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Abstract
Autonomous network management is crucial for Fifth Generation (5G) and Beyond 
5G (B5G) networks, where a constantly changing environment is expected and net-
work configuration must adapt accordingly. Modeling tools are required to predict 
the impact on performance (packet and delay loss) when new traffic demands arrives 
and when changes in routing paths are applied in the network. Mathematical analy-
sis and network simulators are techniques for modeling networks but both have limi-
tations, as the former provides low accuracy and the latter requires high execution 
times. To overcome these limitations, machine learning (ML) algorithms, and more 
specifically, graph neural networks (GNNs), are proposed for network modeling due 
to their ability to capture complex relationships from graph-like data while predict-
ing network properties with high accuracy and low computational requirements. 
However, one of the main issues when using GNNs is their lack of generalization 
capability to larger networks, i.e., when trained in small networks (in number of 
nodes, paths length, links capacity), the accuracy of predictions on larger networks 
is poor. This paper addresses the GNN generalization problem by the use of fun-
damental networking concepts. Our solution is built from a baseline GNN model 
called RouteNet (developed by Barcelona Neural Networking Center-Universitat 
Politècnica de Catalunya (BNN-UPC)) that predicts the average delay in network 
paths, and through a number of simple additions significantly improves the predic-
tion accuracy in larger networks. The improvement ratio compared to the baseline 
model is 101, from a 187.28% to a 1.828%, measured by the Mean Average Percent-
age Error (MAPE). In addition, we propose a closed-loop control context where the 
resulting GNN model could be potentially used in different use cases.

Keywords  Digital twins · Graph neural networks · Key performance indicator · 
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B5G	� Beyond 5G
BNN-UPC	� Barcelona Neural Networking Center - Universitat Politècnica de 

Catalunya
DL	� Deep Learning
DTN	� Digital Twin Network
eMBB	� Enhanced Mobile Broadband
GAIN	� Girona-Antwerp Intelligence for Networks
GNN	� Graph Neural Network
GPU	� Graphics Processing Unit
IoT	� Internet of Things
IoV	� Internet of Vehicles
KPI	� Key Performance Indicator
MAPE	� Mean Average Percentage Error
MAPE-K	� Monitor-Analyze-Plan-Execute over a shared Knowledge
MEC	� Multi-access Edge Computing
ML	� Machine Learning
MMTC	� Massive Machine Type communications
NFV	� Network Function Virtualization
NN	� Neural Network
QoE	� Quality of Experience
QoS	� Quality of Service
RNN	� Recurrent Neural Network
SDN	� Software Defined Networking
SFC	� Service Function Chaining
SLA	� Service Level Agreement
URLLC	� Ultra-Reliable Low-Latency Communication

1  Introduction

Fifth Generation (5G) and Beyond 5G (B5G) networks require comprehensive per-
formance analysis and monitoring to meet the strict demands of Quality of Service 
(QoS) and Quality of Experience (QoE) for new services, such as Ultra-Reliable 
Low-Latency Communication (URLLC), Massive Machine Type Communication 
(mMTC) and Enhanced Mobile Broadband (eMBB) [1]. To realize such services, 
network operators create and deploy network slices. Network slices are multiple 
logical virtual networks on top of a shared network domain, using a shared physical 
network and shared computing resources. However, one of the biggest challenges for 
network automation is the dynamic resource allocation of network slices [2].

Such slices must be proactively and dynamically created, deployed, and opti-
mized in (near)-real-time [3] to guarantee the expected QoS/QoE (e.g., latency 
below a maximum, bandwidth above a minimum, and a minimum of connected 
devices) for demanding applications such as virtual reality, smart stadiums, etc. 
According to [4], forthcoming infrastructures are expected to incorporate technolo-
gies such as Software Defined Networking (SDN), Network Function Virtualiza-
tion (NFV), Service Function Chaining (SFC), and Multi-access Edge Computing 
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(MEC). The integration of these advanced features requires a quick analysis of the 
Key Performance Indicators (KPIs). For example, new usages like Internet of Vehi-
cles (IoV) are demanding a high level of adaptation to the networks [5]. Therefore, a 
fast and highly automated management system is required to trade between demand, 
benefits, and capacity for existing and newer slices.

Several tools can aid the management system in achieving automation. Tradi-
tional network modeling is based on mathematical analysis of the network behavior, 
but they rely on simplifications that often do not reflect the complexity and dyna-
mism of current network models [6]. In contrast, network simulators offer highly 
accurate results at the packet level. However, their processing time and usage of 
computer resources grow exponentially with the network size and parameter con-
figuration (e.g., constant change of network conditions). Consequently, existing net-
works are challenging to analyze, monitor, and manage in almost real time.

Recently, Machine Learning (ML)-based predicting models are trained with data 
to improve network decision-making. These models play a fundamental role in net-
work automation since they can swiftly respond to new data or values with minimal 
human intervention. This way, data-driven approaches can help improve prediction 
times and accuracy. There are currently proposals for Artificial Intelligence (AI)/ML 
algorithms to produce the following generation of network models that learn from 
data and abstract the underlying network complexities. These models can quickly 
predict the network KPIs and can be adjusted by retraining them with newly avail-
able data [7]. Furthermore, the usage of AI is becoming a key enabler in the current 
5G and B5G network slicing landscape [8]. The Neural Networks (NNs) to approach 
the implementation of Digital Twin Networks (DTNs) are starting to be widely used 
in the research and development of this type of networks, as presented in [9–11].

It has been shown that NNs are excellent function approximators and can be used 
to represent complex relationships from data [12]. However, current NN designs 
are not made to learn from data with a graph structure. To overcome this problem, 
GNNs are proposed and recently employed to precisely estimate performance in 
networking domains, respectively [13]. GNNs learn from graph features and struc-
tures, creating more accurate data-based models. As the complexity of the GNNs 
increases with network size, training with larger networks takes longer and uses 
more resources [14]. Therefore, it is convenient to obtain a GNN-based model capa-
ble of generalizing. This model is trained using data from networks with a small 
number of nodes, providing fast training. At the same time, this model should pro-
duce high-accuracy results when predicting network KPIs in larger unseen networks, 
exhibiting good scalability properties.

