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Abstract
This work discusses and demonstrates the novel use of multivariate analysis and data dimensionality reduction techniques to 
handle the variety and complexity of data generated in efficacy trials for the development of a prototype vaccine to protect 
sheep against the Teladorsagia circumcincta nematode. A curated collection of data dimension reduction and visualisation 
techniques, in conjunction with sensible statistical modelling and testing which explicitly model key features of the data, 
offers a synthetic view of the relationships between the multiple biological parameters measured. New biological insight 
is gained into the patterns and associations involving antigen-specific antibody levels, antibody avidity and parasitological 
parameters of efficacy that is not achievable by standard statistical practice in the field. This approach can therefore be used 
to guide vaccine refinement and simplification through identifying the most immunologically relevant antigens, and it can 
be analogously implemented for similar studies in other areas. To facilitate this, the associated data and computer codes 
written for the R open system for statistical computing are made freely available.
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Introduction

Statistical analysis in animal vaccine efficacy trials is tra-
ditionally focused on estimating and comparing responses 
induced by a prototype vaccine formulation against a pla-
cebo control group and other existing vaccine formula-
tions. The aim is establishing a superior performance of 
the prototype in terms of reductions in pathogen burden 
and/or increases in animal productivity. Usually, the anal-
ysis includes data summaries and basic statistical testing 
for immunological parameters, such as pathogen-specific 
immunoglobulin G and A levels (IgG and IgA respectively); 
and of disease parameters, such as faecal worm egg counts 
(FEC) and worm burdens in the case of parasite vaccines 
(Bu et al. 2020). Ordinary pairwise correlations and simple 

linear regression are routinely used by researchers in the 
area whenever they are interested in unveiling associations 
between biological variables, e.g. between immunology and 
parasitology parameters. However, an overly simplistic sta-
tistical approach can provide only partial and limited infor-
mation, or simply be misleading if key features of the data or 
the underlying biological processes are overlooked (Palarea-
Albaladejo and McKendrick 2020). Recent vaccine efficacy 
studies in the area have introduced some statistical sophisti-
cation through the families of linear and generalised additive 
mixed models for longitudinal measurements of parasitology 
parameters (Cull et al. 2012; Nisbet et al. 2013, 2019) that 
allow explicit accounting for key aspects such as temporal 
correlation structure, nonlinear relationships with time, or 
heterogenous variability. Moreover, multivariate data analy-
sis methods are an integral part of the statistical toolkit in 
areas such as chemometrics and bioinformatics (Varmuza 
and Filzmoser 2009; Ma and Dai 2011); however, to our 
experience they are hardly used in the context of vaccine 
efficacy studies. These methods are meant to analyse, visu-
alise, and interpret complex datasets, including those with 
several variables up to hundreds or thousands as generated 
by modern high-throughput technologies. While some are 
extensions of univariate techniques such as the multivariate 
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versions of analysis of variance and regression, others stand 
on their own right to accomplish tasks that are exclusive to 
multivariate problems and only feasible in practice thanks 
to the advent of scientific computing systems. Most multi-
variate techniques though are not inferential in nature and 
are instead primarily focused on data exploration and low-
dimensional representation to facilitate visualisation and 
interpretation of patterns and relationships in the data.

In this work we present and demonstrate the novel appli-
cation of a curated selection of multivariate methods that 
provide a global overview of the main drivers of vaccine-
induced protection and contributes to identify associated 
immunological markers, which is key to inform vaccine 
refinement (Britton et al. 2020). The basics of the meth-
ods are introduced, stressing their purpose in the context 
of application and emphasising visualisation features. It is 
not the objective of this work to provide a comprehensive 
methodological review nor discussing technical properties 
in depth, but to show how a tailored multivariate approach 
contributes to make the most out of the complex data gen-
erated in vaccine efficacy trials and to enhance biological 
insights. We focus here on a vaccine development against 
the parasitic nematode Teladorsagia circumcincta, which is 
the principal cause of parasitic gastroenteritis in small rumi-
nants in temperate regions worldwide. Using data gathered 
over five trials assessing a prototype recombinant cocktail 
vaccine (Nisbet et al. 2013, 2019), the relationships between 
antigen-specific antibody levels, antibody:antigen avidity 
measurements and parasitological parameters of efficacy 
are investigated and discussed.

Materials and methods

Overview of experimental setting and biological 
parameters

Five T. circumcincta vaccine trials were conducted between 
2010 and 2017 following identical design, protocols and 
procedures (see Supplementary Information, Section S1, 
outlining the general immunisation and sampling regime; 
further details in Nisbet et al. 2013, 2019). The trials were 
all performed on the same farm under comparable conditions 
and following the principles of randomised controlled trials. 
Texel crossbred lambs were reared under comparable condi-
tions and randomly allocated to balanced treatment groups to 
be independently individually applied either the vaccine or 
placebo preparation by injection. Ages and characteristics of 
the animals were homogeneous within each trial, with ages 
varying between 3 and 7 months across trials. In Trial 2, two 
groups of vaccinated and control animals were formed and 
euthanised either 7 weeks or 11 weeks after the start of the 
infection (denoted Trials 2a and 2b respectively). In Trial 

4, two different ages of lambs were used: 3-month-old and 
6-month-old lamb (denoted Trials 4a and 4b respectively).

