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A B S T R A C T

One of the main challenges for fiber-reinforced polymers (FRP) is the difficulty to predict their mechanical
behavior. At the microscale, the properties of the constituents, their spatial distribution and the defects
arising from manufacturing affect the mechanical behavior. In this work, statistically representative volume
elements (SRVEs) are proposed based on a micromechanical finite element model to determine the effect of
content, distribution and size of microstructural defects and, material uncertainties on the elastic mesoscale
properties of FRPs. To that end, different cylindrical void sizes are considered as well as irregular shaped voids
between fiber tows (inter-fiber voids). Fibers and voids are randomly distributed in a SRVE. An uncertainty
quantification and management analysis is employed to obtain statistical descriptors of the effective mesoscale
mechanical properties of FRPs. The results obtained are compared with analytical models. It is demonstrated
that, for carbon fiber/epoxy composites, SRVEs with lateral dimensions equivalent to 15 times the average
fiber diameter and a length of 0.01 mm along the longitudinal direction remain statistically representative
with or without the presence of voids. The results show that the presence of voids reduces the transverse and
shear elastic properties of FRPs. The smaller the voids are, the bigger is the reduction. Regarding the presence
of inter-fiber voids, the reduction is lower. This trend is well predicted by the Mori–Tanaka mean field theory.
However, the relative difference between the numerical and the analytical predictions increases for high void
volume fractions. Regarding the effective longitudinal Young’s modulus, the rule of mixtures, the Mori–Tanaka
mean field theory and the concentric cylinder assembly model provide similar predictions for the mean value,
but the uncertainty is overestimated by the analytical models because the properties of the fibers take a single
value for each calculation with the analytical model, while they more realistically change from fiber to fiber
in the numerical SRVEs.
1. Introduction

Composite materials are of special interest in modern industry
due to their excellent specific mechanical properties. However, the
brittle nature of polymer composites means that failure initiates from
a stress raiser. This can be a geometrical feature, e.g., a hole, damage,
e.g., impact on a surface, or the presence of defects, e.g., the existence
of voids. In fiber-reinforced polymers (FRPs) there are many defects
related to the constituents: fiber defects, such as fiber degradation or in-
plane misalignment, matrix defects, such as porosity or contaminants,
and fiber–matrix defects, such as debonding or poor wetting of the
fibers [1]. Voids are among the most important defects since they affect
a wide range of composite properties and they tend to be common in
many different manufacturing techniques [2,3].
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Voids can usually be defined as cylindrical branch-type defects gen-
erally aligned with the fiber direction [4]. The main sources of porosity
in composite materials are air entrapment during the initial manu-
facturing stage and volatile components or contaminants generated
during curing [5]. Voids may be present in a composite with different
sizes, shapes and content. When studying macrovoids in carbon/carbon
composites, Drach et al. [6] showed that, in unidirectional composites,
assuming voids aligned with the fibers and extending continuously with
constant cross-section may significantly overestimate the longitudinal
and slightly underestimate the transverse stiffness of the material when
compared with irregularly shaped macrovoids. On the other hand, par-
allel 2:1 spheroidal voids randomly distributed in the same transversely
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isotropic matrix result in closer predictions of the effective moduli. In
the present study, however, focus will be given to the presence of voids
at the level of the constituents, linked to the occurrence of porosity at
the microscale. Most of the authors found, by 3D micro-CT scanning,
that microvoids have a rod-like geometry oriented along the fiber
direction [7–18]. Regarding the cross-section, some microvoids present
an irregular shape which, for the sake of simplicity, can be fitted into
a circle [17–19], whereas others are almost circular [15,20]. These
microvoids typically have an equivalent diameter of 3 to 20 μm [13–16]
even for thermoplastic matrices [21]. Vajari et al. [15], Hyde et al. [20]
and Daggumati et al. [22] concluded that, microvoids whose size is
comparable with the fiber diameter are present in a composite between
fiber clusters with an irregular shape, since the matrix cannot easily
flow-in during manufacturing. They also concluded that microvoids can
be present as small air bubbles being trapped in the matrix.

Several studies have been focused on the effect voids have on the
mechanical properties of FRPs. Experimentally, Almeida and Neto [23]
determined that voids have a high detrimental effect on the fatigue life
of composite structures. Chambers et al. [16] found that an increasing
void content reduces the flexural strength and the fatigue performance
acting on the initiation and propagation of failure mechanisms. Zhu
et al. [11] concluded that cracks emanate from the voids and so both
tensile strength and modulus decrease. Finally, Chu et al. [24] also
observed that porosity have a detrimental effect on the transverse and
shear moduli, whereas the effect on the longitudinal properties is much
lower.

Accurate numerical simulations, with advanced constitutive mod-
els, can help understand the mechanical behavior at the microscale
(constituents level) and their effect on the mesoscale properties (ply
level). Melro et al. [25] defined a methodology to generate a mi-
cromechanical 3D representative volume element (RVE) containing
randomly distributed fibers in accordance to the fiber volume fraction.
Tavares et al. [26] extended this version of the random fiber generator
to obtain the microstructure of a composite material with different
types of fibers, i.e., a fiber-hybrid composite. In the present work, this
methodology is further extended to take into account the presence of
voids. To that end, an RVE of the composite material with defects needs
to be defined. That is, a sample that is structurally entirely typical
of the whole mixture on average and contains a sufficient number
of inclusions to be effectively independent, so that the results are
macroscopically uniform [27].

The analysis of the effect of matrix voids using computational
micro-mechanics is not new. Previous studies include the work of
Vajari et al. [15], where 2D numerical simulations were performed
considering elongated voids parallel to the fiber direction with a cir-
cular cross section. Inter-fiber voids with an irregular shape were
also considered. Dong [28] studied the effect of randomly distributed
voids on the stiffness and strength of FRP also comparing the results
with analytical models. Mehdikhani et al. [2,18] also simulated the
effect of microvoids on the elastic moduli of carbon fiber reinforced
polymers considering a single ellipsoidal void embedded in the ma-
trix. These voids will be simply referred to as ‘‘matrix voids’’. Hyde
et al. [14,20] used a micromechanics-based finite element modeling
strategy to study the effect of a single matrix or inter-fiber void on
the strength of composite structures. Sharifpour et al. [29] developed
a 2D micromechanical model to assess the effect of microvoids on
the local stress state, with a circular shape, in a cross-ply laminate.
Chu et al. [24] studied the influence of voids on the stiffness prop-
erties of unidirectional FRPs, considering very small spherical voids.
More recently, Daggumati et al. [22] checked the effect of matrix and
inter-fiber voids, as well as other geometrical and material features
such as thermal residual stresses and the random spatial distribu-
tion of the reinforcements, in a 2D cell under a transverse loading
state. Vinot et al. [30] developed a model to quantify uncertainties,
e.g., porosity, in continuous unidirectional composites and evaluate
2

their influence on the mechanical properties of the material. However,
to the authors’ best knowledge, all the current literature studies have
not taken into account simultaneously the random spatial distribution
of the constituents, the variability in their properties and the variability
of the characteristics of microvoids in the definition of statistically
representative volume elements (SRVEs) for fiber-reinforced polymers.

