.63 Except for the π−π
interactions, one can identify electron donor and acceptor
moieties, which entails certain charge-transfer upon complex
formation. We will henceforth refer to fragment A as the net
acceptor of charge and fragment B as the donor of charge.

Let us start by analyzing the electrostatic contribution of EDA.
Table 1 gathers the IQA decomposition of the electrostatic
contributions for the whole set of systems at equilibrium. Note
how cation−π and anion−π interactions result in similar values
of ΔEelec, but their IQA decomposition reveals a completely
different mechanism. In the former, the cation is largely
stabilized (large and negative Δεelec,A values) upon complex
formation because of its interaction with the frozen density of
the donor. This is largely compensated by a positive inter-
fragment electrostatic term Δεelec,AB, that becomes more
repulsive as the equilibrium inter-fragment distance shortens
from K+ to Li+. In the case of anion−π interactions, the Δεelec,B
contribution is positive, in line with the situation of Cl− in NaCl
previously depicted in Figure 1, and the inter-fragment term is
positive. In dispersion bound systems, both the overall
electrostatic and their IQA components are very small, and in
most cases within numerical accuracy. In the hydrogen bonded
and cation-dipole systems, one cannot see a clear trend neither
for the intra-fragment contributions (in almost all cases
negative) nor for the Δεelec,AB values.

To shed light into the origin of these numerical values, we
have also considered the evolution of ΔEelec as well as its IQA-
decomposed terms along the dissociation pathway of
representative intermolecular complexes. The results are
depicted in Figure 2. As it is well-known, when the frozen
densities of the two fragments are brought at the complex’s
optimized geometry, ΔEelec is favorable9 and the shorter the
inter-fragment distance, the more negative the total ΔEelec
contribution. The real-space decomposition of ΔEelec yields
further insight on this interaction. As previously discussed, the
intra-fragment contributions originate from the net electrostatic
potential of one fragment interacting with the density of the
other fragment that is able to penetrate into its domain. These
terms are strongly attractive, particularly in the case of the
acceptor A (blue curves in Figure 2), as the more ρB0(r) is able to
penetrate into the ΩA domain, the more negative the Δεelec,A
contribution becomes. Thus, Δεelec,A is enhanced as the
interacting fragments come closer in all cases. Furthermore,
this contribution is much larger for cationic acceptor species
than for neutral ones (notice the different scales in the examples
of Figure 2).

In the case of Δεelec,B (donor of charge), the trend is similar
but the magnitude is much smaller, as the amount of density
from the acceptor A able to penetrate into the donor is much
reduced. In the case of a donor interacting with a hard cation like
Li+, this term is essentially zero at all interatomic distances (see
Li+···H2O and Li+···C6H6 curves in Figure 2). However, when
the donor is anionic, the trend for Δεelec,B is completely reversed.
Since NB0 > ZB its net electrostatic potential on ΩB can be
negative, and thus any ρA0(r) able to penetrate into ΩB leads to
positive Δεelec,B values. This effect is clearly seen in the C6F6···F−

case of Figure 2.
The usefulness of the IQA decomposition of ΔEelec is most

clearly seen in the case of Li+···C6H6. As shown in Figure 2, the
yellow curve is surprisingly flat, and even becomes less attractive
at very short distances, totally at odds with the expected
behavior. Yet, the overall picture of the intra- and inter-fragment
contributions for this system is strikingly similar to that of Li+···
H2O or Na+···C6H6. Close inspection to Figure 2 indicates that
the behavior of ΔEelec in Li+···C6H6 can be explained by an
insufficient enhancement of the intra-fragment contribution of
Li+ at short distances.

It is worth to note that both Δεelec,A and Δεelec,B tend
asymptotically to zero as the inter-fragment distance increases.
This is the expected behavior since at large distances the
fragments are essentially in their reference state. Consequently,
the inter-fragment Δεelec,AB contribution tends to the overall
ΔEelec value. As the distance decreases, however, Δεelec,AB
becomes less favorable and even repulsive at very short
distances. Thus, the Δεelec,AB value for a given complex at
equilibrium geometry may be slightly positive (e.g. Li+···C6H6)
or negative (Li+···H2O), but the behavior of the components is
analogous in both cases.

Still, the Δεelec,AB contribution at equilibrium distance is very
sensitive to the nature of fragments A and B. When both A and B
are neutral, the electron-nuclear attraction compensate the
nuclear−nuclear repulsion and the Δεelec,AB values are very small
(ca. ± 2 kcal/mol). However, when the donor B is anionic the
picture is reversed and at equilibrium Δεelec,AB is negative. The
case of C6F6···F− behaves opposite to the other systems (i.e. it
becomes more negative as the inter-fragment distance
decreases). The second term on the r.h.s. of eq 31 is key to
explain this behavior. Since B is an anion, ρB0(r) holds an excess
of electrons with respect to ZB. In addition, the net potential of A
in ΩB is governed by the nuclear contribution (hence positive).
In that scenario, the closer the fragments, the larger the potential
and consequently, even if part of ρB0(r) smears into ΩA, the more
dominant the negative term becomes.