A recombinant protein eight-antigen prototype vaccine 
formula was used in all trials, comprising the 8 antigens 
Tci-APY-1, Tci-ASP-1, Tci-MIF-1, Tci-TGH-2, Tci-SAA-1, 
Tci-CF-1, Tci-ES20 and Tci-MEP-1 and formulated in the 
adjuvant Quil A to boost the immune response. Lambs in 
all control groups were immunised with Quil A adjuvant 
only. Lambs were immunised on three occasions three weeks 
apart and at the third immunisation, each lamb was chal-
lenged orally with 2,000 T. circumcincta infective larvae, 
three times per week for 4 weeks.

The following subsections “Immunology parameters” and 
“Parasitology parameters” describe the immunological and 
parasitological response parameters that were identically 
measured in individual lambs in each one of the trials. Sex 
(female, male) and weight gain (in Kg) were recorded as 
well, although note that weight gain was only available for 
vaccinated animals in Trials 1, 2a, 2b and 5.

Immunology parameters

Antigen-specific antibody levels (IgG and IgA) in serum and 
in mucus were measured by ELISA as described in Nisbet 
et al. (2013). Serum antibody and avidity levels were meas-
ured 2 weeks after the final vaccination, when antigen-specific 
antibody levels were at their peak. Mucus antibodies were har-
vested at post mortem, approximately 60 days after the final 
vaccination. Briefly, plates (Greiner Bio-one, high binding) 
were coated with each recombinant antigen (50 µl per well 
at a concentration of 1 µg/ml for IgG and 5 µg/ml for IgA). 
Serum or mucus was diluted 1:5000 for IgG and 1:10 for IgA 
in Tris Buffered Saline (20 mM Tris, 150 mM NaCl, pH 7.4) 
containing 0.1% Tween® 20 (TBST). The secondary antibody 
used for IgG detection was mouse monoclonal anti goat/sheep 
IgG-HRP conjugate (Clone GT-34, Sigma A9452), used at 
1:2000 and, for IgA, mouse monoclonal anti ovine/bovine 
IgA, used at 1:20,000 (Clone K84,2F9, Bio-rad AbD Serotec, 
MCA628GA). The tertiary antibody for detection of IgA was 
rabbit anti-mouse IgG-HRP conjugate (Dako P0260) used at 
1:1000. Antibody avidity was determined in sera from each 
animal using an additional potassium thiocyanate elution step 
as described in Nisbet et al. (2019). Briefly, after antigen/sera 
incubation, microtiter plates were washed six times in PBST 
(137 mM NaCl, 2.7 mM KCl, 8.1 mM  Na2HPO4, 1.5 mM 
 KH2PO4, 0.1% v/v Tween20, pH7.4), then duplicate wells for 
each animal incubated with 0, 0.25, 0.5, 1, 2, 3, 4 and 5 M 
potassium thiocyanate solution for 10 min at room tempera-
ture. Plates were washed a further six times with PBST, then 
residual antibody binding detected according to the standard 
ELISA protocol described above. The absorbance readings 
from wells with no potassium thiocyanate represented total 
antibody binding and absorbance readings in the presence of 
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increasing concentrations of potassium thiocyanate were con-
verted to a percentage of total binding. Data were fitted to a 
graph of  log10 molar concentration of potassium thiocyanate 
versus normalised response by non-linear regression to esti-
mate half maximal inhibitory concentration  (IC50) values.

• IgG avidity index. This measures the strength of the bind-
ing between each of the antigens and the antigen-specific 
IgG antibodies in vaccinated animals. The induction of 
higher antibody avidity may be indicative of higher vac-
cine efficacy.

• Antigen-specific IgG and IgA in serum and in abomasal 
mucus. This measures the levels of antigen-specific 
total IgG and IgA antibody response (values normalised 
across all trials by using the same plate positive control).

The avidity dataset included a small fraction of missing 
values in Tci-APY-1 (4%) and Tci-CF-1 (1.33%). They were 
replaced by predictive mean matching imputation (Schenker 
and Taylor 1996) based on the information provided by the 
observed data. Note that for Trial 4 IgG antibody responses 
in serum were available only for vaccinated animals and it 
was then removed from the analysis of antibody responses 
to facilitate comparability across trials, treatment groups 
and datasets. The immunology parameters generally showed 
right-skewed distributions and were log-transformed to bet-
ter accommodate symmetry and linearity assumptions.

Parasitology parameters

Faecal egg counts (FEC) were measured three times per 
week from 14 days after the start of the parasite challenge 
until the end of the experiments. A modification of the salt 
flotation faecal worm egg count with a sensitivity of up 
to one egg per gram was used (Jackson 1974). Abomasal 
nematode burdens were classified and enumerated following 
standard techniques.

• Percentage reduction in cumulative faecal egg counts (% 
cFEC reduction). Cumulative FEC (cFEC) for each ani-
mal in each trial was calculated using the trapezoidal 
method. They were normalised to facilitate comparability 
across trials by using [1 −

(

cFEC∕ − cFECc

)

] ⋅ 100 ; that 
is, as the reduction in cFEC relative to the mean cFEC in 
the control animals of the same trial ( cFECc ) and 
expressed in percentage.

• Percentage reduction in worm burden (% wBurden reduc-
tion). This was computed analogously using post-mortem 
abomasal nematode burdens instead.

Figure 1 (left) shows a schematic of the data architecture, 
arranging the different sets of biological parameters measured 
in columns (distinguished by coloured headings and labels) 
and the successive vaccine trials and treatment groups within 
them in rows. The overall total number of samples was 152, 

Fig. 1  Schematic outline of datasets produced over five T. circumcincta vaccine trials and multivariate methods used for their analysis (see text 
for details). Greyed out areas indicate data not available
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however not all biological parameters were available for all 
samples and trials (greyed out in Fig. 1). Numbers per trials 
and treatment groups are indicated in parenthesis, including 
actual sizes of the datasets (rows × columns) at the bottom of 
the table. Note that one vaccinated animal had to be withdrawn 
due to unrelated health issues from both Trial 4a and Trial 4b.