This paper describes our step-by-step approach to outperform RouteNet [15], a 
well-known and state-of-the-art GNN model designed to predict network perfor-
mance metrics. This baseline was proposed during the 2021 Graph Neural Network-
ing Challenge: Creating a Scalable Network Digital Twin, which was part of the 
ITU AI/ML in 5G Challenge.1 Our contributions can be summarized as follows:

1  https://​aifor​good.​itu.​int/​about-​ai-​for-​good/​aiml-​in-​5g-​chall​enge/

https://aiforgood.itu.int/about-ai-for-good/aiml-in-5g-challenge/
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•	 We propose a GNN model that predicts the network delay with high accuracy 
and is scalable compared to the baseline model RouteNet by exploiting feature 
engineering techniques and fundamental networking concepts.

•	 We provide a detailed description of our approach toward the model design and 
an exhaustive analysis of the network properties related to the dataset used to 
train the model. This aspect is fundamental to support our decisions on the dif-
ferent models we design and can be used as a methodology to create GNN to 
solve related problems.

•	 We perform an extensive set of experimental evaluations where we compare our 
approach with recent state-of-the-art GNN approaches and analytical models, 
and discuss how different changes to the baseline model affect the model’s per-
formance. Real and synthetic datasets are used for a comprehensive prediction 
accuracy evaluation.

The rest of the paper is structured as follows. In Sect. 2, we describe the use cases 
where a GNN used for network KPIs predictions can be helpful. In Sect.  3, we 
review the main methods for predicting network delay. We introduce the RouteNet 
baseline in Sect. 4. After that, we present Girona Antwerp Intelligence for Networks 
(GAIN), an enhanced RouteNet-based architecture in Sect. 6, which can accurately 
estimate the average per-path delay in large networks while being trained in small 
networks. We evaluate GAIN and show the obtained results in Sect. 7. Finally, we 
conclude the paper in Sect. 8.

2 � Problem Context

Predictive models are an adequate tool to study how various network configurations 
and decisions might affect 5G and B5G networks performance before deployment. 
For instance, a network management system can measure the impact of accepting 
new traffic on the network throughput or delay. If the existing users are not affected, 
the request is accepted. Otherwise, the request is rejected. To do this automatically, 
prediction models should be fast (e.g., in milliseconds) and accurate enough so the 
decision is timely and adequate.

As discussed in Sect.  1, AI/ML, particularly GNNs, are being proposed as the 
next generation of predictive models. GNNs have gained significant attention in the 
networking community due to their ability to learn complex relationships among 
nodes and links [16]. This makes them more suitable for this domain compared to 
classical ML techniques or Deep Learning (DL) [7].

Recently, GNNs have also been suggested as DTNs [17]. A DTN represents a 
virtual real-time depiction of a physical network in the digital world [18]. Digital 
twins have sparked a revolution in various industries, providing an enhanced view 
of physical entities to support diagnosis and what-if analyses. The requirements for 
near-real-time network analysis are closely linked to the concept of DTNs, which is 
still in the early stages of adoption for 5G and B5G networks [19, 20].

In general, ML is becoming a crucial enabler for developing new DTNs for 
these networks, as the demands of new services grow increasingly stringent. For 
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instance, in smart cities, DTNs are utilized to design networks that can ensure 
QoS without wasting energy, as discussed in [21]. Moreover, the emerging IoV 
services also rely on IoV for network planning, which can incorporate NNs and 
even incorporate techniques like Federated Learning [22].

Another interesting use case in 5G and B5G networks is a dynamic, real-time, 
routing optimization tool that accomplishes the QoS requirements. These net-
works continuously evolve and require an adaptive behavior, where routing can 
be decisive in achieving the Service Level Agreement (SLA) requirements. In 
this case, different routing configurations can be tested, selecting the best result 
according to the target KPIs. This tool should have the following functionalities:

•	 Monitor the current resource allocations and performance over the entire net-
work.

•	 Detect or be notified by an external actor, of new network events that might 
affect the KPIs.

•	 Test multiple routing configurations and choose the optimal one for the real 
network.

•	 Minimize the used resources while satisfying the SLAs.
•	 Apply new network routing configurations.

The applicability of DTNs for routing is demonstrated in the state-of-the-art lit-
erature, where the usage of AI facilitates the implementation of these solutions. 
For example, in [23], AI is employed to implement an energy-efficient routing 
protocol in Wireless Sensor Networks (WSNs). In [24], a cognitive approach for 
routing is utilized in the context of reliable Internet of Things (IoT) networks, 
leveraging the capabilities of DTNs. Additionally, in the context of IoV and B5G 
networks, a message routing scheme is developed in [25], utilizing AI techniques.

The solutions to the use cases described above can be designed following a 
closed-loop control and leveraging the prediction model. As depicted in Fig. 1, 
network policies (i.e., SLAs) define the system’s constraints or optimal opera-
tion points. All the decisions coming from the decision-making algorithm should 
ensure such optimal operation. A monitor block is introduced, which detects 
changes in the real network and formats the data to train the prediction model. 
Then, if a change is detected, the decision-making algorithm is triggered. The 
prediction model evaluates the algorithm’s potential decisions and returns its 
impact on network policies.

Thus, the decision-making algorithm can select the decision that keeps the 
network operating closer to the agreed operation point. The changes, if any, are 
deployed in the network via an executor. The main blocks of the solution in Fig. 1 
can be easily mapped to the Monitor-Analyze-Plan-Execute over a shared Knowl-
edge (MAPE-K) framework, one of the most influential reference control models for 
autonomous and self-adaptive systems [26]. MAPE-K defines five main blocks: the 
monitor, the analysis, the plan, the executor, and the knowledge block. The moni-
tor and the executor are clearly represented in the figure, while the decision-making 
algorithm and the prediction model represent the plan and analysis block, respec-
tively. The knowledge represents the data shared by all the other four blocks.
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More concretely, in the case of network slicing, once a new slice request arrives 
at the network, the decision-making algorithm should evaluate whether the slice 
request should be accepted. Then, the decision to accept or reject the request is sim-
ulated in the prediction model. According to the evaluations, the decision that allows 
fulfilling the network policy is then taken. In the case of routing optimization, the 
same procedure is followed, but instead of adding/rejecting slices, a routing pos-
sibility is assessed. Then, the best decision is selected and applied to the network.