In the design of composite structures it is also important to take
into account the uncertainties in the design parameters, arising, for ex-
ample, from the scatter in the material properties. Vallmajó et al. [31]
defined a methodology to account for the uncertainty of an open-hole
specimen by calculating analytically B-value design allowables through
Monte Carlo simulation (MCS). The B-value is a statistically-based
design allowable, recommended by the Composite Materials Handbook
(CMH-17) [32], and defined as the 95% lower confidence bound on
the tenth percentile of a specified population of measurement. Cózar
et al. [33] also created a methodology to calculate the B-value from a
high-fidelity numerical model creating a response surface of the results
and, afterwards, performing a MCS. These strategies rely on input
material properties at the ply level, and their uncertainties, character-
ized by experimental results to, finally, obtain the B-value allowables.
However, contribution to uncertainty is not only based on the scatter
in the material properties, but also from the presence of defects and
their characteristics. Currently, there is a lack of studies considering
the definition of SRVEs that, besides the random distribution of the
reinforcements, also take into account the uncertainty of the material
properties as well as the presence of defects. Therefore, SRVEs are
generated herein that account for the effect of the uncertainties related
to void content, distribution and size, and for the effect of the uncer-
tainties of material properties on the elastic mesoscale properties of a
carbon fiber reinforced polymer (CFRP). The methodology proposed in
this work can be used to guide the quantification of uncertainties at the
micro-scale, for example, to help defining knock-down factors for the
effect of voids and void content, or to generate statistically representa-
tive material allowables to be used in analysis methods at the meso and
macroscales. Rather than simply providing deterministic predictions
of effective properties (and strengths), this methodology will enable
the calculation of reliable statistical descriptors, herein focused on the
effective elastic properties, but with the possibility to be extended to
the stochastic prediction of damage initiation and propagation. This
first step considering only the effective elastic properties will allow the
assessment of the proposed approach with alternative methods, incl.
well established analytical models.

The paper is organized as follows: Section 2 shows the methodology
followed to generate, simulate and post-process the results from an RVE
with the presence of defects; Section 3 describes the composite material
and defects considered in this study; Section 4 presents the results and
their discussion; finally, Section 5. summarizes the conclusions of this
work.

2. Methodology

In this work, an exhaustive methodology is proposed to define
SRVEs and determine the elastic properties of FRPs accounting for
the uncertainty due to the material and geometric variability in the
constituents, their spatial distribution and the presence of defects, in
the form of matrix and inter-fiber voids. The flow chart in Fig. 1
shows the uncertainties propagation procedure followed in this study,
as described in the following sections.

2.1. Composite microscopic uncertainties

In previous studies addressing the effect of the presence of mi-
crovoids on fiber-reinforced composite systems [2,8,22,24,34], the de-
termination of the elastic properties did not account for the uncertain-
ties associated with the intrinsic variability of the constituent proper-
ties, their spatial distribution and the characteristics of this class of

defects.



International Journal of Mechanical Sciences 263 (2024) 108781O. Vallmajó et al.
Fig. 1. Flow chart of the propagation of the uncertainties related to a composite
structure to quantify their effect on the elastic mesoscale properties of the composite.

Fig. 2. A schematic 3D representation of voids inside a unidirectional ply ob-
tained from micro-computed tomography in the literature [7,17,18,21] (a) and the
corresponding representative volume element considered in this study (b).

2.1.1. Reinforcement and defects spatial distribution uncertainty
The reinforcements of FRPs are randomly distributed inside a ply.

In addition, the distribution of the defects also does not follow a
deterministic dispersion. Therefore, their random spatial distribution is
taken into account in this study when generating the micromechanical
model.

2.1.2. Constituent properties uncertainty
The different materials present in a composite system exhibit an

intrinsic variability in their properties. Moreover, the size of the fibers
are not constant. Therefore, the variability in the properties of the
constituents and in their geometrical parameters, such as the fiber
diameter, is taken into account in this study to quantify the elastic
material properties of the composite.

2.1.3. Defects uncertainty: Voids
In the present work, following the data available from the literature

(see Section 1), all voids are assumed to be aligned with the fiber
direction (see Fig. 2).

Looking to the literature, most authors agree that voids can be
represented with a circular cross-section. Moreover, in this study op-
tical microscopy images were analyzed to characterize typical voids in
3

Fig. 3. (a) Image from optical microscopy with the presence of voids in dark color and
(b) the corresponding RVEs (in blue the fibers and the white region is the matrix) with
the presence of three types of voids (in green). From left to right: matrix voids with
a diameter smaller than the fibers (‘‘small’’ matrix voids), matrix voids with a larger
diameter (‘‘large’’ matrix voids) and voids that intersect with the fibers (inter-fiber
voids). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.).

glass/epoxy cross-ply laminates manufactured using pre-preg lay-up.
Optical microscopy images were taken observing polished specimen
edges with magnification of 200x. It is assumed that the typically
observed shape and distribution of voids in glass/epoxy composite
shown in Fig. 3a also applies for carbon/epoxy composites analyzed
in this study. The images support that porosity appears as voids with
a circular shape entrapped in matrix-rich regions or as voids with an
irregular shape within the fiber tows. Therefore, this study is focused on
these two types of voids: matrix voids and inter-fiber voids. Moreover,
in addition to the position of the voids, the effect of their size is also
considered. According to the size, voids could be classified as voids with
a diameter smaller than the fibers (small matrix voids) or voids with a
larger diameter (large matrix voids), as shown in Fig. 3b. It is important
to note that, in this study, ‘‘small’’ and ‘‘large’’ voids (Fig. 3b) refer
simply to the relative size of the voids when studying the influence of
their size (considering the relative size of the fibers just as a reference),
and not to an absolute measure.

Void content is calculated as the void volume fraction in FRPs,
e.g., following the ASTM D2734 standard that compares the theoretical
and the measured composite density [35]. Although porosity should not
exceed 1% for high-performance laminates and a void content greater
than 5% for a composite is not acceptable in most industries, this work
addresses void contents ranging up to 10% to characterize their effect in
a wider range, including some of its highest and critical values reported
in the literature [14,17,24,36].

2.2. Micromechanical model with voids

In the following, the approach followed to generate the microme-
chanical finite element model including all uncertainties taken into
account in this study, described in Section 2.1, is summarized.

Generation of an RVE. The micromechanical model proposed by Melro
et al. [25] to randomly distribute the fibers in an RVE and extended by
Tavares et al. [26] to be able to define different types of fibers was
modified to accurately represent an RVE with voids. The algorithm
has been enhanced to generate voids with cylindrical shape parallel
to the fiber direction, randomly distributed in the RVE. Two different
populations are defined. The first one represents the fibers with its own
geometrical properties, uncertainties and volume fraction. The second
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population includes the voids, which also have their own properties
and uncertainties.

The algorithm consists of the following steps:

1. Hard-core model to randomly distribute the constituents in the
RVE. Therefore, in this first step, the model simply generates
randomly new fibers and voids in the RVE. These are accepted
on the RVE depending on a distance criterion that checks if these
overlap with other fibers or voids. This criterion is different for
fibers and voids as will be clarified later.

2. First Heuristic to move closer the fibers and voids between them
to gain more empty areas to fill afterwards.

3. Second Heuristic to move the constituents on the outskirts to-
wards the center of the RVE and compact them for generating
matrix-rich regions.

The use of the heuristics allows reaching fiber volume fractions over
65% [25]. After these steps, the model starts a new iteration and repeats
all the steps to add more fibers and voids until the desired volume
fraction is achieved. In-deep details about these steps can be found in
Ref. [25]. Overall, the model has the following abilities:

• Adding either fibers or voids according to the RVE size and their
volume fractions.

• Defining a mean value and standard deviation for the diameters
of the fibers and voids to account for the uncertainties related to
their size.

• Defining three different minimum distances while placing the
fibers and voids. One between fibers, another between fibers
and voids and, finally, between voids. Thus, the algorithm can
generate different types of voids: voids embedded in matrix-rich
regions or inter-fiber voids which overlap with the fibers. These
distances are defined as the mean radius of two consecutive
circles of radius 𝑟𝑖 and 𝑟𝑖+1, respectively, multiplied by a different
constant value (𝑘) for each minimum distance previously de-
scribed (𝑘f iber−f iber , 𝑘𝑓𝑖𝑏𝑒𝑟−𝑣𝑜𝑖𝑑 and 𝑘𝑣𝑜𝑖𝑑−𝑣𝑜𝑖𝑑 , respectively). Hence,
the minimum distance between two of these features is calculated
as 𝑘 × (𝑟𝑖 + 𝑟𝑖+1)∕2. For the case of inter-fiber voids, the distance
between fiber and void is negative to allow the overlap between
them, thus 𝑘𝑓𝑖𝑏𝑒𝑟−𝑣𝑜𝑖𝑑 < 0. Instead, for the matrix voids, this
distance must be larger than 0 since no overlap is permitted.