Multivariate data analysis methods

The following describes the basics of the selected multivari-
ate methods and their purposes in the context of the present 
study. Each method or combination of them is aimed to learn 
from the data about a particular question of interest, and they 
complement each other, helping to provide an overarching 
view of the underlaying processes. They are not meant to be 
applied in any particular order, but certainly principal com-
ponents analysis and the associated biplot representation as 
described below are typically a good starting point. These 
provide a synthetic view of patterns and relationships 
amongst samples and variables. Key summaries along with 
generic diagrams of the workings and main outputs are out-
lined in Fig. 1 (right). Some definitions and notation are 
established here to facilitate the exposition. Thus, a multi-
variate dataset consisting of n samples (observations) and p 
variables (biological parameters) is arranged as a matrix 
� =

[

xij
]

n×p
 of elements xij referring to the measured value 

for the i th sample in the j th variable, with i = 1,… , n and 
j = 1,… , p (dataset sizes n × p are detailed in Fig. 1). The 
centre of the data is given by the mean vector � = (x1,… , xp) , 
with xj being the ordinary arithmetic mean of the variable 
xj . The data dispersion is summarised by the covariance 
matrix � =

[

sij
]

p×p
 , including the individual variances s2

j
 in 

the first diagonal and the pairwise covariances sij off the 
diagonal. In practice, the correlation matrix� =

[

rij
]

p×p
 with 

elements rij = sij∕sisj varying in [0,1] is often used instead. 
This removes the influence of the scale of measurement and 
improves their comparability. Note that using � is equivalent 
to work with standardised variables zj = (xj − xj)∕sj , with 
mean zero and variance one, which gives all variables equal 
weight in the analysis. Either � or � are the main input for 
most multivariate statistical methods.

Principal component and biplot analysis

The main purpose of principal component analysis (PCA) 
is to reduce the dimension of a dataset �n×p by building 
a new dataset ��n×k (with k ≤ p ) of uncorrelated vari-
ables (principal components, PCs) which summarises the 
information in the original ones by means of linear com-
binations PCi = li1x1 +⋯ + lipxp , with i = 1,… , k . The 
coefficients lij (loadings), and hence the values of the PCi 
(scores), are determined so that successive PCs account for 

a decreasing fraction of the variation structure contained in 
� (or � ). Technically, PCA loadings and scores are com-
monly obtained by a so-called singular value decomposition 
(SVD) of the mean-centred � matrix (Ma and Dai 2011). 
Often, working with the first few k PCs, those representing 
the main gradients of dispersion in � , is enough to capture a 
notable portion of the original information, while the dimen-
sion is reduced from p to k for the benefit of interpretation 
and graphical display. Namely, the first two ( k = 2 ,  PC1 and 
 PC2) can be used to define a planar diagram called a biplot 
(Gower et al. 2010), in which both samples and variables are 
jointly represented by, respectively, points and rays from the 
origin. However, in some cases, using some subsequent PCs 
might be relevant to represent other underlying physical, 
chemical or biological processes. The biplot display is useful 
to explore overall variation, associations between variables, 
and groupings between samples. Figure 1 (right) includes 
a basic illustration for two variables of the move from the 
original space to the space spanned by the PCs. Moreover, 
supplementary variables can be projected onto a biplot, so 
that their correlations with the PCs, and hence with the vari-
ables mostly associated with them, can be explored (Graf-
felman and Aluja-Banet 2003). More detailed guidance on 
interpreting the biplot display is provided in Supplementary 
Information (Section S2).

PCA and biplot analysis were applied to each of the 
immunology datasets separately to provide an overview 
of patterns and relationships within them. The parasitol-
ogy parameters were added to the PCA solution as supple-
mentary variables to investigate their associations with the 
immunology parameters.