3 � Related Work

A predictive model and a decision-making algorithm are the main blocks needed to 
achieve the automated network management tasks described in Sect. 2. In this work, 
we focus on improving a prediction model called RouteNet, which predicts the net-
work performance according to a given topology, routing, and offered traffic. How-
ever, other techniques can and have been used in predicting network performance. 
In the literature, network models are used for this objective and are typically created 
using analytical modeling, which includes queuing theory [27], Markov chains [28], 
and other similar techniques. Such models can produce fast but poor predictions as 
a result of relying on unrealistic and static assumptions about real-world networks. 
Packet-level network simulators are often utilized to model network behavior under 
specific cases and get more realistic results. Nevertheless, their longer computations 
and execution times when dealing with larger networks [29] make them unsuitable 
for the required fast predictions. Despite this, network simulators produce highly 
accurate data which can be employed to train different ML models.

AI/ML solutions such as shallow Feed Forward Neural Networks, Support Vector 
Machine (SVM), Random Forest (RF), Reinforcement Learning (RL), Multi-Layer 
Perceptrons (MLP), or Convolutional Neural Networks (CNN) have been used to 

Fig. 1   Closed-loop control context for network optimization, represented by the bold arrows
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resolve similar 5G challenges. Some state-of-the-art solutions apply these meth-
ods for predicting network delay, throughput, or other KPIs. In [30], 3D-CNNs are 
applied to the problem of provisioning resources for network slices in real-time, pre-
dicting network capacity requirements depending on the time of the week.

In [31], a zero-touch control for network slicing is proposed, predicting each 
slice’s network capacity needs. The authors in [32] implement a Logistic Regression 
(LR), an SVM, and a Decision Tree (DT) to predict the delays experienced by the 
users. Following a DL approach, [33] predicts the traffic that a network will sup-
port at a specific time, similarly to [30, 31], but using a Recurrent Neural Network 
(RNN). [34] also uses RNNs to predict delays in 5G networks for IoT and Tactile 
Internet. All these ML solutions work well with static scenarios but are less adapted 
to create graph models in comparison to GNNs. The main advantage of GNNs over 
other ML methods is their expressive power [35], allowing to model different graphs 
(e.g., different topology, number of nodes) with higher accuracy. Some additional 
motivations to apply GNNs to the network performance prediction are:

•	 GNNs have been successfully applied to combinatorial optimization problems 
[36], and can achieve relational reasoning [37].

•	 A graph representation can better capture the relationship of the nodes in a net-
work, i.e., there is a one-to-one mapping between the network topology and the 
graph representation.

In that sense, RouteNet [15] is a GNN model that can directly learn from graph-
like data, including network topologies, routing configurations, and offered traffic, 
to predict network KPIs. In recent research, other GNN solutions have been applied 
to solve autonomous network management [38], network slicing monitoring [39], 
network slicing control [40], or SDN end-to-end delay prediction [41]. However, 
GNNs, as ML algorithms, are sensitive to the mismatch between training data and 
testing data, i.e., training and testing data do not come from the same distribution. 
Therefore, one of the main challenges in using GNNs for predicting network perfor-
mance is to improve the out-of-distribution generalization, understood as the differ-
ence in accuracy between training and testing data [42].

Several works already attempt to improve the generalization capabilities of 
GNNs. The authors of [43, 44] presented PARANA, a GNN model that extracts 
path and link-level features related to Queuing Theory (QT). The model trains two 
message-passing procedures. The first procedure focused on learning features from 
larger networks, while the second focused on learning features from smaller net-
works. The output is the average of both procedures. SOFGNN team [45] averaged 
two models and used data augmentation and feature engineering to solve the out-of-
distribution problem. To obtain a higher amount of samples for the training dataset, 
data augmentation is applied, creating new samples similar to the ones found in the 
training sets. Regarding feature engineering, they created a new feature called link 
load (%), defined as the sum of the traffic of all flows traversing the link and divided 
by link capacity. The average result of two trained models was used, one using 
as features the square value of link load, and the other model including both the 
square and cube values of link load. Finally, the hyperparameters were fine-tuned. 
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BNN-UPC also proposed a solution to improve RouteNet’s out-of-distribution gen-
eralization [46]. The proposed model implements an extra message-passing proce-
dure and introduced a scaling factor combined with the data augmentation to esti-
mate the delay values of higher-capacity links. Unfortunately, this model required 
a long time to train, in part due to applying only feature selection and not applying 
feature engineering to improve the model generalization.

Table 1 provides a summary of the mentioned recent methods for using ML, DL, 
and GNNs for network modeling. Many works have tried to address the network 
performance prediction problem. Among the most used solutions, GNNs are the ML 
models that are best suited to the graph representation seen in networks. Neverthe-
less, GNNs suffer an out-of-distribution generalization problem and some works 
have tried to resolve it. As shown in the next sections, the main differences in our 
model are fast training, high accuracy, the usage of a simple and single model, and 
the public availability of the code and the datasets.

4 � Background

Text, social networks, photographs, molecules, and computer networks are just a few 
examples of daily life whose interactions can be represented as graphs. Recently, 
GNNs [13], a scope of deep learning, have been used to solve various issues with 
graphs as an input [48, 49]. In a GNN, a graph is defined as G = (V ,E) , with V 
representing the set of nodes and E representing the set of edges. The edges rep-
resent the interactions between nodes. Each node has an associated set of features 
represented by a one-dimensional vector. The vector’s length is the number of input 
features of the node. Edge features are also represented in a one-dimensional vector 
whose length is the number of input features of the edge.