• Generating fiber-rich regions (fiber clusters) where fibers are
more compacted.

Thus, different categories of RVEs with voids can be generated (see
Fig. 3) to assess the effect of shape and size of the voids, for example:
(i) matrix voids with a diameter smaller than the fibers (small matrix
voids); (ii) matrix voids with a diameter larger than the fibers (large
matrix voids); (iii) voids that intersect the fibers (inter-fiber voids).

To avoid the appearance of zero-volume elements when meshing
the RVE, the algorithm was modified to force that fibers and voids
close to the boundaries of the RVE remain, at least, at a distance from
the boundaries equal to the average size of the matrix finite elements.
Likewise, the fibers and voids cut by the RVE boundaries are cut, at
least, at a section as large as their corresponding mesh size.

Modeling strategy. Once the RVE is generated according to the size,
fiber volume fraction, void volume fraction and their respective diam-
eters and variation, it needs to be discretized and analyzed using the
Finite Element Method (FEM). Fig. 4 shows the sequence of steps used
to generate the FEM model of the RVE. It can be summarized as follows:

(a) Creation of each part, i.e., each fiber, each void and the matrix,
independently as a plate, i.e., in two dimensions (2D).

(b) Assembly of all the plates and mesh of the whole model, with the
possibility of defining a different mesh size for each constituent
(fiber, matrix and defect). The element mesh shape is defined as
quad-dominated. Thus, almost all the elements are quadrangular
except in some regions where triangular elements are included.
Linear elements with reduced integration are used.
4

Fig. 4. Steps to model the RVE: (a) creation of each part as a plate, (b) assembly
of all the parts and meshing, (c) extrusion of the mesh and conversion to 3D parts,
(d) creation of each surface to define the contacts between materials, (e) assembly of
all 3D parts, and (f) example of application of the periodic boundary conditions in a
specific node linked with the dummy node where the far-field strains are applied.

(c) Extrusion of the mesh to convert each plate to a three-dimens-
ional (3D) part. This strategy is followed to ensure that there
is a mesh continuity in the longitudinal direction as done in
previous works [34]. Hence, the periodic boundary conditions
can be implemented afterwards without any problem. After the
extrusion, the majority of the elements are C3D8R which corre-
spond to linear brick elements with reduced integration, whereas
in some regions the elements are C3D6 which correspond to
linear triangular prism elements.

(d) Determination of each surface from each 3D part to define the
constraints between the materials.

(e) Assembly of all 3D parts. The fibers and the matrix are connected
with contact interactions, which adds the possibility of repre-
senting fiber–matrix debonding by employing cohesive surfaces,
while the voids are assumed to be perfectly bonded to the matrix
and fibers by defining contact interactions with a high penalty
stiffness. It should be noted that tie constraints cannot be used
since this would lead to over-constraining some nodes (the ones
in the boundaries) with more than one equation: one for the
periodic boundary conditions and another for the tie constraints.

(f) Implementation of the periodic boundary conditions (PBC) to
link nodes in opposite faces, edges or vertices, while the mi-
cromechanical model is generated to guarantee that the RVE is
geometrically and materially periodic [37]. In other words, if a
fiber crosses the boundary of an RVE, the external part must be
cut and moved to the opposite side keeping the same material
properties. Thus, the periodicity of stress/strain field is ensured.
A set of constraint equations is defined between all the nodes at
the boundaries of the RVE along all degrees of freedom, through
a dummy node where the far-field strain is applied (see Fig. 4f).
For the complete set of equations defining the PBC, the reader
is referred to Ref. [37]. To prevent rigid body motion (RBM) a
random node in the middle of the RVE is fixed.

2.3. Design of experiments

Once the micromechanical RVE is created, the uncertainty of the
input parameters, i.e., the variability in the constituents, the random
spatial distribution and the presence of voids, is propagated to the
mesoscale elastic properties (engineering constants) to quantify their
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effect. To that end, an MCS is carried out. The MCS relies on the
repetition of random samples to obtain statistically relevant results.
In other words, a sample with 𝑛 RVEs is created, where each RVE
as different material properties, random spatial distribution of the
onstituents and random distribution of the different types of voids,
nd it is analyzed to obtain the distribution of the homogenized elastic
aterial properties. The constituent properties are generated following
statistical distribution. In each RVE, the fibers are generated with dif-

erent dimensions and properties according to their input distributions.
he matrix properties also change, but from RVE to RVE, according to
heir corresponding input distributions.

.4. Numerical simulation

The micromechanical model is simulated using the finite element
oftware ABAQUS/Standard 6.14−2 [38]. To determine the effective
lastic properties of the composite system, far-field strains of 0.001%
ere applied, and the stress and strain fields in the RVE post-processed

see Section 2.5).

.5. Mesoscale properties homogenization

The uncertainties present in composite systems may be taken into
ccount while predicting the elastic properties. According to the CMH-
7 [32], the elastic properties should be defined with its mean and
tandard deviation. Therefore, from each simulation, the elastic prop-
rties of a composite material and their corresponding uncertainty are
etermined using a first-order homogenization technique (more details
n Appendix A).

The results of the computational micromechanics model obtained
rom first-order homogenization are compared with the results calcu-
ated analytically using the rule of mixtures (RoM), the Mori–Tanaka
heory and the concentric cylinder assembly (CCA) model. The RoM
rovides reasonable values for the longitudinal stiffness assuming that
he fibers and the matrix are working in parallel, and assuming that the
ibers and matrix are working as springs in series for the transverse and
hear properties (more details in Appendix B). However, the predictions
sing the RoM for the transverse and shear stiffness are not accurate.
herefore, other micromechanical models have been proposed in the

iterature to determine these properties, such as the Halpin–Tsai [39]
odel. But to account for the presence of multiple types of inclusions

here fibers and voids), the elastic properties are better estimated using
he Mori–Tanaka mean field theory [40] (more details in Appendix C).
inally, the CCA model [41] is also checked since it also allows the
resence of multiple phases (more details in Appendix D).

The uncertainty quantification analyses performed numerically us-
ng computational micromechanics and analytically following the RoM,
he Mori–Tanaka mean field theory, and the CCA model are compared,
n terms of the obtained mean values and STDVs. The comparison
onsiders the constituent properties variability in all cases, and includes
he spatial distribution of the reinforcements and of the defects in the
ase of computational micromechanics (the only one herein that can
ccount for these effects).

.6. Definition of statistically representative volume elements (SRVEs)

The definition of an RVE implies that the results obtained are
acroscopically uniform. That is, the RVE must be large enough to be

epresentative of the continuum at a higher scale. Thus, an infinitesimal
VE may be used. However, in numerical analysis a finite size is
equired [42]. On the other hand, SRVEs must reproduce the same
tatistics related to the stress and strain fields of the macroscopic
aterial. To account for the spatial distribution of constituents and
efects and the possible material variation, a number of samples (𝑛)
5

s analyzed to determine these statistics.
To determine the minimum size of the SRVE, the mean values of
he properties of interest obtained with volume elements of different
ize and discretization options (type and size of the finite elements)
re determined and compared. A contrast of hypotheses is performed
o check if two means can be assumed to be equal:

0 ∶ 𝑥1 = 𝑥2

1 ∶ 𝑥1 ≠ 𝑥2
(1)

here 𝐻0 and 𝐻1 are the null and alternative hypotheses assuming that
𝑥𝑖 is the mean value of each sample. A pooled standard deviation, 𝑆𝑝,
s used as an estimator of common population standard deviation:

𝑝 =

√

(𝑛1 − 1)𝑠21 + (𝑛2 − 1)𝑠22
𝑛1 + 𝑛2 − 2

(2)

where 𝑛𝑖 is the sample size and 𝑠𝑖 the standard deviation of each sample.
sing the 𝑆𝑝 and the 𝑥𝑖 of the main data set and the ones to be
ompared, the test statistic

0 =
𝑥1 − 𝑥2

𝑆𝑝 −
√

1
𝑛1

+ 1
𝑛2

(3)

is used to determine if the null hypothesis can be accepted or if it must
be rejected. Since this is a two-sided t-test, the required 𝑡 value to accept
the null hypothesis, i.e., the mean values are equal, is:

𝑡𝑎,𝑛 = 𝑡 𝛼
2 ,𝑛1−𝑛2−2

(4)

where 𝛼 is the probability of rejecting the null hypothesis when it is
true. Finally, the 𝑝-value, which is the probability of obtaining test
results outside the results observed under the assumption that the null
hypothesis is true, is calculated. Therefore, the 𝑝-value to accept 𝐻0
must satisfy that:

p-value = 𝑃 (𝑡0 ≤ 𝑡𝑛1−𝑛2−2) ≥ 𝛼 (5)

Moreover, in this study, the variance in the results due to the
uncertainty of the input parameters, such as the material variability,
the spatial distribution and the presence of defects, is an important pa-
rameter that must be independent of the SRVE size and discretization.
Thus, to determine the parameters for generation of SRVEs, a contrast
of hypotheses is also performed to ensure that the standard deviations
(STDVs) are independent of the modeling options:

𝐻0 ∶ 𝑠1 = 𝑠2
𝐻1 ∶ 𝑠1 ≠ 𝑠2

(6)

The test statistic used to determine if the null hypothesis can be
accepted is 𝐹0 defined as:

𝐹0 =
𝑠21
𝑠22

(7)

Since this is an 𝐹 -test, the 𝐹𝑛1−1,𝑛2−1 statistic is used to accept the null
hypothesis, i.e., that the STDVs are equal. Thus, the 𝑝-value can be
calculated as:

p-value = 𝑃 (𝐹0 ≤ 𝐹𝑛1−1,𝑛2−1) ≥ 𝛼 (8)

So, the minimum size of the SRVE is determined by the one that
provides the same mean values and STDVs of a larger one.

3. Composite material selection and effect of defects

This section describes the properties of the constituents, i.e., fibers
and matrix, and the characteristics of the defects, i.e., voids, which will
be used to determine the effect of defects on FRPs.
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Table 1
Mean values of the elastic properties of the constituents and assumed standard deviations (STDVs).

Constituent 𝐸1 [MPa] 𝐸2 , 𝐸3 [MPa] 𝜈12 , 𝜈13 𝜈23 𝐺12 , 𝐺13 [MPa] 𝐺23 [MPa]

Mean STDV Mean STDV Mean STDV Mean STDV Mean STDV Mean STDV

Carbon fiber AS4 225 000 11 250 15 000 750 0.2 0.01 0.07 0.0035 15 000 750 7000 350
Epoxy matrix 3501/6 4200 210 – – 0.34 0.017 – – 1567 78.35 – –
.

Table 2
Mean and STDV of the void diameter and the distance between fibers and voids, defined
as 𝑘𝑣𝑜𝑖𝑑−𝑓𝑖𝑏𝑒𝑟 multiplied by the mean radius, for each type of void analyzed in this study

Void type Mean diameter
[mm]

STDV diameter
[mm]

𝑘𝑓𝑖𝑏𝑒𝑟−𝑣𝑜𝑖𝑑
[–]

Small matrix voids 0.004 0.0004 0.1
Large matrix voids 0.014 0.001 0.1
Inter-fiber voids 0.014 0.001 −0.05

3.1. Properties of the constituents

The proposed methodology can be applied to any FRP. In this
study, the material system considered is composed of AS4 carbon
fibers embedded in a 3501-6 epoxy matrix. The properties of the
constituents are summarized in Table 1 [43]. However, the material
properties variability has not been previously reported. Other studies,
such as [44], which accounted for the uncertainty in the predicted
mechanical properties and the failure strengths of composite laminates,
also assumed a variation equivalent to 5% of the mean value for the
properties of the constituents. Moreover, the CMH-17 [32] suggests
defining the elastic properties with its mean and standard deviation.
So, in this analysis, a normal distribution of the material properties is
considered, with a coefficient of variation of 5%.

In this study, the fiber–matrix interface is assumed to be perfectly
bonded. Thus, using the interaction properties in ABAQUS/Standard,
a surface interaction between fibers and matrix is used with a high
penalty stiffness and without taking damage into account (i.e., without
interface degradation).

The fibers have a cylindrical shape with a mean diameter of
0.007 mm and a STDV of 0.0003 mm according to Ref. [45]. The
minimum distance between them (𝑘f iber−f iber) is defined as 0.1 times the
mean radius of the two adjacent fibers. Due to the presence of voids,
the fiber volume fraction (𝑉𝑓 ) tends to be lower than usual. Therefore,
the fiber volume fraction considered in this study is 55%, i.e., it is kept
constant with a value of 55% while the matrix volume fraction (𝑉𝑚) is
reduced according to the void volume fraction (𝑉𝑣).

The dimensions of the RVE and the mesh size are determined
according to the statistical analysis explained in Section 2.6 and de-
veloped in Section 4.1.

3.2. Distribution and discretization of defects

As discussed previously (see Sections 1 and 2.1.3), at the microscale,
voids can be represented with a cylindrical shape parallel to the fiber
direction (longitudinal direction) with a circular cross-section (matrix
voids), whereas inter-fiber voids present an irregular shape due to their
intersection with the fibers.

The generation of voids in the finite element model is performed
according to the assigned diameter and void content. Although most
industries do not allow void contents above 5%, the void volume frac-
tion considered in this study is 7% to promote a greater influence and
characterize more clearly their effect, a similar approach to previous
studies [14,24,28]. The characteristics of each type of voids analyzed
in this study is summarized in Table 2. The minimum distance between
voids (𝑘𝑣𝑜𝑖𝑑−𝑣𝑜𝑖𝑑) is two times the mean radius of two consecutive voids
to allow to have fiber bundles around them.

For the sake of simplicity, and since all the SRVEs analyzed in this
study are only a small portion of the whole ply (see Fig. 2b), voids
6

Fig. 5. Illustration of two SRVEs containing small matrix voids. The different grades
of the colors show the material variability of the matrix between samples and of the
fibers in each sample. Material periodicity is ensured. Geometrical variability of the
fibers and voids is also represented. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.).

represented in this micromechanical model extend along the length
the SRVE, although it is recognized that, unlike the fibers, voids are
not continuous. Yet, given their rod-like geometry, this is considered a
suitable approximation.

Voids dummy material. Voids represent air entrapped in the composite
system. To avoid numerical problems and account for the volume
variation of the RVE due to the elastic deformations, in this study voids
are characterized using an isotropic dummy material [2]. A parametric
analysis was conducted to assess the effect of the dummy material
properties on the resulting homogenized composite properties. Finally,
a value equal to 0.001 MPa for the Young’s modulus and 0.001 for
the Poisson’s ratio resulted in no effect on the homogenized composite
properties.

4. Results and discussion

This section presents, the statistical analysis to determine the SRVE,
the effect of voids on FRPs and the discussion of the results obtained
in this study.

4.1. Determination of the minimum size of the SRVE

A sample size 𝑛 of 20 samples is analyzed. In each sample, all dif-
ferent fibers have random material and geometric properties according
to their respective normal distribution, whereas voids have different
dimensions according to their associated uncertainty. Each model also
has different material properties for the matrix and a random spatial
distribution of the fibers and of the defects. Therefore, each sample
takes into account the material variability, the geometrical uncertain-
ties, the effect of voids and the random spatial position of the fibers
and defects (see Fig. 5).

To determine the minimum size of the SRVE and its most efficient
discretization, a contrast of hypotheses for the means and the STDVs
with a significance level of 5% (𝛼 = 5%) is performed. The parameters
studied in this statistical analysis are:
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Table 3
Contrast of hypotheses of the mean value (𝐻0,𝑚𝑒𝑎𝑛) and the STDV (𝐻0,𝑆𝑇𝐷𝑉 ) of a 15 × 15
model to determine the minimum mesh size for discretization of fibers and matrix. The
values in bold are the reference values used for the contrast of hypotheses.