Multivariate analysis of variance and discriminant analysis

Given a dataset � comprising g groups of samples, mul-
tivariate analysis of variance (MANOVA) tests for over-
all differences between mean responses by group, jointly 
considering all response variables and their interrelation-
ships. The total variability ( � ) of � is decomposed into 
between-groups ( � ) and within-groups ( � ) variability as 
� = � +� , using the information from the data covari-
ance structure. Thus, an important relative contribution of 
� suggests relevant differences in mean vectors. In the same 
spirit as PCA, MANOVA relies on optimal linear combi-
nations of the variables called canonical variates, but here 
these result from maximising �−1� (i.e. the distinction of 
samples in different groups relative to samples within the 
same groups). Common test statistics for MANOVA make 
use of characteristics of the � and � matrices, such as their 
trace, determinant or eigenvalues, and are based on approxi-
mate F distributions (Smith et al. 1962). Note that standard 
MANOVA relies on multivariate normality and works for 
regular datasets (i.e. n > p ). The workings of MANOVA 
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are illustrated in Fig. 1 (right) for the case of two variables 
and g = 3 groups (with group means and dispersion matri-
ces given by �i and �i respectively, i = 1,2, 3 ; and �i being 
further decomposed into within ( �wi ), relative to the group 
mean, and between ( �bi ), relative to the overall mean, vari-
ability). The generalisation of MANOVA to include several 
explanatory factors or covariates defines a multivariate lin-
ear model (MLM) of the form � = �� + � , where � refers 
to the explanatory variables, with coefficients � , and � is the 
error term (Mardia et al. 1979). Moreover, permutational 
MANOVA (PERMANOVA) is a semi-parametric alternative 
based on dissimilarity measures that uses a pseudo F statis-
tic. This works under less stringent conditions and is also 
applicable to wide datasets ( n < p ) (Anderson 2017). Both 
MANOVA and PERMANOVA assume that the variability 
structure is homogeneous between groups. This can be sta-
tistically tested in regular data sets using the Box’s M test 
(Box 1949), but note that this test is sensitive against devia-
tion from multivariate normality. However, PERMANOVA 
has shown robustness to departures from such assumption 
in the case of balanced groups (Anderson and Walsh 2013). 
Otherwise, extensions of MANOVA and PERMANOVA for 
heterogenous dispersion and high dimensions are used (see 
summary of methods in Supplementary Information, Section 
S3). Note that canonical variates in MANOVA essentially 
coincide with the latent functions used in linear discriminant 
analysis (LDA) (Mardia et al. 1979), but the emphasis of 
this latter is predictive, i.e. classifying samples into groups 
based on a number of predictors. Quadratic discriminant 
analysis (QDA) is used in case of heterogeneous dispersion 
between groups. Predictive accuracy and relative importance 
of predictors can be conveniently assessed by cross-valida-
tion (Hastie et al. 2009), aiming to maximise sensitivity and 
specificity (Kuhn and Johnson 2013).

With the specific formulation and tests used depending 
on the characteristics of the data in each case (see computer 
codes for more details), and accounting for covariates like 
trial when suitable, MANOVA, MLM and PERMANOVA 
were applied to assess differences in combined antibody 
responses by treatment. Note that age was not included in 
this modelling as all the animals in a trial were the same age 
and then it would be fully confounded with trial. Moreover, 
DA allowed to assess the ability to distinguish groups based 
on antigen-specific antibody responses, quantifying the rela-
tive contributions of the different antigens.

Multiple factor analysis and redundancy analysis

Multiple factor analysis (MFA) aims to find a joint opti-
mal low-dimensional representation of multiple datasets. 
Given m multivariate datasets �1,… ,�m , referring to 
different domains but measured for the same n samples, 
MFA determines optimal weights for each dataset based 

on their variability structure. These are then applied to 
compute a global PCA and biplot display that allows to 
assess common structures and discrepancies across data-
sets (Abdi et al. 2013). We propose to accompany MFA 
with redundancy analysis (RDA), which combines mul-
tivariate regression and PCA (Legendre and Legendre 
2012). Unlike PCA or MFA, RDA allows for explicit 
investigation of directional associations between any two 
datasets �r and �s of the collection, of say p and q vari-
ables respectively, the first playing the role of response 
dataset and the second acting as explanatory dataset. Lin-
ear combinations of the explanatory variables in �s are 
sought that best explained the variation of the response 
matrix �r . PCA is then applied to these to generate a low-
dimensional data representation that, unlike in standard 
PCA, is constrained by the explanatory dataset. Statisti-
cal significance of the RDA model is commonly tested 
by a global permutation test based on a pseudo F statis-
tics. Additionally, the RDA model can include a set of 
conditioning covariates � , i.e. variables which potential 
effects are wanted to be removed to decipher the unique 
contribution of �s to the variation in �r . Goodness of fit 
is measured by an R2 statistic adjusted for the number of 
explanatory variables and of samples. Figure 1 (right) 
displays a simplified graphical illustration of the purpose 
and output resulting from these techniques.

MFA was used to jointly represent the antigen-specific 
IgG and IgA antibody response datasets along with the 
parasitology dataset and, thus, facilitate the identification 
of overall association patterns across datasets. RDA was 
applied to assess the potential combined influence of: (a) 
IgG responses in serum on IgG responses in abomasal 
mucus, and (b) IgA responses in abomasal mucus on IgA 
responses in serum.

Results

Figure 2 depicts the observed values of the parasitology 
parameters cFEC and worm burden by treatment group 
measured across trials. The superimposed points are the 
actual measurements. Higher cFEC and worm burden are 
generally observed in the control groups. However, high 
variability is also notable, particularly in the later trials, 
where some control animals showed negligible infection 
levels and a few vaccinated animals for which the vaccine 
appears not to confer protection (“non-responders”).

Antigen‑specific IgG avidity indexes

The IgG avidity indexes for the 8 antigens included in the 
vaccine formulation were run through PCA based on the 
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pooled correlation matrix obtained from the vaccinated 
groups across trials and represented along with the sam-
ples in a 2D biplot (Fig. 3; 57.9% variability explained). 
The corresponding reduction in cFEC and worm burden 
data were added as supplementary variables. Tci-MEP-1 
appeared more strongly correlated with Tci-SAA-1 and 
Tci-TGH-2 and weakly correlated with Tci-ES20 and 
Tci-MIF-1. The other antigens were evenly arranged in 
between these two extremes. The shortness of the rays 
representing the parasitology parameters indicates that the 
association of these with the PCA axes was poor. In fact, a 
linear regression fit revealed that PC1 and PC2 jointly only 
explained 1.81% and 1.57% of the variability in cFEC and 
worm burden reductions respectively (not shown). Overall, 
their correlations with the avidity indexes were below 0.2. 
Some structure is observed according to trial, although 
the points are fairly spread throughout. Moreover, a MLM 
concluded no statistically significant differences in mean 
avidity indexes according to sex (p = 0.1793) or weight 
gain (p = 0.6311), while controlling for trial effect as a 
blocking factor.