Let us proceed by analyzing the Pauli repulsion EDA term,
ΔEPauli, whose contribution originates from the intermediate
state A0B0. Bickelhaupt and Baerends showed that the
antisymmetrization of the frozen fragment densities to build
A0B0 induces an electron density flow from the intermolecular
region to the atomic regions.9 By decomposing ΔEPauli into
kinetic (ΔT0) and potential (ΔVPauli) terms, they showed that
the contraction effect translates into an increase of the kinetic
energy, and a concomitant decrease (more negative) of the
potential energy. The latter is due to the fact that more density is
accumulated at regions (e.g. close to nuclei) where the
Coulombic potential is larger. The IQA decomposition of
ΔEPauli recovers this picture from a real-space perspective. By
definition, kinetic energy contributions only have intra-fragment
character upon IQA decomposition and, consequently, they are
captured by the ΔεPauli,A and ΔεPauli,B terms. In other words, the
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ΔεPauli,AB term solely contains potential energy contributions.
The kinetic energy increase is so dominant that these terms are
expected to be positive and increase along the shortening of the
inter-fragment distance. This is exactly the behavior depicted in
Figure 3. Furthermore, the corresponding values at equilibrium
distance (Table 2) indicate positive contributions for both the
donor and the acceptor fragments with very few exceptions.

On the other hand, the ΔεPauli,AB contributions are large and
negative in all cases, and also become more favorable at shorter
distances. The origin of this behavior is that, according to eq 33,
this term does not explicitly contain energy differences between
the intermediate and isolated fragment’s states, as there is no
inter-fragment term associate to the latter. Deeper analysis
indicates that the classical part of the potential energy
differences cancels (particularly in the neutral complexes), so

the inter-fragment exchange−correlation contribution becomes
the dominant term.

Note that the aforementioned contraction effect also increases
(becomes more negative) the overall exchange−correlation
energy of A0B0 with respect to that of A0 and B0. The dominant
exchange contribution is governed by the density close to the
nuclei, by virtue of its ρ(r)4/3 dependence. It might appear
counterintuitive that a charge depletion in the inter-atomic
region leads, nevertheless, to a negative inter-fragment
exchange−correlation. As pointed out by Salvador and Mayer,
neither the bond order nor the Hartree−Fock exchange energy
components are directly related to overlap populations, but to
part of the density localized on the atoms that leads to a
correlation between the fluctuations of the atomic populations,
even in the absence of overlap.25 Indeed, inter-atomic exchange
energy contribution in the Salvador−Mayer KS-DFT IQA

Figure 3. Energy evolution (in kcal/mol, y-axis) of ΔEPauli (yellow) and its IQA-decomposed terms, i.e. ΔεPauli,A (blue), ΔεPauli,B (orange) and ΔεPauli,AB
(grey), along the dissociation pathway (in Å, x-axis) of H2O···H2O, Li+···H2O, NH4

+···H2O, Li+···C6H6, Na+···C6H6 and C6F6···F− molecular systems.
Equilibrium distance marked with a vertical line.
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formulation originates on the bond order density between a pair
of atoms, which is actually large in the vicinity of the nuclei.25 An
even simpler explanation is that part of the exchange−
correlation energy of the A0B0 state is assigned to inter-fragment
character by the IQA decomposition, while, once again, there is
no inter-fragment contribution from the isolated fragments to
compensate for it, as shown in eq 33.

The net result (see Table 2) is that the ΔεPauli,AB contributions
are systematically large and negative. On the contrary, the intra-
fragment ΔεPauli,A and ΔεPauli,B terms are positive, mimicking the
behavior of ΔT0, but bearing not just kinetic but also intra-
fragment electrostatic and exchange−correlation contributions.
Beyond the overall trend, it is not easy to compare the values of
the inter- and intra-fragment contributions from one system to
another, especially among different interaction types. Again,
even though the behavior of the IQA components is analogous
for all interaction types, the actual numerical values are largely
dictated by the respective equilibrium distances.