Like other neural networks, a GNN is a layered architecture whose one principle 
is the message-passing. The idea is that neighboring nodes affect the behavior of a 
concurrent node. Then, a message-passing method is applied to predict the target 
values based on neighbor nodes. Firstly, the information of the neighbor nodes is 
collected, then combined, and finally, the target node information is updated. These 
three steps are message transformation, aggregation, and update. Message transfor-
mation functions define how each node, as well as its neighbors and edges, produce 
messages. The aggregation function determines how messages are grouped using 
the vertices’ maximum, average, or element-wise sum. Simpler aggregations are 
possible inside a GNN, but more sophisticated aggregations, like Long Short-Term 
Memory (LSTM) [50], are also possible. The updating function describes how mes-
sages are updated in the target node. Figure 2 represents a basic GNN, where the 
colored nodes include their features in the vectors. The target A node values are pre-
dicted in this case. The transformation phase to each message is applied first, then 
the aggregation function, and finally, the values update for the target node. When 
one of the attributes of a specific node is missing, the pooling method is used to 
obtain information from it [51].

A sequential neural network is typically used in the readout phase to compute the 
output for the predictions. Depending on the prediction needs, the readout functions 
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can be modified as classifiers or regression functions. The output of the readout 
function converts the values into the desired prediction for each node.

RouteNet was used as a baseline model for this work. RouteNet is a Recurrent 
Neural Network (RNN) model whose principal function is to predict per-source-
destination network KPIs given a specific network configuration. An RNN GNN 
exchanges information of the graph and saves the states to the memory cell of each 
recurrently until convergence. In particular, as shown in Fig. 3, RouteNet learns the 
network model from the data collected over different network topologies, such as 
their traffic and routing configurations, which can later be used to predict their per-
formance. The resulting model captures the complex relationships between the prop-
erties of links and the source-destination paths in topologies.

The representation of the graph that will feed the GNN is the first issue to be 
addressed in its design. Edge prediction is a limitation of current state-of-the-art 
GNNs, despite GNNs being able naturally to support them. Then, the input graph 
has to be adapted to read and predict link features. The input graph of RouteNet con-
verts links into nodes, creating a hyper-graph for each sample, where two node types 
exist: path and link. The main working principle of RouteNet is the differentiation 
of the data between the path level (e.g., end-to-end delay, end-to-end packet loss) 
and the link level (e.g., link delay, link utilization). This information is encoded in 
learnable vectors. Based on this assumption, the message-passing procedure used by 
RouteNet [15] follows the principles: 

1.	 The state of a path depends on the state of all the links on the path.

Fig. 2   GNN basic structure with message transformation, aggregation and update [52]

Fig. 3   RouteNet model inputs and output [15]
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2.	 The state of a link depends on the state of all the paths that traverse the link.

The learnable vectors are used to execute a message-passing procedure (with a 
determined number of rounds) to collect messages from all the links and paths. This 
message-passing procedure, combined with the usage of RNNs, makes the GNN 
architecture capable of inferring path or link-level metrics. In RouteNet, each RNN’s 
hidden state represents a function with the information of the path or link. These 
RNNs have modifiable hyperparameters to adapt to the specific use case.

In this paper, we use Mean Average Percentage Error (MAPE) as the prediction 
error. The MAPE is the average value of the relative errors, in percentage, as shown 
in Eq.  (1). The relative error is calculated by the difference between the predicted 
value ŷl and the real value yi , divided by yi and obtaining the result in absolute value. 
The lower the MAPE value, the better the predictions.

Despite the efforts to enhance RouteNet, the mismatch in accuracy between the 
training and testing data is still significant, which indicates room for improvement. 
For instance, when trained with small networks and then used to predict results for 
larger networks, RouteNet shows a very high error level in the per-path average 
delay, in terms of MAPE (cf. Sect 7). Therefore, the BNN-UPC proposed a prob-
lem statement in the context of the ITU AI/ML for 5G Challenge 2021 [53]. The 
challenge’s goal was to create a scalable network model by tackling a fundamental 
limitation of existing GNNs: the lack of generalization capabilities to larger network 
topologies. Participants in the challenge needed to modify the RouteNet baseline 
or create a new GNN-based model. Such a model should be trained with a dataset 
containing small network topologies and later validated with larger ones, maintain-
ing a low prediction error. This paper shows the step-by-step approach to outperform 
RouteNet by leveraging networking concepts and analysis.

5 � Dataset

The dataset for training and testing the GNN model was provided by BNN-UPC 
[54], and was generated with OMNeT++, a packet-level network simulator. The 
model receives the following inputs per each sample in the dataset: 

1.	 Topology: graph including node and link-level properties (e.g., nodes, links, 
queue sizes, link capacity).

2.	 Flow performance: flow level and aggregate source-destination measurements 
(e.g., dropped packets, average delay).

3.	 Flow traffic: flow level and aggregate source-destination time and size distribu-
tions used to generate traffic (e.g., average bandwidth, packets generated, average 
packet size).

4.	 Routing: paths connecting source-destination pairs.

(1)MAPE =
100%

n

n∑

i=1

||
||

ŷl − yi

yi

||
||
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5.	 Link performance: metrics of output ports (e.g., utilization and losses, average 
port occupancy).

The dataset also includes a preset split into training, validation, and testing as 
follows:

•	 Training: small networks between 25 and 50 nodes.
•	 Validation: larger networks from 50 to 300 nodes to analyze the ability of the 

models to generalize.
•	 Test: equivalent characteristics to the validation dataset.

Moreover, the testing dataset is subdivided into three subsets called settings, having 
different features each: 

1.	 Setting 1 ( S1 ). Longer paths. Focused on the artificially generated longer paths 
regarding the training dataset. However, the link capacities have the same value 
ranges as in the training dataset. Some source-destination pairs do not transmit 
traffic.