Antigen‑specific IgG and IgA antibody responses 
in serum and abomasal mucus

Figure 4 shows PCA biplots by antibody location and anti-
body response (explained variability ranging from 83.2% for 
IgA in abomasal mucus to 95.8% for IgG in serum). Differ-
ent symbols distinguish data by trial and 95% concentration 
ellipses inform about the homogeneity and direction of the 
group variabilities.

Antigen‑specific IgG responses in serum

The clearest differentiation between control and vaccinated 
animals relates to IgG in serum (Fig. 4A; 95.8% variance 
explained). This is observed along the direction of the PC1 
axis, with higher values for vaccinated animals in all IgG 
responses except for Tci-MIF-1. This latter appears closer 
to PC2 and determines a direction along with treatment 
groups are not that well distinguished: projecting all the 
points perpendicularly onto this ray reveals some overlap-
ping between control and vaccinated animals, whereas 

Fig. 2  Distribution of cumulative faecal egg counts (A) and worm burden (B) by treatment group and trial. Boxplots and actual data points 
showed
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the separation is complete in relation to any other anti-
gen. The overall variability amongst the control groups is 
larger than in the vaccinated groups (Box’s M p < 0.0001), 
with this very much related to differences between trials. 
For example, control animals from Trial 5 form a clus-
ter separated from the others that is closer to vaccinated 
animals, and Trial 3 shows the largest variability amongst 
control animals. As to the links with the reductions in 
parasitology parameters (red dashed-line rays in Fig. 4), 
these point towards the expected direction, i.e. increasing 
relative reductions in cFEC and worm burden in vacci-
nated animals. However, the very short length of their rays 
indicates that they are not well represented in the biplot 
and that the links with antibody responses are generally 
weak (1.63% and 3.97% of the variability of cFEC and 
worm burden reductions respectively accounted for by the 
two first PC axes; correlations with IgG responses of up to 
0.24). Both MANOVA and PERMANOVA testing, consid-
ering homogeneous and heterogeneous dispersion matrices 
and controlling for trial effect, concluded statistically sig-
nificant differences between treatment groups in all cases 
(p < 0.001). QDA provided a cross-validated predictive 
accuracy in classification of 99.30%, with all the antigen-
specific responses contributing similarly to this separation 
except for Tci-MIF-1, again underlining its probable lack 
of suitability as a vaccine antigen (Table 1).

Antigen‑specific IgA responses in serum

The PCA biplot (Fig. 4B; 91.2% variance explained) shows a 
notably greater overlapping between groups than in the IgG 
case. All antigen-specific IgA responses appear highly corre-
lated along the PC1 axis, except for Tci-SAA-1 and, specially, 
Tci-ES20 which yielded fairly comparable values for control 
and vaccinated animals. The overall dispersion was somewhat 
larger amongst the vaccinated animals (Box’s M p < 0.0001). 
MANOVA and PERMANOVA tests concluded statistically 
significant differences between treatment groups after account-
ing for trial effect (p < 0.001). Distinguishing the points by trial 
reveals that the smallest separation occurred in Trial 5 as seen 
for IgG. The parasitology parameters appear very poorly rep-
resented (0.09% and 0.66% variability explained for cFEC and 
worm burden reductions respectively; correlations with antibody 
responses < 0.15). QDA provided a cross-validated predictive 
accuracy of 84.40% when antigen-specific IgA responses in 
serum were used, with Tci-ASP-1 and Tci-ES20 being the ones 
contributing the most and the least respectively (Table 1).

Antigen‑specific IgG responses in abomasal mucus

The PCA biplot (Fig. 4C; 88.8% variance explained) shows 
separation between control and vaccinated animals along the 
PC1 axis, although there is high variability and some over-
lapping. Particularly, control and vaccinated animals from 
Trial 5 are the least separated, and there are also several 
vaccinated animals in Trial 3 that had responses comparable 
to control animals. In contrast, the treatment groups in Trial 
1 are the most far apart from each other. Referring to the 
parasitological parameters (Fig. 2A and B), Trials 3 and 5 
show the least differences between vaccinated and control 
groups, indicating that serum and mucosal IgG distinctions 
between vaccinated and control groups may be indicative 
of the level of vaccine efficacy in trials. The correlations 
between antigen-specific responses are not as homogeneous 
as seen in the previous cases, with Tci-MIF-1 as before but 
also Tci-MEP-1 and Tci-APY-1 splitting apart from the main 
group. The highest correlation is observed between Tci-CF-1 
and Tci-SAA-1, which is compatible with the results above. 
The overall dispersion was significantly different between 
treatment groups (Box’s M p < 0.0001) and both MANOVA 
and PERMANOVA tests concluded statistically significant 
differences between groups after accounting for trial effect 
(p < 0.001). In line with previous results, the parasitology 
parameters appear poorly represented (3.28% and 3.27% 
variability explained for cFEC and worm burden reductions 
respectively; correlations with antibody responses < 0.19). 
QDA provided a cross-validated predictive accuracy in clas-
sification of 84.17%, with Tci-TGH-2 and Tci-MIF-1 con-
tributing the most and least respectively (Table 1).