The orbital interaction from EDA, ΔEorb, originates from the
relaxation of the MOs of the complex’s intermediate state A0B0

to the final complex’s AB ground state. It is by definition a
negative contribution (if the final state of AB is the ground
state), that compensates for the repulsive Pauli term. At short
intermolecular distances the intermediate state A0B0 is higher in
energy, so that the relaxation energy to the state AB becomes
more negative. This behavior can be observed in Figure 4
(yellow curve) for all systems. The orbital relaxation induces an
increase of electron density in the inter-atomic (and thus
intermolecular) region, making the inter-fragment exchange−
correlation contributions of the AB ground state larger (in
absolute value) compared to the ones from the intermediate

state A0B0. This is captured by the Δεorb,AB term (grey curve in
Figure 4), that closely follows the trend of the global ΔEorb value,
with the exception of the C6F6···F− system but for reasons that
will be disclosed later. The trends observed for the intra-
fragment terms (blue and orange curves) vary according to the
nature of the donor and acceptor moieties. The intra-fragment
contribution of the electron donor, Δεorb,B, vanishes at long
distances but as the fragments approach it becomes destabiliz-
ing. At distances much shorter than the equilibrium the term
becomes less repulsive and can even be stabilizing in the case of
the water dimer. On the contrary, the intra-fragment
contribution for the acceptor, Δεorb,A, is very small (particularly
at equilibrium distances) but usually stabilizing along the
dissociation profile.

The decomposition of ΔEorb at the equilibrium geometries
can be found in Table 3. It is well-known that the ΔEorb
contribution accounts for both polarization and charge-transfer
effects from the intermediate to the final state. It is precisely the
amount of charge-transfer that largely dominates these intra-
fragment contributions to ΔEorb. The more charge is transferred
to the acceptor A going from the intermediate A0B0 state to the
final state, the more stabilizing the Δεorb,A contribution, as
shown in Figure S1 of the Supporting Information. In the case of
the donor moieties the correlation is not as good, but the
contributions follow the same trend: the more charge is
transferred to the acceptor, the more destabilizing the Δεorb,B
values are.

Remarkably, the anion−π systems exhibit an opposite trend.
The anion donates charge upon interaction, yet the Δεorb,B
contribution is stabilizing. This holds along the whole
dissociation profile, as shown in Figure 4. At the same time,
the acceptor gains charge but its Δεorb,A contribution is
destabilizing. One can also note in Figure 4, the wrong
asymptotics of the intra- and inter-fragment contributions for
C6F6···F− at long distances. This is in fact a clear fingerprint of
delocalization error in the KS density, coming from the BP86
functional. First, the dissociation profile could not be further
extended at longer distances due to severe SCF convergence
problems but, most importantly, the partial charge on F−

actually increases from a value of −0.841 at 3.79 Å distance to
−0.865 at equilibrium distance, which might explain the
aforementioned opposite trend of these systems. It is beyond
the scope of the present work to examine the dependence of the
decomposed terms on the underlying density functional
approximation, but it appears the chosen level of theory is not
particularly appropriate to describe these anion-π interactions.

Of course, since the present EDA−IQA decomposition is fully
additive, one can obtain the intra- and inter-fragment
decomposition of the total interaction energy, ΔEint, by adding
the corresponding electrostatic, Pauli repulsion and orbital
interaction terms (and dispersion, if included). Numerically, this
is not necessary as one can simply perform a conventional IQA
decomposition of the final AB state of the complex and subtract
the isolated fragment’s energies of A0 and B0 to obtain the intra-
fragment or deformation contributions.

For completeness, the IQA decomposition of ΔEint along the
dissociation profile of the representative systems is shown in
Figure 5, while the corresponding values at equilibrium
geometries are gathered on Table 4. Similarly to the orbital
interaction contribution, the electronic deformation energies
(Δεdef.el,A and Δεdef.el,B) at equilibrium are governed by the
amount of charge transfer, in this case between the final state and
the that of the isolated free fragments. Note that this charge-

Table 2. Fragment (IQA) Decomposition of theΔEPauli Term
from EDA of the Systems Studieda