2.	 Setting 2 ( S2 ). Increased link capacity. Focus on the larger link capacity with 
respect to the training dataset. All the source-destination pairs transmit traffic 
using shortest-path routing. Moreover, there is higher aggregated traffic and 
higher capacity links than in the training dataset.

3.	 Setting 3 ( S3 ). Both S1 and S2 properties are mixed. All source-destination pairs 
transmit traffic using longer paths with higher capacity links than the training 
dataset.

Dataset class balancing is relevant to train, validate and test the model with all the 
cases that it might have to predict [55]. In addition, the number of samples predicted 
later has also to be balanced, to check the accuracy stability in different model use 
cases. In the following subsections, the training, validation, and test datasets are ana-
lyzed, in order to check the feature distributions and the dataset balancing.

5.1 � Training Dataset Analysis

The training dataset consists of approximately 173 million path samples. The graph 
size represents the number of nodes for each network. As evidenced in Fig. 4, each 
graph size is directly related to the number of paths (i.e., the number of samples to 
train the model). The paths on bigger graphs are proportionally longer. The paths are 
mainly of lengths 3 and 4, as illustrated in Fig. 5.

The traffic values in bits per second are balanced through the entire dataset for 
each graph size and path length, as displayed in Fig. 6 and Fig. 7. Packets per second 
are correlated with traffic in bits per second, as they depend directly on constant 
packet size. Other path features values, including packets dropped and the predictor 
variable, delay, are more dispersed in terms of value distributions. The selected link 
features of utilization, maximum queue occupancy, and offered traffic intensity ( Ot ), 
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a variable created in Sect. 6.4, are also correctly balanced in the dataset, as shown in 
Fig. 8.

5.2 � Validation Dataset Analysis

The validation dataset contains approximately 52 million path samples and follows 
the structure of the training dataset. The main difference is the increased number of 
graph nodes, ranging from 50 to 300 nodes, to test the generalization of the trained 

Fig. 4   Number of samples per 
graph size, and proportion of 
path lengths per graph size in 
training dataset

Fig. 5   Number of samples 
of per-path length in training 
dataset

Fig. 6   Average path bandwidth 
distribution per graph size in 
training dataset
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model. As in the training dataset and represented in Fig.  9, the paths on bigger 
graphs are proportionally longer. The paths mainly have a length between 3 and 10, 
as shown in Fig. 10.

Also similarly to the training dataset, the values of traffic in bits per second are 
also balanced through all the dataset for each graph size and path length as detailed 
in Fig.  11 and Fig.  12. In the case of longer paths, a larger deviation in the val-
ues can be observed. In terms of the analyzed link features, utilization, maximum 
queue occupancy, and Ot , the validation dataset is also correctly balanced, as shown 
in Fig. 13.

5.3 � Testing Dataset Analysis

The testing dataset consists of approximately 26 million path samples and follows 
the structure of the train and validation datasets. As in validation, it includes the 
increased number of graph nodes, from 50 to 300 nodes. The main difference, in 
this case, is the partition in the three different subsets, S1 , S2 , and S3 . For S2 and S3 , 
the paths on the bigger graphs are proportionally longer, as shown in Fig. 16 and 

Fig. 7   Average path bandwidth 
per path-length in training 
dataset

Fig. 8   Link utilization, maximum queue occupancy and O
t
 values distributions compared to graph size in 

training dataset
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Fig. 9   Number of samples per graph size, and proportion of path lengths per graph size in validation 
dataset

Fig. 10   Number of samples per-
path length in validation dataset
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Fig. 17. On the other hand, the quantity of paths in S1 is not regular as depicted in 
Fig. 15.

Fig. 11   Average path bandwidth 
distribution per graph size in 
validation dataset

Fig. 12   Average path bandwidth 
distribution per path-length in 
validation dataset

Fig. 13   Utilization, maximum queue occupancy and O
t
 values distributions compared to graph size in 

validation dataset
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The paths mainly have a length between 9 and 11 in S1 , between 3 and 6 in S2 and 
between 6 and 10 in S3 , as shown in Fig. 14. However, S1 has significantly fewer path 
samples than the other settings.

Fig. 14   Per-path length, number of samples in test dataset

Fig. 15   Number of samples per graph size, and proportion of path lengths per graph size in test dataset, 
S1
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None of the datasets were modified, as the testing and validation datasets were 
already balanced. The subsets S2 and S3 of the testing dataset were also found to 
be balanced. On the other hand, the S1 test dataset had very few samples and with 
higher deviation. These features were related to the link properties, including link 
utilization, maximum queue occupancy, and Ot , as shown in Fig. 18. These fea-
tures were out of the training and validation distributions, mainly in the graph 
samples with a higher number of nodes. The cause of this deviation was that 
not all the source-destination paths transmitted traffic, only the particularly long 
ones. These characteristics lead to slightly higher errors in the S1 predictions, as 
described in Sect. 7, compared to S2 and S3 . However, these errors were specific 
to this small subset designed for particular testing purposes (i.e., longer path test-
ing with lower traffic).

Fig. 16   Number of samples per graph size, and proportion of path lengths per graph size in test dataset, 
S2
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6 � Improving RouteNet for Generalization

In this section, the improvements to the RouteNet baseline implemented in Ten-
sorFlow [47] are described step by step, including the improvement achieved. Our 
work follows step-by-step testing of individual modifications and measuring the 
enhancement of each applied change, one after the other.

6.1 � Inferring Per‑Path Delay from Predicted Queue Occupancy (GAIN‑1 Solution)

Since the validation and test datasets contain topologies with higher link capaci-
ties, the delay values in larger topologies are lower than in smaller topologies. 
This implies that the model is trained with data following a particular data 

Fig. 17   Number of samples per graph size, and proportion of path lengths per graph size in test dataset, 
S3
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distribution but has to predict values that follow another distribution, which is 
problematic for NNs [56].