Fig. 3  Principal component analysis biplot of antigen-specific 
IgG avidity indexes from vaccinated animals across vaccine tri-
als. Red dashed-line rays indicate pathology parameters projected 
on the biplot as supplementary variables. Antigen ID abbreviations: 
APY (Tci-APY-1), ASP (Tci-ASP-1), MIF (Tci-MIF-1), TGH (Tci-
TGH-2), SAA (Tci-SAA-1), CF (Tci-CF-1), ES20 (Tci-ES20) and 
MEP (Tci-MEP-1)
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Antigen‑specific IgA responses in abomasal mucus

The PCA biplot for this case (Fig. 4D; 83.2% variance 
explained) shows the largest overlap between vaccinated 
and control animals. In line with previous results, responses 
in Trial 5 are hardly distinguishable between groups, but 
here this is also the case for others such as Trial 2. Unlike 
previously, groups in Trial 1 are not that neatly separated 
here. Vaccinated animals appear markedly disperse, with 
the distinction between groups is mostly due to Tci-CF-1 
and Tci-APY-1. The correlations between IgA responses are 
more varied than before and patterns previously observed 
are not evident in this case. The overall dispersion was again 
significantly different between groups (Box’s M p < 0.0001) 
and MANOVA and PERMANOVA tests concluded statisti-
cally significant differences in the combined mean antibody 
responses after accounting for trial effect (p < 0.002). The 
parasitology parameter measurements clearly align with 
the PC2 axis and appear disconnected from the antibody 
responses (1.16% and 3.94% variability explained for cFEC 
and worm burden reductions respectively; correlations with 
antibody responses < 0.17). QDA provided a cross-validated 

Fig. 4  Principal component 
analysis biplot of antigen-
specific immunological 
responses by treatment group: 
(A) Antigen-specific IgG in 
serum, (B) Antigen-specific IgA 
in serum, (C) Antigen-specific 
IgG in abomasal mucus, and 
(D) Antigen-specific IgA in 
abomasal mucus. Red dashed-
line rays indicate pathology 
parameters projected on 
the biplot as supplementary 
variables. Antigen ID abbrevia-
tions: APY (Tci-APY-1), ASP 
(Tci-ASP-1), MIF (Tci-MIF-1), 
TGH (Tci-TGH-2), SAA (Tci-
SAA-1), CF (Tci-CF-1), ES20 
(Tci-ES20) and MEP (Tci-
MEP-1)

Table 1  Quadratic discriminant analysis: relative contributions of 
antigen-specific antibody responses in serum and abomasal mucus to 
distinguish between vaccinated and control animals (values between 0 
and 100 from less to more contribution)

*Based on 5-time repeated 10-fold cross-validation. Relative impor-
tance of predictors determined by the area under the receiver operat-
ing characteristic (ROC) curve associated with the cut-off value for 
the predictor that maximised sensitivity and specificity

Serum Abomasal mucus

QDA model predic-
tive accuracy*

99.30% 84.40% 84.17% 80.65%

IgG IgA IgG IgA

Tci-APY-1 100 87.94 79.40 100
Tci-ASP-1 100 100 90.48 27.74
Tci-MIF-1 0 91.44 0 17.23
Tci-TGH-2 100 83.27 100 36.35
Tci-SAA-1 100 82.30 61.93 0
Tci-CF-1 95.96 80.54 70.60 64.77
Tci-ES20 100 0 91.62 19.91
Tci-MEP-1 100 90.66 92.61 63.31
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predictive accuracy of 80.65% when allocating samples to 
groups, with Tci-APY-1 and Tci-SAA-1 contributing the 
most and least respectively (Table 1).

Relationships between antibody levels in serum 
and abomasal mucus

MFA was applied to the four antibody response datasets along 
with the parasitology parameters. Figure 5 shows the resulting 
consensus biplot based on the first two MFA axes (labelled 
MFA1 and MFA2; 66.2% variance explained). It is split into 
variables plot (Fig. 5A; rays coloured by dataset) and sam-
ples plot (Fig. 5B; points distinguished by treatment group 
and trial) to facilitate visualisation. The first MFA axis essen-
tially characterises the contrast between control and vaccinated 
animals, with overall higher antibody responses in vaccinated 
animals. The second MFA axis mostly accounts for the relative 
reduction in the parasitology parameters. It can be observed 
that IgA levels in serum are in general more correlated with 
IgA responses in abomasal mucus than with any other group 
of parameters (AM and AS rays closer to each other below the 
horizontal reference line). The same relationship applies to 
IgG responses (GS and GM rays closer to each other above the 
horizontal reference line). Antibody responses appear poorly 
associated with the measures of relative reduction in cFEC and 
worm burden used. Measurements across trials were generally 
consistent except for Trial 5, which shows the poorest distinc-
tion between control and vaccinated animals.

RDA allowed to investigate to what extent antigen-spe-
cific IgG response in serum might explain IgG response in 
abomasal mucus. Treatment group and trial effects were 
added to the model as conditioning covariates to determine 

the fraction of the variation of the IgG response in abo-
masal mucus uniquely explained by IgG response in serum. 
The RDA model was statistically significant (p = 0.001) 
and had adjusted R2 equal to 7.88%, with the total varia-
tion in antigen-specific IgG responses in abomasal mucus 
broken down as: 58.65% explained by the conditioning 
terms, 10.66% uniquely explained by the IgG responses in 
serum, and the remaining 30.69% being residual variation. 
RDA was again used to investigate the potential influence 
of antigen-specific IgA response in abomasal mucus on 
IgA response in serum, including group and trial as con-
ditioning variables. No statistically significant association 
was concluded (p = 0.157; adjusted R2 = 0.92%). In par-
ticular, the observed variability in IgA response in serum 
was decomposed into 69.93% explained by the condition-
ing terms, 3.65% explained by IgA response in abomasal 
mucus, and 26.41% residual variance.