A = acceptor B = donor ΔεPauli,A ΔεPauli,B ΔεPauli,AB ΔEPauli

H2O H2O 12.0 11.5 −15.5 8.0
H2O MeOH 14.2 12.5 −17.2 9.5
MeOH MeOH 14.3 14.0 −18.0 10.2
H2O NH3 15.6 15.1 −18.5 12.2
NH4

+ H2O 32.8 21.7 −32.7 21.8
Li+ H2O 20.6 10.5 −18.4 12.6
Na+ H2O 22.4 5.6 −19.7 8.3
K+ H2O 27.7 1.3 −22.2 6.7
NH4

+ C4H4S 16.2 26.4 −27.2 15.4
NH4

+ C6H6 17.5 23.6 −26.5 14.6
NH4

+ C4H4O 17.0 22.3 −24.8 14.4
NH4

+ C4H4NH 21.9 24.6 −27.7 18.8
Li+ C6H6 22.7 6.5 −16.5 12.7
Na+ C6H6 18.0 1.1 −13.5 5.6
K+ C6H6 30.5 −1.8 −21.7 7.0
C6H6 C6H6 10.5 10.5 −13.9 7.1
C5H5N C6H6 11.8 10.0 −14.4 7.4
C4H4N2 C6H6 12.4 9.6 −14.9 7.1
DMA C6H6 11.5 12.0 −16.3 7.2
C6H6 C6H6 (T) 5.8 7.8 −9.6 4.1
C6H6 C6H5F 2.1 2.5 −3.5 1.2
C6H6 C6H5Cl 13.8 −2.0 −9.2 2.7
C6H6 C6H5Br 18.0 −2.9 −11.8 3.3
C6F6 F− 17.2 1.4 −9.0 9.6
C6F6 Cl− 6.3 7.0 −5.1 8.3
C6F6 Br− 3.8 11.0 −5.5 9.2

aAll the energies are given in kcal/mol. DMA = dimethylacetamide.
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transfer is different from the one accounted for in the orbital
interaction term because, in real-space analysis, there is already
some charge-transfer when forming the intermediate A0B0 state.
Since the charge transfer from the isolated fragments to the final
state is larger, the electronic deformation energies on Table 4 are
larger (in absolute value) as well. The correlation between the
electronic deformation energies of both the donor and acceptor
moieties and the respective amount of charge-transfer is
excellent (r2 = 0.95, see Figure S2 of the Supporting
Information). However, the correlation curve does not cross
the (0,0) point but slightly above. That is, even though the
acceptor A can eventually gain a small amount of charge (e.g.
0.05e for Na+ in Na+···C6H6), the corresponding electronic
deformation energy is still slightly positive (+2.7 kcal/mol), due
to the accompanying polarization of the fragment’s density

within the complex. Finally, as usual in the conventional IQA
analysis, the Δεint,AB contributions are largely stabilizing along
the dissociation profile and also at equilibrium, even for the
dispersion−bound complexes (notice that the interaction
energies in Table 4 do not contain the dispersion correction).
There is also a decent correlation (r2 = 0.82, see Figure S3 of the
Supporting Information) between the Δεint,AB and ΔEint values
at equilibrium, even considering the unreliable anion-π
complexes.

So far, we have presented cases where the EDA-IQA terms are
conveniently grouped to match the fragments selected in the
EDA step straightly. However, the pairwise nature of the IQA
terms can also be used to identify the directionality of each
specific interaction. As an example, we have chosen the series of
lithium carbanions: LiCF3, LiCHF2, LiCH2F, and LiCH3. For

Figure 4. Energy evolution (in kcal/mol, y-axis) of ΔEorb (yellow) and its IQA-decomposed terms, i.e. Δεorb,A (blue), Δεorb,B (orange) and Δεorb,AB
(grey), along the dissociation pathway (in Å, x-axis) of H2O···H2O, Li+···H2O, NH4

+···H2O, Li+···C6H6, Na+···C6H6 and C6F6···F− molecular systems.
Equilibrium distance marked with a vertical line.
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the sake of comparison, we have enforced the symmetry of all
species, so that not all structures correspond to a minimum in
the PES. Table 5 summarizes the EDA results for the Li−C bond
using the ionic reference fragments Li+ (1S) and CR3

− (1A1).
The dissociation energy values show that the more hydrogen

atoms are in the molecule, the stronger the Li-CR3 bond is. The
interaction energy follows the same trend, as the preparation
energy represents small energy penalties upon deformation. The
nature of the chemical bond from the reference fragments is
mainly ionic, since the electrostatic interaction represents
between 85 and 90% of the total stabilizing interactions. All
Pauli repulsion, electrostatic and orbital interaction terms
increase in absolute value going from LiCF3 to LiCH3. Applying
EDA-IQA to the series brings further insight into the reason
behind these trends. The results are gathered in Table 5. The
IQA decomposition of ΔEelec shows a large stabilization of the
Li+ moiety, that increases along the series. As discussed before,
this stabilization originates from the CR3

− density penetration
into the Li+ domain. The presence of highly electronegative F
atoms in the CF3

− moiety reduces the electron density at the
carbon atom, which is closer in space, compared to the less
electronegative H atoms in CH3

−. With the frozen densities of
the CR3

− and Li+ fragments interact, the more H atoms the more
charge penetration into the Li+ domain, resulting in an enhanced
Δεelec,Li contribution. The inter-fragment Δεelec,Li−CR3 contribu-
tion is also stabilizing, an also increases along the series. Further
IQA decomposition into atomic and diatomic contributions
helps to rationalize the trend. The contribution of each Li···F
interaction to the electrostatic term (ca. 110−115 kcal/mol) is
significantly larger than the contribution of the less ionic Li···H
counterparts (ca. 20−30 kcal/mol). However, it is the direct Li−

C interaction that is most affected by the nature of the
substituent R. While this term is largely destabilizing in LiCF3,
cancelling out to some extent the Li···F interactions, it is even
slightly stabilizing in LiCH3. The EDA-IQA decomposition
provides actual quantification for the qualitative argument that
an electron deficient C atom (like in CF3

−) will exhibit
electrostatic repulsion with the cationic Li+ moiety.