The initial idea to solve this problem consisted in finding an indirect metric 
that keeps a similar distribution among all the datasets and can be used, followed 
by a post-processing step, to predict the metric of path delay with low error. 
Based on this idea, our first approach was to use the occupancy of a link ( Qo ) as 
an indirect metric, representing the average utilization of a queue, as it encapsu-
lates local relationships between offered traffic, queue size, and link capacity. The 
first step, titled GAIN-1, was to test the improvement of the original RouteNet 
implementation, replacing the initial prediction of delay with the prediction of 
the indirect metric Qo and inferring the path delay from that prediction.

After predicting Qo , we estimate each flow’s delay by adding the queue 
delays belonging to a path in a post-processing step. Let’s assume a path with 
three nodes, as depicted in Fig. 19. When the packets are sent from the src node, 
they are queued in Q1 accumulating a delay. Depending on the queuing policy 
(assumed to be the same in each queue), the queue occupancy, and the link capac-
ity, the packets will suffer more or less delay. If a link has more capacity, the wait-
ing time of a packet in the queue will be lower. Once the packets are sent to the 
second node using Link1 , they are queued in Q2 , adding another delay. Finally, the 
packets are sent through Link2 to the dst node. Therefore, the delay of a source-
destination flow can be obtained as the sum of the delays in every flow link, as 
shown in Eq. (2).

Each queue delay of this flow was calculated using Eq.  (3), where Qo is the 
occupancy of the queue, Qs is the queue size in number of packets, Ap is the aver-
age packet size in number of bits, and Co is the capacity of the outgoing link of 
the queue. The link delay and flow delay formulations are presented below.

Fig. 18   Maximum queue 
occupancy distribution per each 
graph size in S1
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The post-processing code was optimized using the appropriate TensorFlow data 
structures to increase the processing speed and reduce code complexity. The result-
ing MAPE of the GAIN-1 solution was 44.73 %.

6.2 � Normalization of Predictor Features (GAIN‑2 Solution)

After analyzing the training and validation datasets, it was observed that the data 
distributions of the scalar features used in the model (detailed in Table 3) were dif-
ferent for training, compared to the validation and test subsets, as shown in Table 2. 
Specifically, the traffic of a flow ( Tf  ) and the capacity of a link ( Cl ) had different 
value ranges for each dataset and between the training and validation/test datasets, 
respectively.

Therefore, in GAIN-2, a min-max normalization was applied as a pre-processing 
in the transformation function, using the training dataset min-max values. The max-
min normalization was calculated using the formula in Eq. (4). Normalized value Nv 

(2)Delay flow =

Nf∑

k=1

Delay link

(3)Delay link =Qo × Qs × Ap∕Cl

Table 2   GAIN used features 
maximum and minimum values

Training Validation Test

Min Max Min Max Min Max

Traffic 30.787 2048.23 30.543 2064.93 0 2061.17
Packets 0.0329 2.03633 0.03107 2.03985 0 2.0543
Capacity 10000 100000 10000 2500000 10000 2500000

Table 3   Features used in the GAIN solutions

Path features

Feature Definition Used in

Traffic ( T
f
) Traffic in a path

(bits/time unit)
All GAIN
and baseline

Packets ( P
f
) Packets generated in a path

(packets/time unit)
GAIN 3,4,5

Link features

Capacity ( C
l
) Link bandwidth

(bits/time unit)
GAIN 1,2,3
and baseline

Offered Traffic Intensity
(O

t
)

Sum of T
f
 in a link divided

by C
l

GAIN 4,5
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equals the original value V subtracting the minimum value of the feature for all the 
training dataset Vmin , and dividing the result by the difference between the maximum 
Vmax and Vmin of the training dataset. The TensorFlow functions were used to find the 
maximum and minimum values on the training dataset’s tensor, which efficiently 
reduce the tensor to one dimension to return the desired value.

The result of the GAIN-2 solution was a 28.739 % MAPE.

6.3 � Feature Selection (GAIN‑3 Solution)

The features included in the baseline were Tf  and Cl , as described in Table 3. After 
a correlation test between the features available and the expected delay results in the 
datasets, packets ( Pf  ) revealed a high correlation to path delay. Furthermore, this 
feature had value ranges very similar in the three datasets, enhancing generalization. 
Consequently, it was added to the GAIN-3 path state, also including the min-max 
normalization preprocessing. The MAPE of the GAIN-3 solution was 18.471 %.

6.4 � Offered Traffic Intensity (GAIN‑4 Solution)

When approaching the total link capacity, increasing the total Tf  in a link directly 
impacts the queue delay by increasing it too. Figure 20 shows an example where a 
source src sends traffic to dst. If the sum of Tf  of each flow in the link is close to or 
exceeds Cl , the Q1 delay will increase.

(4)Nv =
V − Vmin

Vmax − Vmin

Fig. 19   Queue occupancy example to infer delay

Fig. 20   Offered traffic intensity example of flows in a link
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The dependence between Tf  demand in a link and the queuing delay [57], leads 
to the creation of a new feature named offered traffic intensity ( Ot ), as shown in 
Eq.  (5). It was defined as the sum of Tf  of all flows f passing through the net-
work link Nl divided by the bandwidth Cl of that link, resulting in a scalar feature 
assigned to the link state.

Finally, only the feature Ot was used in GAIN-4. For that reason, Cl did not 
require normalization, as it was removed from the model, and the original values 
were used to calculate Ot . The resulting MAPE of the GAIN-4 solution was 2.612 
%.

6.5 � Hyperparameters Optimization (GAIN‑5 Solution)

The hyperparameters, i.e., number of neurons for the path-state and link-state, 
readout units, message-passing iterations, and epochs, were optimized for our 
model, testing different combined values using a grid search, defining and com-
bining values for each parameter, as detailed in Table  4. For each combination 
of hyperparameters, a new training was performed followed by a check of the 
MAPE result.

One of the effects of optimizing the hyperparameters is the reduction of the 
training epochs, as the model stabilizes the validation results much earlier than 
the original 100 epochs. For reference, the best model achieved the best result 
after seven epochs. An early stopping epoch limiter is a technique that stops the 
training after a number of epochs where the model does not improve its results. 
The number of epochs monitored to do the early stopping is called patience. It 
was used in the GAIN-4 and GAIN-5 solutions, with a patience of 5 epochs, to 
speed up the hyperparameter tests.