Matrix finite
element size

Fiber finite element size

0.00035 [mm] 0.00070 [mm]

0.00035 [mm] Ref value 𝐻0,𝑚𝑒𝑎𝑛: False for 𝐸1
𝐻0,𝑆𝑇𝐷𝑉 : False for 𝐺23

0.00070 [mm] 𝐻0,𝑚𝑒𝑎𝑛: True 𝐻0,𝑚𝑒𝑎𝑛: False for 𝐸1, 𝐸2, 𝐺12, 𝐺23
𝐻0,𝑆𝑇𝐷𝑉 : True 𝐻0,𝑆𝑇𝐷𝑉 : True

1. The length on the longitudinal direction of the SRVE.
2. The mesh size. The fibers and the matrix can have different mesh

sizes.
3. The size of the SRVE (width and height) considering a square

cross-section. The SRVE size is determined relative to the fiber
diameter, i.e., if the SRVE width is 20, that means that the width
and height will be 20 times the mean fiber diameter (0.007 mm).

4. The presence of defects, i.e., whether the size of the SRVE is
affected by the presence of voids.

Determination of the minimum length. To determine the minimum length
of the SRVE, three different lengths are analyzed: 0.1 mm, 0.05 mm
and 0.01 mm, in line with previous numerical studies [46]. Moreover,
three model sizes were analyzed: 5 × 5, 10 × 10 and 15 × 15,
corresponding to a width and height 5, 10 and 15 times the mean fiber
diameter (0.007 mm), respectively. For this analysis, the size of the
finite elements was 0.0007 mm. The RVE with a length equal to 0.1 mm
is taken as the reference.

The contrast of hypotheses, for the mean and STDV, were true for
all the cases analyzed. It can be concluded that the length has no
effect when determining the elastic properties since, for any length and
size, the mean value and the STDV can be assumed to be equal to the
reference value (0.1 mm long RVE). SRVEs with a length of 0.01 mm
are, therefore, chosen, discretized by 5 elements, leading to a mesh size
in the longitudinal direction of 0.002 mm.

Determination of the mesh size. To perform the mesh convergence study,
four different mesh sizes according to the fiber diameter were evaluated
in an RVE with a model cross-section of 15 × 15 fibers. The reference
one is the finest, which has an element size of 0.00035 mm for both the
matrix and the fibers. This leads to approximately 20 elements across
the fiber diameter. Moreover, different combinations of mesh sizes for
the matrix and the fibers are considered. Fig. 6 shows the results for
the four different mesh size combinations normalized by the reference
value. Table 3 summarizes the results of the contrast of hypotheses for
the mean values and the STDVs for the mesh convergence study.

From the results of the contrast of hypotheses, the fibers will be
discretized by finite elements with 0.00035 mm whereas the matrix will
be discretized by finite elements with 0.00070 mm, very close to the
values obtained by Li et al. [47], without compromising the accuracy
of the results. The use of a heterogeneous mesh enables reducing the
total number of elements and the computational cost with respect to
the finest mesh attempted.

Determination of the SRVE size. Once the length of the SRVE has been
determined to be 0.01 mm and the mesh size 0.00035 mm for the fibers
and 0.00070 mm for the matrix, finally, the cross-section size of the
SRVE is studied. Four possible SRVE sizes were studied. The reference
has 20 × 20 fibers. The results are shown in Fig. 7. The study of the
contrast of hypotheses is summarized in Table 4.

From this statistical analysis, it can be concluded that the reference
value previously selected (20 × 20) is representative since the contrast
of hypotheses demonstrate that there is a smaller RVE (15 × 15)
with the same mean and STDV for all the elastic properties. So, a
7

convergence of the results is achieved. Therefore, to not compromise
Table 4
Contrast of hypotheses of the mean value (𝐻0,𝑚𝑒𝑎𝑛) and the STDV (𝐻0,𝑆𝑇𝐷𝑉 ) for different
model dimensions to determine the smallest SRVE assuming a length of 0.01 mm and
a mesh size of 0.00035 mm for the fibers and 0.00070 mm for the matrix. The values
in bold are the reference values used for the contrast of hypotheses.

SRVE 𝐻0,𝑚𝑒𝑎𝑛 𝐻0,𝑆𝑇𝐷𝑉

Cross-section size 20 × 20 Ref value Ref value
Cross-section size 15 × 15 True True
Cross-section size 10 × 10 True False for 𝐸1
Cross-section size 5 × 5 False for 𝐺12, 𝐺23 False for 𝐸1

Fig. 6. Normalized elastic properties from a cross-section size 15 × 15 with four
different mesh sizes for the fibers and the matrix. The crosses are the minimum and
maximum values, and the circle the mean value with an error bar equal to one STDV.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.).

Fig. 7. Normalized elastic properties from 5 × 5, 10 × 10, 15 × 15 and 20 × 20
cross-section size to determine the minimum size. The crosses are the minimum and
maximum values, and the circle the mean value with an error bar equal to one STDV.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.).

the computational time and resources needed, the SRVEs with a cross-
section size of 15 × 15 fibers, i.e., 0.105 mm width and 0.105 mm
height, are selected. These values are in good agreement with some
other studies available in the literature. For example, Trias et al. [42]
determined that the minimum size should be between 5 × 5 and
25 × 25 fiber diameters. Moreover, it is also in good agreement with
González and Llorca [48] who predicted that an RVE with 30 fibers is
representative of the macroscopic material. In the present study, with
a 15 × 15 cross-section, the number of fibers is much larger than 30.
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Fig. 8. Normalized elastic properties with the presence of matrix voids. The crosses are the minimum and maximum values, and the circle the mean value with an error bar equal
to one STDV. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
Table 5
Contrast of hypotheses of the mean value (𝐻0,𝑚𝑒𝑎𝑛) and the STDV (𝐻0,𝑆𝑇𝐷𝑉 ) to determine
he effect of the presence of voids on the model size. Two RVEs with voids have
een analyzed: small matrix voids and large matrix voids. The values in bold are the
eference values used for the contrast of hypotheses.
SRVE 20 × 20 in plane size

L = 0.05 mm
15 × 15 in plane size
L = 0.01 mm

Small matrix voids Ref value 𝐻0,𝑚𝑒𝑎𝑛: True
𝐻0,𝑆𝑇𝐷𝑉 : False for 𝜈23

Large matrix voids Ref value 𝐻0,𝑚𝑒𝑎𝑛: True
𝐻0,𝑆𝑇𝐷𝑉 : True

To sum up, for a sample size of 20 SRVEs, the minimum lateral
imensions are 15 × 15 fibers, with a mesh size of 0.00035 mm for the
ibers and 0.00070 mm for the matrix and a length in the longitudinal
irection of 0.01 mm. With this combination, the number of finite
lements for each SRVE is around 450 000.

erification of the SRVE size with the presence of voids. The previous
nalyses, performed on ‘‘pristine’’ microstructures, is now repeated
onsidering the presence of voids. The 20 × 20 RVEs with a length of

0.05 mm and matrix voids are taken as reference and compared with
the previously determined: 15 × 15 fiber diameters cross-section and

length of 0.01 mm. In both cases, the mesh size for the fibers is
.00035 mm, whereas for the matrix and the voids the mesh size is
.00070 mm, which correspond to the best mesh combination found
reviously. The results of the elastic properties normalized by the
eference values are shown in Fig. 8, while Table 5 summarizes the
esults from the contrast of hypotheses for the mean values and the
TDVs.

From the contrast of hypotheses, independently of the size of the
atrix voids, the mean values can be considered statistically equiv-

lent, while for small matrix voids the STDV of 𝜈23 cannot. This
is explained by the presence of two extremely high values (see the
corresponding minimum and maximum value in Fig. 8) in two of the 20
samples with small matrix voids. Neglecting these two extreme results,
the STDVs turn out statistically equivalent.

Based on these results, it can be concluded that the size of the SRVE
previously selected is practically independent of the presence of voids.