The orbital relaxation represents only ca. 10% of the total
attractive interactions. Its IQA decomposition reveals that the
leading term is the inter-fragment Δεorb,Li‑CR3, but the trend is
explained by the contribution of the Li+ fragment. The orbital
interaction term gathers both charge-transfer and polarization
effects. When using charged reference fragments, like in this
case, charge transfer should dominate, because the ionicity of the
final state is reduced upon bond formation. Going from LiCF3 to
LiCH3 species the bond ionicity is reduced, hence more charge
is transferred to the Li+ fragment, enhancing its contribution
from −0.6 to −6 kcal/mol, respectively. The inter-fragment
contribution to the ΔEorb is still the leading term, but it remains
essentially constant along the series, because the orbital
relaxation effects are essentially the same for the Li···F and
Li···H contacts.

Regarding to the Pauli repulsion EDA term, its total value
monotonically increases from Li+···CF3

− (35.2 kcal/mol) to
Li+···CH3

− (51.4 kcal/mol). As previously discussed, the highly
repulsive kinetic energy contribution is gathered by the atomic
EDA-IQA terms, while the stabilizing potential energy
contribution spreads more importantly over the diatomic
terms. In this case, the trend along the series is better captured
by the highly repulsive contribution of Li+. The less electron rich
C atom of CF3

− leads to a decreased electron reorganization on
the Li+ fragment upon orthogonalization and antisymetrization
to build the intermediate state. On the other hand, it is
interesting to note the difference between the contributions of
the interatomic Li···C and Li···H/F terms. The former is
strongly stabilizing, because the orthogonalization and anti-
symmetrization affects to a larger extent the inter-fragment
region (i.e. the Li−C σ-bond). On the contrary, the same
electron reorganization weakens the Li···H and Li···F diatomic
terms, and their contribution to the Pauli term is repulsive. The
balance of these interatomic contributions makes the inter-
fragment contribution to the Pauli repulsion indeed favorable
but almost along the series.

Finally, it is worth to note that the atomic or group
contributions of the EDA terms are numerically affected by
the particular shape of the atomic weight functions. It is known,
albeit not much discussed in the literature, that in the case of
Hirshfeld-type approaches the values of the atomic weight
functions of light atoms on top of the nucleus is not exactly one,
as it is the case for QTAIM or TFVC schemes. For instance, the
weight of C atom on top of each H nucleus in CH4 using
conventional Hirshfeld scheme is ca. 0.1.26 Hence, the charge
penetration predicted by Hirshfeld-type schemes can be much
larger. Charge penetration is not too significant in terms of
electron population/charge, as it is very small compared to the
overall atomic density. However, its effect on the energetics of
the electrostatic term (i.e. eqns. 30 and 31) can be much more
relevant, as the nuclear position is precisely where the nuclear
potential is larger. Table S3 of the Supporting Information
gathers the results obtained for some hydrogen-bonded and ion-
dipole systems using atomic weight functions from the
Hirshfeld-Iterative32 (HI) scheme. Charge-penetration effects
on the electrostatic term are mostly captured by the Δεelec,AB

Table 3. Fragment (IQA) Decomposition of the ΔEorb Term
from EDA of the Systems Studieda