Discussion

A comprehensive assessment of the ability of a candidate 
vaccine to induce immune responses that can effectively 
protect from infection and disease is fundamental to both 
understanding the action of the vaccine but also to opti-
mise the prototype. Particularly, the aim of most vaccines 
against parasitic gastrointestinal nematodes is to prevent 
contamination of the pasture with parasite eggs and thus 
reduce the infection pressure for the current and future 
groups of livestock grazing that pasture (Nisbet et  al. 
2019). The results from the current study identified mean-
ingful overall differences between vaccinated and control 

Fig. 5  Multiple factor analy-
sis biplot of immunology and 
parasitology datasets: (A) vari-
ables plot and (B) samples 
plot. Letters preceding antigen 
name refer to either IgG or IgA 
responses (G or A) and to either 
serum or abomasal mucus (S 
or M). Antigen ID abbrevia-
tions: APY (Tci-APY-1), ASP 
(Tci-ASP-1), MIF (Tci-MIF-1), 
TGH (Tci-TGH-2), SAA (Tci-
SAA-1), CF (Tci-CF-1), ES20 
(Tci-ES20) and MEP (Tci-
MEP-1)
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groups in relation to the fundamental parasitology and 
immunology parameters collected over a series of vaccine 
trials against the T. circumcincta nematode.

 Information about the antigens most highly associ-
ated with vaccine efficacy is valuable, particularly when 
attempting to reduce the number of antigens in complex 
vaccine formulations which is essential in bringing reli-
able, effective, inexpensive vaccines to commercial real-
ity. The results suggests that the association of the para-
sitology parameters with the antigen-specific IgG avidity 
indexes was generally poor, although relative reduction in 
cFEC appeared mostly linked to Tci-MEP-1 and reduc-
tion in worm burden appeared mostly linked to Tci-ES20 
(Antigen-specific IgG avidity indexes section). When 
looking at antigen-specific antibody responses, the data 
analysis revealed that the largest differences between 
treatment groups related to IgG response in serum, with 
Tci-MIF-1 appearing to be a poor immunogen even in the 
presence of the adjuvant Quil A, which drives a strong 
antibody response with many antigens (Antigen-specific 
IgG and IgA antibody responses in serum and abomasal 
mucus section). As the vast majority of registered com-
mercial vaccines work by driving a high circulating IgG 
response, this information is valuable in eliminating Tci-
MIF-1 from further vaccine development. To some lesser 
extent, mucosal IgG may be indicative of vaccine efficacy 
as well and again suggested poorer differentiation based 
on Tci-MIF-1. Moreover, antigen-specific IgG responses 
(serum and mucosal) against Tci-MEP-1 and Tci-APY-1 
may be more likely to be associated with vaccine efficacy 
in reducing cFEC and these antigens together or separately 
may be considered in a simplified version of the vaccine.

The variability in antibody responses was generally 
higher amongst control animals, showing also patterns 
according to trial. Thus, control animals from Trial 5 
displayed particularly high IgG antibody levels in serum, 
which may be explained by their very high worm burdens 
in this trial compared with other trials (see Fig. 2B) where 
greater exposure of the host to high native antigen levels 
from this high parasite load may be driving the enhanced 
immune reaction to native versions of the vaccine antigens 
being secreted by the worms.

The differentiation between treatment groups based on 
IgA antibody responses was significant although less evi-
dent than in the IgG case, particularly in abomasal mucus, 
with the parasitology parameters appearing to be very 
poorly associated with them. This suggests that measure-
ment of antigen-specific serum IgA levels is not likely to 
be useful in refining or simplifying the vaccine further.

The combined application of the MFA and RDA meth-
ods allowed to summarise the evidence across the multiple 
biological parameter datasets to provide an integral view of 
the efficacy of the prototype vaccine, gaining insight into 

the overall associations between antibody levels in serum 
and abomasal mucus (Relationships between antibody lev-
els in serum and abomasal mucus section). Mucosal IgG in 
ruminants is generally not produced locally in the gut and 
hence IgG present on the mucosal surface of the abomasum 
is more likely to be derived from cross-membrane transport 
of circulating IgG into gut secretions (McNeilly et al. 2007). 
The subclass IgG1 is prominent within mucosal secretions 
of sheep and cattle and it is thought to play an important role 
in mucosal immunity (Butler 1983). There is also evidence 
that IgG1 is actively transported from serum to the mucosal 
surface (Newby and Bourne 1976), potentially via neonatal 
Fc receptor (Mayer et al. 2002). The results suggest that 
most variation in antigen-specific IgG responses in abomasal 
mucus was related to treatment group and trial effects and 
about 10.66% was uniquely explained by IgG responses in 
serum. In contrast, antigen-specific IgA is locally produced 
in abomasum-associated lymphoid follicles and is assumed 
to shuttle across the gut by transcytosis through epithelial 
cells via the polymeric IgA receptor (Gutzeit et al. 2014) 
with no specific mechanism for transfer of this antibody sub-
class into serum. This was supported by the RDA results, 
which identified a non-significant 3.65% of the variability in 
IgA response in serum as being uniquely explained by IgA 
response in abomasal mucus. Note however that these results 
might be affected by inter-individual variation in the amount 
of mucosal secretions collected at post-mortem that could 
not be accounted for due to lack of records. Furthermore, 
relationships between serum and mucosal antibody levels 
may have been compromised due to the time-lag between 
serum and mucosal antibody measurements.