4.2. Effect of voids on the elastic properties

Finally, once the characteristics of the SRVE have been determined,
the elastic engineering constants are calculated with the presence of
voids. Different types of voids are analyzed, including matrix voids and
8

Fig. 9. Normalized engineering constants obtained from six different SRVEs: (i) without
defects (pristine) and without material variability, (ii) without defects (pristine) but
with material variability, (iii) with small matrix voids and material variability, (iv)
with large matrix voids and material variability, (v) with large matrix voids but without
material variability and (vi) with inter-fiber voids and material variability. All models
account for the spatial variability of the fibers (and voids). The crosses are the minimum
and maximum values, and the circle the mean value with an error bar equal to one
STDV. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.).

inter-fiber voids to assess the effect of voids shape and size. For refer-
ence, SRVEs without defects or material variability and SRVEs without
defects and material and geometric variability are also considered. The
results are shown in Fig. 9.

As expected, the presence of voids implies a reduction of the elastic
properties, and the transverse and shear properties experience the
highest reductions. Pristine SRVEs without material or geometrical
variability exhibit very low variability of their elastic properties since
they only account for the random spatial distribution of reinforcements.
However, when introducing material and geometrical variability, the
STDV increases without major changes in the mean values of the elastic
properties. Interestingly, the presence of voids reduced the mean value
of the elastic properties, but the variability (STDV) is barely affected.
To check the effect of voids on the STDV, a set of analyses with
large matrix voids but without material variability was performed. The
results show that the mean value is almost the same, whereas the
variability is smaller when only taking into account the uncertainty
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Table 6
Effect of the presence of voids on the elastic properties of a composite system. The cases with voids include material variability.

Elastic property No material variability Material variability Small matrix Large matrix Large matrix voids Inter-fiber
No defects No defects voids voids No material variability voids

𝐸1 [MPa]
Mean 125 760 125 714 124 385 124 853 124 560 124 848
STDV 182 511 651 577 471 842
Rel. dif. – −0.04% −1.09% −0.72% −0.95 % −0.73%

𝜈12 [–]
Mean 0.26 0.26 0.25 0.25 0.25 0.26
STDV 0.0 0.01 0.01 0.01 0.01 0.01
Rel. dif. – 0% −3.85% −3.85% −3.85 % 0%

𝐸2 [MPa]
Mean 8 464 8 477 7 016 7 035 7 087 7 294
STDV 27 271 228 229 103 201
Rel. dif. – 0.15% −17.11% −16.88% −16.27 % −13.82%

𝐺12 [MPa]
Mean 4 336 4 355 3 900 4 026 4 042 4 068
STDV 35 143 131 133 70 132
Rel. dif. – 0.44% −10.06% −7.15% −6.82 % −6.18%

𝐺23 [MPa]
Mean 3 193 3 204 2 696 2 705 2 721 2 771
STDV 15 91 84 87 51 80
Rel. dif. – 0.34% −15.57% −15.28% −14.78 % −13.21%

𝜈23 [–]
Mean 0.33 0.32 0.30 0.30 0.30 0.32
STDV 0.0 0.02 0.02 0.02 0.01 0.02
Rel. dif. – −3.03% −9.09% −9.09% −9.09 % −3.03%
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on the voids size and not the variability on the material properties.
Therefore, for a fixed void content, the uncertainty is mainly related
to the material variability whereas the knock-down factor of the mean
properties comes from the presence of voids.

Table 6 shows the results for the pristine SRVE and the relative
difference, i.e., the knock down factor, with respect to the models
considering material variability and the presence of voids.

The longitudinal Young’s modulus, 𝐸1, suffers a reduction of around
% when the void content increases to 7% and the fiber volume fraction
emains the same. This is expected, since 𝐸1 is mostly governed by the
ongitudinal Young’s modulus of the fibers and the fiber volume frac-
ion which is not affected by the presence of voids, as in [47]. However,
ll the other elastic properties suffer a non-negligible reduction with
he presence of voids, which leads to a reduction of the matrix volume
raction. For example, the reduction of the transverse Young’s modulus,
2, is around 17%.

Comparing the results between large matrix voids and inter-fiber
oids, although both have similar diameter, it observed that the re-
uction with inter-fiber voids is lower than with matrix voids, except
or 𝐸1. To assess the effect of fiber-void intersection, a model allowing
arger intersections was created. The results show lower knock-down
actors for the properties dominated by the matrix, in particular 𝐸2 and
23, including a very small decrease for 𝐺12, and a higher knock-down

actor for 𝐸1. Thus, it can be concluded that the position of the voids,
n particular how much intersection is allowed with the fibers, affects
he global elastic response of the composite. If the voids are intersected
y the fibers, instead of being completely embedded in the matrix, the
ransverse properties are less affected, whereas the longitudinal prop-
rties dominated by the fibers, suffer a higher reduction. Interestingly,
n Ref. [14] it is shown that the effect of the position of the voids on
he strength of FRPs is the opposite, i.e., the strength in the presence
f inter-fiber voids tends to be lower because the intersection between
iber and voids implies higher stress concentration which induce the
trength reduction.

Regarding the comparison between small and large matrix voids,
here is also a clear trend that the smaller the voids are, the bigger is
he reduction in the mechanical properties.

The effect of voids on the elastic properties is also compared with
hree analytical models. To determine the minimum number of sam-
les, 𝑛𝑎𝑛𝑎𝑙, to run the analytical models used in this study, a contrast
f hypotheses was conducted comparing different number of samples
rom 20 to 50 000, with 𝑛𝑎𝑛𝑎𝑙 = 50 000 used as the reference value. The
ontrast of hypotheses showed that with a 95% of confidence it can
9

e assumed that the mean and the STDV for all the elastic properties
ith 20 samples are equal to the reference value. Thus, a number of
amples 𝑛𝑎𝑛𝑎𝑙 = 20, which is the same sample size used for the numerical
nalyses, is used.

Fig. 10 shows a comparison between the results obtained from
omputational micromechanics and the predictions of the RoM, the
ori–Tanaka mean field theory, and the CCA model for the same

iber volume fraction. Two SRVEs are considered: a pristine SRVE
ithout defects and only considering material variability, and an SRVE
ith defects. The presence of voids with the RoM model can only be
valuated reducing the 𝑉𝑚 whereas for the Mori–Tanaka and the CCA
odel they are assumed as a new inclusion with a dummy material.
ecause the analytical models do not account for the void size, the
umerical results of the SRVEs with large matrix voids are selected for
omparison.

For the pristine SRVE, while the predictions of the longitudinal
roperties are in good agreement with the numerical results (except
or 𝜈12 using the CCA model), the RoM, as expected, does not properly
redict the transverse and shear properties, whereas the Mori–Tanaka
ean field theory provides good predictions of the transverse and shear
roperties. Finally, the results from the CCA model are worse than the
nes from Mori–Tanaka but still in good agreement with the numerical
redictions except for 𝐺12 and 𝜈12.

Considering the presence of defects, firstly, it is important to men-
ion that Eqs. (B.3) and (B.4) (series model) for the prediction of the
ransverse Young’s modulus and shear modulus of the composite using
he RoM are not valid in the presence of voids, as the results would
ead to higher stiffness since 𝑉𝑚 is in the denominator. In other words,
ith a lower 𝑉𝑚, which means a higher 𝑉𝑣, a higher 𝐸2 or 𝐺12 would

be obtained. Nevertheless, the predictions of the longitudinal properties
remain in good agreement with the numerical results, using either the
RoM, the Mori–Tanaka mean field theory or the CCA model. For the
transverse and shear properties, the Mori–Tanaka mean field theory
still provides the best predictions compared to the numerical model,
but with a higher difference compared to the pristine results.

The CCA model is also able to capture the effect of having the voids
in the matrix or within the fibers by changing the position of each
phase. In that case, 3-phase CCA model is considered with the voids in
the middle, embedded by the fibers, and the matrix as the outer surface.
Therefore, the effect of inter-fiber voids, in that case voids completely
inside the fibers, can be also considered. Using this analytical model,
the same trend observed in the numerical predictions was obtained: a
lower reduction of the transverse properties and a significant effect on
the longitudinal properties.