A = acceptor B = donor Δεorb,A Δεorb,B Δεorb,AB ΔEorb

H2O H2O 0.1 2.1 −6.4 −4.2
H2O MeOH 0.5 2.1 −7.8 −5.3
MeOH MeOH 0.3 2.1 −8.0 −5.6
H2O NH3 −0.2 2.5 −8.5 −6.1
NH4

+ H2O −9.3 9.4 −17.9 −17.7
Li+ H2O −1.6 8.9 −20.0 −12.7
Na+ H2O −0.7 5.6 −11.4 −6.5
K+ H2O −1.5 4.4 −7.9 −5.0
NH4

+ C4H4S −16.4 21.4 −23.9 −18.9
NH4

+ C6H6 −14.7 17.2 −20.1 −17.6
NH4

+ C4H4O −15.2 16.5 −19.1 −17.7
NH4

+ C4H4NH −18.1 18.0 −21.8 −22.0
Li+ C6H6 −5.8 23.1 −49.6 −32.3
Na+ C6H6 −2.1 13.2 −25.5 −14.4
K+ C6H6 −2.0 9.9 −18.8 −10.9
C6H6 C6H6 0.4 0.4 −2.1 −1.3
C5H5N C6H6 0.2 0.8 −2.5 −1.5
C4H4N2 C6H6 −0.1 1.4 −3.0 −1.7
DMA C6H6 0.2 1.2 −3.4 −2.0
C6H6 C6H6 (T) −0.1 0.8 −1.8 −1.2
C6H6 C6H5F 0.0 0.0 −0.5 −0.4
C6H6 C6H5Cl 0.0 0.5 −1.2 −0.7
C6H6 C6H5Br 0.1 0.6 −1.5 −0.8
C6F6 F− 12.0 −14.2 −17.9 −20.1
C6F6 Cl− 4.4 −4.2 −10.7 −10.5
C6F6 Br− 2.3 −1.2 −9.1 −8.0

aAll the energies are given in kcal/mol. DMA = dimethylacetamide.
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contribution. While TFVC and HI yield similar values for the
water dimer and water−methanol systems, this contribution is
clearly enhanced for the ionic systems Li+···H2O or Na+···H2O.

However, charge penetration effects are even more dramatic
in the case of Pauli repulsion, again particularly for the charged
species. In this case, it originates from the fact that the individual
terms are obtained by differences between IQA energies of the
isolated fragments and those of the molecular complex, where
the fragments share the physical space. Such interprenetration is
much more significant using HI and as a consequence, ΔPaulil,Li
for Li+···H2O changes from +20.6 kcal/mol using TFVC to up to
72.1 kcal/mol using HI. On the other hand, the decomposition
of the orbital interaction contribution leads to very similar
results for both TFVC and HI, precisely because the terms are
obtained by comparing IQA energies of the molecular complex
at the final and intermediate state (i.e. in both cases the

fragments share the physical space). Adding up all EDA terms
obtained with HI leads to a final EDA-IQA decomposition of the
interaction energy with much larger intra- and inter-fragment
contributions of different sign that compensate each other. For
this reason, we do not recommend the use of Hirshfeld-type
schemes for the present EDA-IQA scheme.

■ CONCLUSIONS
In this work, we have presented the implementation of the IQA
decomposition of the individual terms arising from the Kitaura-
Morokuma (KM) EDA methodology, namely electrostatic,
Pauli repulsion, and orbital interaction. The EDA-IQA approach
has been illustrated for a set of complexes, covering different
types of intermolecular interactions. In this context, the atomic
and diatomic contributions obtained for each EDA term have
been conveniently grouped into intra-fragment and inter-

Figure 5. Energy evolution (in kcal/mol, y-axis) of ΔEint (yellow) and its IQA-decomposed terms, i.e. Δεdef.el,A (blue) and Δεdef.el,A (orange) and
Δεint,AB (grey), along the dissociation pathway (in Å, x-axis) of H2O···H2O, Li+···H2O, NH4

+···H2O, Li+···C6H6, Na+···C6H6 and C6F6···F− molecular
systems. Equilibrium distance marked with a vertical line.
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fragment terms. Although the EDA-IQA terms can be grouped
to match the selected fragments, the methodology affords
atomic and pairwise interactions between all atoms of the system
in all EDA terms, helping the precise identification of ruling
effects. This in-depth analysis affords a better rationalization of
the trends of the bonding along the LiCF3 to LiCH3 series.
Through the lens of real-space analysis such as IQA, the
electrostatic interaction from EDA can no longer be seen as
intermolecular in nature, but also results in meaningful and non-
negligible intra-fragment contributions, because the interacting
fragments share the physical space once the complex is formed.
The EDA-IQA decomposition of the Pauli repulsion shows
destabilizing intra-fragment contributions, particularly in the
case of fragments that are net charge acceptors. On the contrary,
the inter-fragment Pauli contribution is strongly stabilizing. The
intra- and inter-fragment ΔEPauli contributions closely mimic the
behavior of the classical decomposition of Pauli repulsion into
kinetic and potential terms, respectively. In the case of the orbital
interaction term, the sign and magnitude of the intra-fragment
contribution at equilibrium geometries is largely driven by the
amount of charge transfer: the net acceptors of charge stabilize
and the donor moieties destabilize. The proper asymptotics
profile of all EDA-IQA terms is also confirmed along the
intermolecular dissociation path. Finally, while this work focuses
on the particular implementation of (KM) EDA-IQA analysis
for intermolecular interactions, it can be readily applied to other
EDA schemes relying in intermediate states such as ALMO-
EDA.
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Table 4. Fragment (IQA) Decomposition of the ΔEint Term
from EDA of the Systems Studieda