One obvious caveat to the analysis presented in this study 
is that vaccine efficacy may be influenced by other immuno-
logical parameters such as cell-mediated immunity. Indeed, a 
recent transcriptomic analysis of the abomasal mucosa from 
sheep immunised with the same prototype T. circumcincta 
vaccine identified early T-helper type-1 immune responses 
were correlated with protection (Liu et al. 2022), suggesting 
that cellular immune responses may also be useful to explore 
using the analysis framework presented in this study.

The current feasibility to collect increasingly complex 
multi-variable datasets demands an increased sophistication 
of the data analysis and statistical modelling that is beyond the 
basic tests and univariate analyses traditionally conducted in 
the context of animal vaccine efficacy trials. The use of mul-
tivariate statistical techniques as demonstrated in this work 
considers the several variables simultaneously, providing an 
overall view that accounts for their possible inter-dependence. 
They provide a solid quantitative basis to advance the under-
standing of pathogens and how they interact with their host 
organisms and are ideally placed to underpin current trends 
such as systems immunology (Fong et al. 2018), where a 
wider view across transcriptomic, proteomic, metabolomic, 
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cellular assays, etc. is promoted to identify biomarkers of 
protection.

In any case, it is important to stress that the availability 
of sophisticated analytical methods and associated com-
putational tools should not displace the paramount impor-
tance of, firstly, having well-defined biological questions 
and meaningful data to tackle them; and, secondly, having a 
sufficient understanding of variation and uncertainty along 
with a critical knowledge of the functioning, key techni-
cal assumptions, and scope of application. The multivariate 
methods discussed in this work, as for many other statis-
tical methods, assume variables measured at a continuous 
level and linear structure underlaying the data. Related to 
this, they are also better behaved with symmetric (normal) 
data distributions, particularly when inferential analysis is 
involved. In many applications linearity is a good enough 
approximation to capture main patterns. Moreover, some 
preliminary data transformation can often help to achieve 
it and to symmetrise the data. Thus, log-transformation on 
right-skewed immunology parameters contributed to down-
play the issue here.

Where these assumptions are clearly unrealistic, or also to 
address dimensionality reduction with not only continuous 
features, some non-linear counterparts have been proposed 
(Makarenkov and Legendre 2002; Lee and Verleysen 2007). 
These extensions are however not so readily available in 
software packages for general practitioners, and they usu-
ally involve a higher level of technical expertise to be effec-
tively used and interpreted. Amongst the methods examined, 
MANOVA and LDA are those subject to the most stringent 
assumptions given their parametric inferential nature. Limi-
tations and alternatives like PERMANOVA or QDA for the 
case in which basic assumptions are not met were briefly 
discussed in “Multivariate data analysis methods” section. 
As illustrated in “Results” section, the easy access to soft-
ware routines also allows to apply different methods and 
approaches in combination when sensible and convenient 
to have a more solid view of the information contained in 
the data.

Furthermore, there exist alternative multivariate 
approaches and extensions that might be convenient 
depending on the characteristics of the data. For exam-
ple, there is an extensive statistical literature regarding 
the treatment of missing data in multivariate data sets, 
often involving a preliminary sensible imputation of the 
missing cells (as we applied to the avidity data set in 
this study) (Molenberghs et al. 2014; van Buuren 2018), 
as well as regarding the identification and treatment of 
multivariate outliers (Rousseeuw and Van Den Bossche 
2018). Moreover, versions of PCA have been developed 
to deal with missing data within the own fitting process 
(Josse and Husson 2016) or to downplay the influence of 
potential outliers in the results (Candes et al. 2009). There 

are also “sparse” versions of PCA (Zou et al. 2006) and 
redundancy analysis (Csala et al. 2017) which facilitate 
interpretation and identification of biomarkers in highly 
dimensional data. Regularization methods are another area 
of intense study for regression and classification modelling 
in this context. They simultaneously deal with model esti-
mation and variable selection by applying penalty terms to 
identify the most relevant variables. Modern methods for 
integrative analysis of multiple datasets of varied nature 
and dimensionality, e.g. multi-omics data, make use of 
these approaches (Meng et al. 2016).

In conclusion, the novel application of a selection of 
multivariate methods contributed to establish the effi-
cacy of a recent recombinant protein eight-antigen pro-
totype vaccine against teladorsagiasis, a major disease in 
sheep worldwide. Beyond what is achievable by ordinary 
statistical protocols routinely used in animal vaccine effi-
cacy trials, the multivariate approach provided valuable 
biological insight into the main drivers of immunological 
protection and their interactions; helping to identify anti-
gens most closely associated with improved parasitology 
outcomes and indicating directions for further optimisa-
tion of the vaccine formulation. The results also suggest 
that antibody avidity and levels of antigen-specific anti-
body appear not to be sufficient by themselves to explain 
vaccine efficacy, or inefficacy, and that further predic-
tors of vaccine-induced immunity should be sought. The 
approach discussed here could be analogously applied 
to similar studies in other research contexts to assess the 
efficacy and guide the optimisation of prototype vac-
cines. Or, in fact, to any study where multiple biological 
parameters are measured and decision making could be 
enriched and streamlined by this form of joint analysis. 
The methods discussed here could be applied in similar 
studies to assess the efficacy and guide the optimisation 
of prototype vaccines. In the spirit of Open Science, the 
data and the computer codes are made freely available to 
facilitate use by practitioners.
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