Regarding the uncertainty, which is mainly dominated by the vari-

ation of the material properties, both analytical models present similar
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Fig. 10. Normalized elastic properties from the numerical analysis, the rule of mixtures (RoM), the Mori–Tanaka mean field theory, and the concentric cylinder assembly (CCA)
f a pristine SRVE and an SRVE with large matrix voids. The error bar corresponds to one STDV. (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.).
redictions except for 𝐸1 and 𝜈23. Regarding 𝐸1, the STDV obtained
nalytically without or with defects is much higher (more than 10
imes) than the one obtained with the micromechanical model. Taking
nto account that 𝐸1 is mainly dominated by the fiber properties, a
igher STDV can be explained because in the micromechanical model
ach SRVE has different material properties for each fiber according to
heir corresponding normal distribution (variability from fiber to fiber
s shown in Fig. 5). Thus, the different properties from fiber to fiber
ends to cancel out in each SRVE. However, in the analytical models,
he fiber properties only change from sample to sample inducing a
igher variability between samples and, consequently, a higher STDV.
numerical analysis replicating the same conditions of the analytical
odels, i.e., with all fibers of each SRVE having the same randomly

ssigned material properties, was conducted and the STDV obtained
as similar to the analytical one. Finally, it is important to note that,
lthough there is no quantitative comparison with experimental results,
he computational micromechanics modeling strategy employed here to
redict the elastic properties of fiber reinforced polymers has been pre-
iously validated, e.g., Ref. [46]. Moreover, the results obtained with
he presence of voids are in good agreement with the analytical models
hat have been already validated, incl. Mori–Tanaka mean field theory
n Ref. [40] and the concentric cylinder assembly model in Ref. [41].
owever, computational micromechanics provides higher flexibility

n the parametrization of the SRVEs for uncertainty quantification
nalyses.

.3. Parametric study of the influence of fiber and void content

The presented methodology can be used to study the influence of
he input parameters (the geometry, the material variability and the
resence of voids) on the mesoscale properties. This influence can be
asily represented with a response surface which is a useful tool to com-
are the homogenized elastic properties obtained varying two of the
nput parameters. The previous discussed results (see Section 4.2) show
hat the highest effect of voids is in the transverse and shear properties.
ince 𝐸1 mainly depends on the longitudinal Young’s modulus of the
ibers and the fiber volume fraction, 𝐸1 is almost independent of the 𝑉𝑣.

Thus, Fig. 11 shows the prediction of the elastic transverse and shear
moduli for different fiber (𝑉𝑓 ) and void volume fractions (𝑉𝑣) obtained
numerically with the presence of large matrix voids and the relative
difference between numerical predictions and analytical ones using the
Mori–Tanaka mean field theory, which has been demonstrated to be
the analytical model with closer predictions.

As expected, the elastic moduli are reduced with decreasing 𝑉𝑓 .
The elastic moduli governed mainly by the matrix, 𝐸2 and 𝐺23, show a
pronounced reduction while increasing the 𝑉𝑣. However, as predicted
10

by Tai et al. [49] in their micromechanical model with the presence
of matrix microvoids, the reduction of 𝐺23 is more affected by the 𝑉𝑓
rather than higher 𝑉𝑣. Regarding the longitudinal shear modulus 𝐺12,
which is more affected by the 𝑉𝑓 rather than the 𝑉𝑣, the reduction due
to a greater 𝑉𝑣 is less noticeable.

The relative difference between the numerical results and the an-
alytical Mori–Tanaka mean field theory increases with higher 𝑉𝑣. Re-
garding the 𝑉𝑓 , the relative difference also increases with increasing
𝑉𝑓 , although the increasing difference is less pronounced. For all the
transverse and shear properties the analytical model underpredicts the
elastic moduli. Nevertheless, the analytical model is able to capture the
same trend obtained numerically for all the elastic properties.

The same analysis has been performed to check the effect of 𝑉𝑓 and
𝑉𝑣 on the uncertainty. However, no trend on the evolution of the STDV
of the elastic properties with void and fiber volume fractions has been
identified.

5. Conclusions

In this study, the definition of SRVEs to account for the effect
of defects on the elastic properties of composite systems, including
their uncertainty, is presented. An enhanced algorithm to generate
the spatial distribution of the constituents in an RVE has been imple-
mented with the ability of adding voids which have been represented
as cylindrical branch-type defects aligned with the fiber direction.
This RVE has been numerically simulated with a well parameterized
modeling strategy, which accounts for different types of voids and
materials. SRVEs are then determined for the uncertainty quantification
and management of the mechanical response of composite systems with
defects at the micro-scale.

Based on the elastic response of the constituents, and through
the analysis of contrast of hypotheses, it is demonstrated that, as
expected, the presence of voids reduces the transverse and shear elastic
properties. However, for the same fiber and void volume fractions,
voids completely embedded in the matrix (matrix voids) lead to higher
reductions in elastic properties than inter-fiber voids of similar size,
except for 𝐸1, showing that the position of the voids affects how
detrimental is their effect on the elastic properties. On the other hand,
the smaller the matrix voids, the larger is the reduction in the elastic
properties of the composite. Regarding the effect on the uncertainties
of the meso-scale properties, it is clear that, for a fixed void content,
material variability has a larger effect than the presence of voids. The
material variability, in this case, is responsible for the uncertainties at
the meso-scale level, while the voids are mainly responsible for the
reduction of the predicted elastic properties, in particular the transverse
and shear ones. Finally, the comparison with analytical models shows

that the Mori–Tanaka mean field theory provides the same trends of
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Fig. 11. Prediction of the elastic transverse and shear moduli obtained numerically with the presence of large matrix voids and the relative difference between numerical results
nd the analytical ones from Mori–Tanaka mean field theory. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
rticle.).
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D
c

he numerical results for the transverse properties as a function of fiber
nd void volume contents. However, the relative difference between the
umerical and the analytical predictions increases for high void volume
ractions.

To sum up, this study shows how the added flexibility provided by
omputational micromechanics can aid in assessing the effect of mate-
ial variability, geometric variability, as well as other microstructural
ffects, such as the presence of defects. Accounting for all these effects
ill be key in enabling multiscale reliability-based design of composite

tructures, linking the microstructural features with the macroscopic
esponse and uncertainty management. Moreover, the methodology
roposed herein can be extended to include the effects of other uncer-
ainties, such as the presence of clusters of fibers or voids, and other
ypes of defects.
11
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Appendix A. First-order homogenization

The elastic properties of a composite material can be determined
using a first-order homogenization technique. The Hooke’s law for
transversely isotropic materials can be defined as:
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(A.1)

where 𝜎̄𝑖𝑗 represents the volume average of the 𝑖𝑗 stress component,
𝐶𝑖𝑖𝑗𝑗 are the stiffness tensor components and 𝜖𝑖𝑗 is the volume average of
the 𝑖𝑗 strain component. From the stiffness tensor components, the five
independent engineering constants and the transverse Poisson’s ratio,
can be calculated as:

𝐸1 = 𝐶1111 −
2𝐶2

1122
𝐶2222 + 𝐶2233

𝜈12 =
𝐶1122

𝐶2222 + 𝐶2233

𝐸2 = 𝐶2222 +
𝐶2
1122(𝐶2233−𝐶2222

) + 𝐶2233(𝐶2
1122 − 𝐶1111𝐶2233)

𝐶1111𝐶2222 + 𝐶2
1122

𝐺12 = 𝐶4444

𝐺23 =
𝐶2222 − 𝐶2233

2

𝜈23 =
𝐶1111𝐶2233 − 𝐶2

1122

𝐶1111𝐶2222 − 𝐶2
1122

(A.2)

where 𝐸1 and 𝐸2 are the longitudinal and transverse Young’s moduli,
𝐺12 and 𝐺23 are the longitudinal and transverse shear moduli, 𝜈12 is
he major Poisson’s ratio, and 𝜈23 is the transverse Poisson’s ratio. For a
iven applied far-field strain 𝜀0𝑖𝑗 , the volume average strain components
an be calculated as:

̄𝑖𝑗 =
1
𝑉 ∫𝑉

𝜀𝑖𝑗𝑑𝑉 = 𝜀0𝑖𝑗 (A.3)

and the volume average stress field as:

𝜎̄𝑖𝑗 =
1 𝜎𝑖𝑗𝑑𝑉 (A.4)
12

𝑉 ∫𝑉
Therefore, since the stiffness tensor is symmetric (Eq. (A.1)), and taking
into account Eq. (A.2), applying 𝜀011, 𝜀022 and 𝜀012 far-field strains is
sufficient to determine the components of the stiffness tensor and,
consequently, all the homogenized elastic material properties.