A = acceptor B = donor Δεdef.el,A Δεdef.el,A Δεint,AB ΔEint

H2O H2O 6.0 13.1 −24.1 −5.0
H2O MeOH 7.8 13.7 −26.7 −5.2
MeOH MeOH 7.3 15.0 −27.4 −5.1
H2O NH3 5.2 17.2 −29.3 −6.8
NH4

+ H2O −3.2 28.8 −48.8 −23.1
Li+ H2O −7.7 19.5 −45.8 −34.0
Na+ H2O 4.2 11.5 −39.2 −23.6
K+ H2O 15.1 6.3 −38.6 −17.2
NH4

+ C4H4S −33.1 45.4 −29.2 −16.9
NH4

+ C6H6 −26.5 38.8 −29.2 −16.8
NH4

+ C4H4O −25.2 36.5 −26.7 −15.4
NH4

+ C4H4NH −28.8 40.2 −33.7 −22.4
Li+ C6H6 −11.9 29.2 −53.4 −36.1
Na+ C6H6 2.7 14.2 −39.1 −22.2
K+ C6H6 15.8 7.8 −39.1 −15.5
C6H6 C6H6 9.1 9.1 −14.8 7.0
C5H5N C6H6 9.4 9.0 −15.6 7.2
C4H4N2 C6H6 8.9 9.4 −16.0 7.3
DMA C6H6 7.9 11.5 −18.2 6.7
C6H6 C6H6 (T) 3.8 7.7 −10.5 3.7
C6H6 C6H5F 2.1 2.7 −3.4 1.4
C6H6 C6H5Cl 12.9 −1.4 −10.1 1.4
C6H6 C6H5Br 16.8 −2.4 −13.1 1.3
C6F6 F− 23.1 0.3 −48.7 −25.2
C6F6 Cl− 4.2 8.4 −26.1 −13.5
C6F6 Br− −1.9 13.5 −21.9 −10.2

aAll the energies are given in kcal/mol. DMA = dimethylacetamide.

Table 5. EDA−IQA Results of LiCF3, LiCHF2, LiCH2F, and
LiCH3 at the BP86-D3(BJ)/def2-TZVPP Level of Theory

LiCF3

LiCHF2
(forced)

LiCH2F
(forced) LiCH3

ΔEint −154.3 −158.7 −171.3 −179.2
Δεint,Li −23.2 −20.8 −26.1 −28.7
Δεint,CR3 10.1 9.2 5.6 4.8
Δεint,Li−CR3 −141 −147.2 −150.8 −155.3
Δεint,Li−C 124.8 10.9 −39.9 −107.5
Δεint,Li−F −88.6 −76.0 −85.0
Δεint,Li−H −6.1 −12.9 −15.9
ΔEPauli 35.2 36.6 46.4 51.4
ΔεPauli,Li 45.6 48.3 62.2 68.2
ΔεPauli,CR3 7.2 5.5 2.2 0.2
ΔεPauli,Li−CR3 −17.6 −17.2 −18.0 −17.0
ΔεPauli,Li−C −66.4 −45.5 −43.8 −30.4
ΔεPauli,Li−F 16.3 13.3 18.4
ΔεPauli,Li−H 1.8 3.7 4.5
ΔEelec −170.1 −174.6 −195.0 −206.5
Δεelec,Li −68.2 −67.7 −83.7 −90.9
Δεelec,CR3 1.4 1.4 1.5 1.6
Δεelec,Li−CR3 −103.2 −108.4 −112.8 −117.1
Δεelec,Li−C 244.0 108.9 58.0 −21.7
Δεelec,Li−F −115.8 −98.8 −114.0
Δεelec,Li−H −19.8 −28.4 −31.8
ΔEorb −19.3 −20.7 −22.7 −24.1
Δεorb,Li −0.6 −1.4 −4.6 −6.0
Δεorb,CR3 1.5 2.3 1.9 3.0
Δεorb,Li−CR3 −20.2 −21.6 −20 −21.2
Δεorb,Li−C −52.8 −52.5 −54.1 −55.4
Δεorb,Li−F 10.9 9.5 10.6
Δεorb,Li−H 11.9 11.8 11.4
ΔEdisp −1.0 −1.0 −1.0 −1.0
ΔEprep 3.9 1.6 1.4 0.3
d(Li−C) 1.999 1.999 1.999 1.977
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Francisco, E.; Pendás, Á. M.; Rocha-Rinza, T. Electron correlation in
the interacting quantum atoms partition via coupled-cluster lagrangian
densities. J. Comput. Chem. 2016, 37, 1753−1765.

(37) Hermann, M.; Frenking, G. Carbones as Ligands in Novel Main-
Group Compounds E[C(NHC)2]2 (E=Be, B+, C2+, N3+, Mg, Al+, Si2+,
P3+): A Theoretical Study. Chem.�Eur. J. 2017, 23, 3347−3356.