After hyperparameter tuning, the GAIN-5 model was trained during seven 
epochs. We found that reducing the dimensions of the link state and the path state 

(5)Ot =

∑
f∈N

�

Tf

C
�

Table 4   Values tested for optimization of the hyper-parameters

Hyperparameter Values tested Original 
RouteNet
values

Optimized 
GAIN 5
values

Link state dimension 4, 8, 16, 32, 64 16 4
Path state dimension 4, 8, 16, 32, 64 32 16
Readout units 4, 8, 16, 32, 64 8 64
Message passing iterations 6, 8, 10, 12, 14, 16 8 10
Epochs 100, variable 100 7



	 Journal of Network and Systems Management (2023) 31:65

1 3

65  Page 24 of 36

and increasing the readout units along the iterations of the message passing pro-
cedure significantly improved the results from 2.612 % to 1.838 %, the best result 
of all the GAIN solutions, also improving for the different subsets.

Another interesting effect of keeping hyperparameters and epochs at a low value 
is the reduced Graphics Processing Unit (GPU) power consumption, temperature, 
compute, and memory utilization as exposed in Sect. 7.

7 � Results

This section reports the results obtained following the steps described in the previ-
ous section. The GAIN-2 solution was the one presented to the challenge, achieving 
a 28.739% MAPE. GAIN-3, 4, and 5 are the results of additional improvements after 
the competition. In addition, a dataset with real traces of traffic is included for fur-
ther evaluation.

7.1 � Additional Models for Evaluation

For further analysis and comparison, two models are added to the predictions phase. 
Apart from the RouteNet baseline and the GAIN-5, two other delay prediction mod-
els are used: RouteNet-Erlang [58] and Queuinx [59].

RouteNet-Erlang also uses RouteNet as a baseline, applying improvements to 
increase the prediction accuracy in larger networks ( ≈10x), longer paths, and larger 
link capacities, using queue status to improve the prediction accuracy. The model is 
trained with the same dataset used with the baseline and GAIN-5.

Queuinx is a model that uses queuing theory, being focused on finite queues, 
using a fixed point algorithm. This model is used to validate the RouteNet [15] 
results in comparison to queuing theory computations. Both models are used to pre-
dict the test dataset and are included in the analysis of the results.

Fig. 21   Baseline, Queuinx, RouteNet-Erlang and GAIN-5 logarithmic absolute errors compared to graph 
size
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7.2 � Models Evaluation with Test Dataset

The gradual improvement in each step is shown in Table  5, where the RouteNet 
baseline is shown to have a bad generalization for larger graphs (as an example, 
S1, S2, S3 with 300 nodes) resulting in a MAPE of 187.28% for the full testing data-
set. This is mainly caused by the out-of-distribution values when predicting in the 
validation and testing dataset, especially in S2 and S3 . The MAPE was calculated 
separately for each column and row in Table  5. The GAIN solutions gradually 
reduced MAPE, applying improvements step by step as described in Sect. 6, using 
the three settings with the graph sizes 50 and 300 as a reference. From the RouteNet 
Baseline and GAIN-1 solution, which was the first change over the baseline, until 
the GAIN-5 solution, we achieved an improvement by a factor of 24 (from 44.73 % 
to 1.838%) and by a factor of 101 (from 187.28% to 1.828%) lower MAPE in all set-
tings, respectively.

The improvement between the baseline and GAIN-5 can be compared in Fig. 21, 
where the subsets S1 , S2 and S3 are represented. The absolute error is represented in a 
logarithmic scale for comparison reasons. For GAIN-5, the error is 32x smaller than 
in the baseline. GAIN-5 is compared to the baseline in terms of graph size and path 
length, two features of a graph that scale up when the sample is bigger, as shown in 
Sect. 5. It can be observed that in setting S2 and S3 , the tendency of the prediction 
error is to become lower when the graph increases the number of nodes, improving 
the generalization compared to the baseline.

As introduced in the test analysis in Sect.  5.3, the S1 subset had a lower num-
ber of samples including features with high deviation compared to S2 and S3 . These 
characteristics lead to increased errors in the S1 predictions, both in baseline and 
GAIN-5 implementations, but still much lower in GAIN-5. The small datasets make 
it hard to rigorously evaluate GNNs, as they are data-hungry models [60], requiring 
significant amounts of data to check the correctness of the prediction accuracy. This 
is the main problem in analyzing the results of S1 , where the high deviation paired 
with a low amount of samples resulted in more variability in the accuracy of the 
predictions.

Fig. 22   Baseline, Queuinx, RouteNet-Erlang and GAIN-5 logarithmic absolute error compared to path 
length
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On the other hand, the predictions on S2 with higher capacity links and on S3 , 
with long paths mixed with higher capacity links, resulted in a low overall error for 
all the graph sizes, becoming lower as the graph was bigger. As shown on the error 
scales, the absolute error variability range on the GAIN-5 solution on all settings is 
much smaller than in the baseline results.

Also in Fig. 21 the prediction results for the Queuinx and RouteNet-Erlang mod-
els are shown. Queuinx reveals similar results compared to the baseline. It can be 
concluded that both models exhibit a higher error than GAIN-5, with RouteNet-
Erlang being better than the challenge baseline in every setting. Comparing the 
errors linked to the path lengths in Fig. 22, it can be observed that with longer paths, 
the error deviation is larger. This is due to the low amount of samples and their par-
ticularity in the S1 of the dataset. In Fig. 23 this problem is shown to have a small 
impact on the solution precision. On the left, all settings are mixed to obtain the 
average absolute error per each graph size. GAIN-5 is shown to have a lower error 
on all settings mixed in comparison to the other tested models, lowering the error as 

Fig. 23   Baseline, Queuinx, RouteNet-Erlang and GAIN-5 all settings, logarithmic absolute errors com-
pared to path length

Fig. 24   GAIN-5 absolute error on S1 compared to path length
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the graph size increased. On the right, all settings compared to the path length are 
checked, where a higher error with the out-of-distribution samples is observed, as a 
small number of samples were above 15 hops.