Appendix B. The rule of Mixtures

The Rule of Mixtures (RoM) provides reasonable values for the
longitudinal stiffness (𝐸1) assuming that the fibers and the matrix are
working in parallel:

𝐸1 = 𝑉𝑓𝐸1𝑓 + 𝑉𝑚𝐸𝑚 (B.1)

where 𝑉𝑓 is the fiber volume fraction and 𝑉𝑚 is the matrix volume
fraction, and 𝑉𝑓 +𝑉𝑚+𝑉𝑣 = 1, where 𝑉𝑣 is the void volume fraction. 𝐸1𝑓
is the longitudinal Young’s modulus of the fibers, assumed transversely
isotropic, and 𝐸𝑚 is the Young’s modulus of the matrix, assumed
isotropic. The major Poisson’s ratio (𝜈12) can be estimated following
the same assumption, as:

𝜈12 = 𝑉𝑓 𝜈12𝑓 + 𝑉𝑚𝜈𝑚 (B.2)

where 𝜈12𝑓 is the major Poisson’s ratio of the fibers and 𝜈𝑚 the Poisson’s
atio of the matrix.

The transverse Young’s modulus (𝐸2) can be calculated assuming
hat the fibers and matrix are working as springs in series:

2,𝑅𝑜𝑀 =
𝐸𝑚𝐸2𝑓

𝐸𝑚𝑉𝑓 + 𝐸2𝑓𝑉𝑚
(B.3)

where 𝐸2𝑓 is the transverse Young’s modulus of the fibers. Finally, the
shear modulus can be calculated as:

𝐺12,𝑅𝑜𝑀 =
𝐺𝑚𝐺12𝑓

𝐺𝑚𝑉𝑓 + 𝐺12𝑓𝑉𝑚
(B.4)

where 𝐺12𝑓 is the longitudinal shear modulus of the fibers and 𝐺𝑚 is
he shear modulus of the matrix.

ppendix C. The Mori–Tanaka mean field theory

The Mori–Tanaka mean field theory [40] account for the presence
f multiple types of inclusions (here fibers and voids). In that case, for a
ystem with unidirectional fibers with a transversely isotropic behavior
nd with more than one inclusion (fibers and voids), the overall elastic
oduli and Poisson’s ratio can be calculated as [50]:

𝑝∗ =

∑𝑛
𝑖=1

𝑉𝑖𝑝𝑖
𝑝𝑚+𝑝𝑖

∑𝑛
𝑖=1

𝑉𝑖
𝑝𝑚+𝑝𝑖

= 𝐺12

𝛾𝑚 =
(

1
𝑚𝑚

+ 2
𝑘𝑚

)−1

𝑚∗ =

∑𝑛
𝑖=1

𝑉𝑖𝑚𝑖
𝑚𝑖+𝛾𝑚

∑𝑛
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𝑚𝑖+𝛾𝑚
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∑𝑛
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𝑚𝑚+𝑘𝑖

∑𝑛
𝑖=1

𝑉𝑖
𝑚𝑚+𝑘𝑖

= −

(

1
𝐺23

− 4
𝐸2

+
4𝜈212
𝐸1

)−1

𝑙∗ =

∑𝑛
𝑖=1

𝑉𝑖𝑙𝑖
𝑚𝑚+𝑘𝑖

∑𝑛
𝑖=1

𝑉𝑖
𝑚𝑚+𝑘𝑖

= 2𝑘∗𝜈12

𝑛∗ =
𝑛
∑

𝑖=1
𝑉𝑖𝑛𝑖 −

𝑛
∑

𝑖=1
𝑉𝑖

(𝑙𝑖 − 𝑙𝑚)2

𝑚𝑚 + 𝑘𝑖
+

[

∑𝑛
𝑖=1 𝑉𝑖

(𝑙𝑖−𝑙𝑚)
𝑚𝑚+𝑘𝑖

]2

∑𝑛
𝑖=1

𝑉𝑖
𝑚𝑚+𝑘𝑖

= 𝐸1 + 4𝑘∗𝜈212

(C.1)

where 𝑘∗, 𝑙∗, 𝑚∗, 𝑛∗ and 𝑝∗ are Hill’s elastic moduli [50], and the index
𝑖 refers to each inclusion (i.e., fibers and voids) and 𝑚 to the matrix.
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Fig. D.1. 4-phase CCA model representing UD composite with voids in the matrix
phase: V – void, M – matrix, F – fiber.

The Hill’s elastic moduli for an isotropic material, such as the matrix,
are:
𝑚𝑚 = 𝑝𝑚 = 𝐺𝑚

𝑙𝑚 = 2𝑘𝑚𝜈𝑚
𝑛𝑚 = 𝐸𝑚 + 4𝑘𝑚𝜈2𝑚

𝑘𝑚 = −1
1
𝐺𝑚

− 4
𝐸𝑚

+ 4𝜈2𝑚
𝐸𝑚

(C.2)

hereas for a transversely isotropic reinforcement, such as the fibers,
hey are described as:

𝑖 = 𝐺𝑖,23

𝑝𝑖 = 𝐺𝑖,12

𝑙𝑖 = 2𝑘𝑖𝜈𝑖,12
𝑛𝑖 = 𝐸𝑖,1 + 4𝑘𝑖𝜈2𝑖,12

𝑘𝑖 =
−1

1
𝐺𝑖,23

− 4
𝐸𝑖,2

+
4𝜈2𝑖,12
𝐸𝑖,1

(C.3)

ppendix D. The concentric cylinder assembly model

The concentric cylinder assembly (CCA) model [41] also allows the
resence of multiple phases. The micromechanical model is a straight-
orward extension of Hashin’s [51] and Christensen and Lo’s [52]
odels with the main novelty of its applicability to multilayered (N-
hased) inclusions with transversely isotropic material properties. The
omposite consists of 𝑁-cylinders perfectly bonded together in which
ach phase (𝑘) is homogeneous, linear elastic and with a transversely
sotropic behavior. The outer (𝑟𝑘) and inner radius (𝑟𝑘−1) of each cylin-
er, i.e., the thickness, is determined according to each corresponding
olume fraction (𝑉𝑘) as:

𝑘 =
𝑟2𝑘 − 𝑟2𝑘−1

𝑟2𝑁
(D.1)

where 𝑟𝑁 = 1 since the calculated effective elastic properties depend
only on the relative dimensions of constituents. Thus, macroscopically,
13
the composite is transversely isotropic. The problem of radial loading is
solved to find the bulk modulus 𝐾23, of axial loading to find 𝐸1 and 𝜈12,
of in-plane shear loading to find 𝐺12 and of shear loading in the plane
transverse to the fibers to find 𝐺23. Finally, 𝐸2 and 𝜈23 are determined
using:

𝐸2 =
1

1
4𝐾23

+ 1
4𝐺23

+
𝜈212
𝐸1

𝜈23 =
𝐸2
2𝐺23

− 1

(D.2)

In the present study, to account for the presence of voids, a first
phase representing the voids with near zero elastic properties is em-
bedded inside a cylinder representing the matrix. The void and matrix
unit is surrounded by a cylinder which represents fibers. Finally, the
final outer phase in the 4 cylinder model represents the matrix. It was
found that such 4-phase CCA model (see Fig. D.1) is a more realistic
representation of UD composite with voids in matrix compared to a
similar 3-phase CCA model with outer phase being the fiber cylinder as
the latter leads to underestimation of transverse modulus and a large
overestimation of in-plane shear modulus.
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