(38) Frenking, G.; Hermann, M.; Andrada, D. M.; Holzmann, N.
Donor−acceptor bonding in novel low-coordinated compounds of
boron and group-14 atoms C−Sn. Chem. Soc. Rev. 2016, 45, 1129−
1144.

(39) Takagi, N.; Shimizu, T.; Frenking, G. Divalent Silicon(0)
Compounds. Chem.�Eur. J. 2009, 15, 3448−3456.

(40) Frenking, G.; Sola,̀ M.; Vyboishchikov, S. F. Chemical bonding in
transition metal carbene complexes. J. Organomet. Chem. 2005, 690,
6178−6204.

(41) Vyboishchikov, S. F.; Frenking, G. Structure and Bonding of
Low-Valent (Fischer-Type) and High-Valent (Schrock-Type) Tran-
sition Metal Carbene Complexes. Chem.�Eur. J. 1998, 4, 1428−1438.

(42) Foroutan-Nejad, C. The Na···B Bond in NaBH3−: A Different
Type of Bond. Angew. Chem., Int. Ed. 2020, 59, 20900−20903.

(43) Martín Pendás, A.; Francisco, E.; Blanco, M. A. Binding Energies
of First Row Diatomics in the Light of the Interacting Quantum Atoms
Approach. J. Phys. Chem. A 2006, 110, 12864−12869.

(44) Martín Pendás, A.; Blanco, M. A.; Francisco, E. The nature of the
hydrogen bond: A synthesis from the interacting quantum atoms
picture. J. Chem. Phys. 2006, 125, 184112.

(45) Pendás, A. M.; Blanco, M. A.; Francisco, E. Steric repulsions,
rotation barriers, and stereoelectronic effects: A real space perspective.
J. Comput. Chem. 2009, 30, 98−109.

(46) Racioppi, S.; Sironi, A.; Macchi, P. On generalized partition
methods for interaction energies. Phys. Chem. Chem. Phys. 2020, 22,
24291−24298.

(47) Montilla, M.; Luis, J. M.; Salvador, P. Origin-Independent
Decomposition of the Static Polarizability. J. Chem. Theory Comput.
2021, 17, 1098−1105.

(48) Bultinck, P.; Fias, S.; Van Alsenoy, C.; Ayers, P. W.; Carbó-
Dorca, R. Critical thoughts on computing atom condensed Fukui
functions. J. Chem. Phys. 2007, 127, 034102.

(49) Jiménez-Grávalos, F.; Suárez, D. A Quantum Chemical Topology
Picture of Intermolecular Electrostatic Interactions and Charge
Penetration Energy. J. Chem. Theory Comput. 2021, 17, 4981−4995.

(50) Vydrov, O. A.; Van Voorhis, T. Nonlocal van der Waals density
functional: The simpler the better. J. Chem. Phys. 2010, 133, 244103.

(51) Boys, S. F.; Bernardi, F. The calculation of small molecular
interactions by the differences of separate total energies. Some
procedures with reduced errors. Mol. Phys. 1970, 19, 553−566.

(52) Simon, S.; Duran, M.; Dannenberg, J. J. How does basis set
superposition error change the potential surfaces for hydrogen-bonded
dimers? J. Chem. Phys. 1996, 105, 11024−11031.

(53) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G.
A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.;
Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J.
V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.;
Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe,
D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada,
M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.;
Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell,

K.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.;
Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.;
Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J.
C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.;
Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.;
Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Rev. A.03,
Wallingford, CT, 2016.

(54) Becke, A. D. Density-functional exchange-energy approximation
with correct asymptotic behavior. Phys. Rev. A: At., Mol., Opt. Phys.
1988, 38, 3098−3100.

(55) Perdew, J. P. Density-functional approximation for the
correlation energy of the inhomogeneous electron gas. Phys. Rev. B:
Condens. Matter Mater. Phys. 1986, 33, 8822−8824.

(56) Grimme, S. Density functional theory with London dispersion
corrections. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2011, 1, 211−228.

(57) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping
function in dispersion corrected density functional theory. J. Comput.
Chem. 2011, 32, 1456−1465.

(58) Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence,
triple zeta valence and quadruple zeta valence quality for H to Rn:
Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7,
3297−3305.

(59) Salvador, P.; Ramos-Cordoba, E.; Gimferrer, M.; Montilla, M.
APOST-3D Program; Universitat de Girona: Girona, Spain, 2020.

(60) Stroud, A. H. S. D. Gaussian Quadrature Formulas, 1966.
(61) Lebedev, V. I.; Laikov, D. N. A Quadrature Formula For The

Sphere Of The 131st Algebraic Order Of Accuracy. Dokl. Math. 1999,
59, 477−481.

(62) Gimferrer, M.; Salvador, P., Exact Decompositions of the Total
KS-DFT Exchange-Correlation Energy into One- and Two-Center
Terms. Submitted.
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