In a further error analysis to confirm the generalization of the model, heat 
maps for the three settings were generated. In Fig.  24, S1 was found to scale 
slightly worse than the other settings as detected in the previous analysis, espe-
cially with the graphs of 200 and 220 nodes. Inversely, Fig. 25 and Fig. 26 show 
the generalization of the model, keeping the errors low and even lowering the 
absolute errors as the networks become bigger.

7.3 � Models Evaluation with Real Traffic Traces Dataset

To validate the accuracy of the tested models, a real traffic dataset is also used. This 
real traces dataset [61] is generated using real-world traffic matrices and realistic 
packet inter-arrival times.

Fig. 25   GAIN-5 absolute error on S2 compared to path length

Fig. 26   GAIN-5 absolute error on S3 compared to path length
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This dataset contains three different topologies: ABILENE, GEANT, and GBN 
[62]. These topologies are not present in the training dataset, and traffic matrices are 
completely different from the ones used in training. The topologies have fewer nodes 
than the training dataset, with 11, 22 and 17 nodes respectively. The models used 
in the previous test dataset evaluation phase are executed without retraining them, 
predicting the values directly.

Fig. 27   Baseline, GAIN-5, Queuinx and RouteNet-Erlang MAPE results with a real traces dataset

Fig. 28   Validation MAPE of the RouteNet baseline vs the GAIN-4 solution

Table 6   Comparison of the best 
solutions for the BNN-UPC 
challenge

Solution properties GAIN 5 PARANA SOFGNN

RouteNet baseline X X
Hyperparameter tune X X X
Fast train/execution X X
Feature engineering X X X
Reimplemented
baseline

X

Message passing
redesign

X

Multiple models X X
Data augmentation X
MAPE (%) 1.838 1.267 1.389
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In Fig. 27 the MAPE results for each graph and model are shown. For ABILENE 
and GEANT networks, the results are similar, with RouteNet-Erlang achieving the 
best results, followed closely by GAIN-5. Meanwhile, testing the models with the 
GBN network, which contains smaller links and lower traffic, the results are clearly 
better using GAIN-5, which demonstrates a better generalization maintaining a 
lower overall error on the three scenarios.

7.4 � Resource Utilization

Concerning the GPU usage, it can be observed that in the GAIN-4 solution is ∼ 4% 
while in the baseline it is ∼19%, with the added benefit of a much faster training. One 
of the causes of this reduction is the better convergence of the model, as illustrated 
in Fig.  28. In GAIN-5 the GPU consumption is higher than in GAIN-4, because 
of the higher hyperparameters, but GPU consumption is still kept under 15%. The 
hardware of the testbed used for the training was composed of two GPUs Nvidia 
GeForce GTX 1070 with 8 GB GDDR5 memory, paired with an AMD Ryzen 5 
5600X CPU, 32 GB of DDR4 RAM, and a 500 GB M.2 SSD. The time to train and 
test the GAIN-5 model was about 3 h 30 min, 2 h 20 min for training, which is a sig-
nificant reduction compared to the original 12 h training of the baseline.

Finally, to compare GAIN-5 with other solutions, Table 6 provides a summary 
of the best different approaches and MAPE results. The uniqueness of our solu-
tion (GAIN-5) [63] is the preservation of the architecture and data of the original 
RouteNet model, as the message passing procedure was not modified and data aug-
mentation was not used, resulting in an implementation with lower overhead than in 
the other solutions. Additionally, our approach did not use the average of multiple 
models to maintain the simplicity of the baseline. The use of the new feature offered 
traffic intensity, designed from the knowledge of traditional queuing theory, signifi-
cantly improved the accuracy of the predictions. GAIN-5 demonstrates that it is pos-
sible to obtain a low MAPE utilizing a simpler approach, just improving the original 
RouteNet model, and avoiding the usage of multiple tuned models. This simplic-
ity allows fast training and easier management of the model, enhancing its usage in 
new environments by just retraining and deploying it. No other solution in the BNN-
UPC challenge has fast training and good precision without using multiple models.
The fine-tuning of GNN hyperparameters set smaller in our solution, allowed lower 
training and prediction times, and less memory and power usage, thus making our 
solution more suitable in case of frequent retraining requirements.

8 � Conclusions and Future Work

The network models based on GNNs are being suggested as a good approach for 
building an autonomous 5G and B5G networks, as they can both properly fore-
cast network KPIs and easily be modified and updated to account for the current 
networks rising complexity and dynamism. Out-of-the-box GNNs are unable to 
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generalize and scale to larger topologies, which causes their accuracy to decline. In 
this paper, we introduced GAIN, a GNN-based model that accurately forecasts the 
average per-path network delay. The good generalization of the model, tested with 
heterogeneous datasets, enables it for predicting per-path delay in many scenarios, 
thereby proving it useful for managing 5G and B5G services.

In order to achieve good generalization, GAIN builds on RouteNet’s GNN and 
makes a number of additions. These additions include the inference of per-path 
delay from the predicted link queue occupancy, feature normalization, feature 
selection, feature engineering (offered traffic intensity), and hyperparameter opti-
mization. Additionally, compared to other solutions currently available, GAIN 
has less implementation complexity, lower resource requirements, and faster 
training.

A closer analysis, filtering, and preparation of the datasets is key for achieving 
improved results in a ML approach. In this case, the training and validation datasets 
were well generated for the training task. The testing dataset had particularities dis-
covered during the test phase, where a closer analysis helped to know the cause of 
the slightly higher errors in a specific case.

As part of our ongoing research, we intend to examine additional GNN archi-
tectures, frameworks, and performance improvements. We also intend to use these 
developments in the suggested or another closed-loop control context, where GNN 
predictions will be used by decision-making algorithms (such as traffic admission 
control) deployed in 5G and B5G networks.
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