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A B S T R A C T

RGB-D sensors can be a low-cost solution for an accurate silo’s content monitoring which is fundamental for
its efficient management. Some reference information such as the position and orientation of the sensor with
respect to the silo’s geometry is fundamental for obtaining correct content measurements from acquired data.
Since in real cases this information is not always known, a new method to obtain these measurements is
proposed. This, taking as input sensor acquired data (represented as a point cloud), automatically computes
the silo’s axis to provide a new reference system from which the point cloud can be easily processed. The
z-axis of this reference system coincides with the gravity axis and the xy-plane is parallel to the ground plane.
It is obtained in a six-step process that exploits the silo geometry properties and an estimation of the shape
tensors of the acquired points. The method has been implemented and tested on both synthetic and real silos,
considering a complete silo’s discharge process and different camera positions. Data acquired at each discharge
has been transformed using the new reference system and compared with the silo’s ground truth (manually
obtained for the real silos). To evaluate the accuracy the input point cloud to adjusted point cloud average
distance has been considered. In all the tests, the well-performance of the proposal has been demonstrated,
achieving a maximum average distance error of less than 6 cm.
1. Introduction

In the last decades, technology has led to great changes in agri-
culture. The potential capability of the Internet of Things to connect
devices and share information has transformed and complemented
manual processes with fully or semi-automatic ones. These achieve
more efficient and effective procedures with the purpose to align with
current social and environmental needs. In this context, smart sensors
are playing a fundamental role and different strategies have been
proposed to control weather conditions, the progress of crop growth,
the quality of the soil or the silos content, just to name a few (Tang
et al., 2021; Tao et al., 2021; Idoje et al., 2021). Moreover, the low
cost of sensors has opened the door to affordable solutions that are
extensible to more scenarios and users. One of the key components of
these solutions are machine vision systems.

Since the introduction of the Kinect sensor by Microsoft in 2010,
RGB-D sensors have become an essential component of machine vision
systems (Zhang, 2012) with many applications in agriculture (Fu et al.,
2020). RGB-D cameras return images like an ordinary camera but in
addition to color, each pixel value represents the distance to a point. To
measure this depth value, different technologies can be used including
structured light, time-of-flight, or active stereo vision (Giancola et al.,
2018). RGB-D cameras are composed of: an infrared (IR) projector
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that casts patterns or light pulses into the scene; an IR camera/s
that captures the reflected IR light, and a color camera. Although the
Kinect was originally conceived for gaming, its low cost, its reliability
as well as its good documentation led the camera to be the basis
of many innovative applications in the robotic and computer vision
community (Han et al., 2013). Moreover, the sensor has been the basis
of other RGB-D cameras such as Asus Xtion (Anon, 2022c), Orbbec
Astra 3D (Anon, 2022b), Occipital Structure Sensor (Anon, 2022d) or
Intel RealSense D415 (Anon, 2022a).

In this paper, we will focus on the use of RGB-D cameras for the
control of silos content which is fundamental for its proper manage-
ment (Raba et al., 2020; Camps et al., 2019). Inaccurate measurements
can hinder the management and optimization of supply chain logis-
tics, leading to inefficiencies and increased costs as described in Raba
Sánchez (2021).

1.1. Related work

Low-cost 3D sensors have become an emerging focus of research
and development and a promising and cost-effective solution for many
high-accuracy applications. In the context of electronics industry, Dim-
itriou et al. (2019) proposed a fault diagnosis system to inspect glue
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dispensation and die attachment on printed circuit boards. Their sys-
tem automates fault diagnosis by accurately estimating the volume of
glue deposits before and even after die attachment using a modular
scanning system that produces high-resolution point clouds whereas
the actual estimation of glue volume is performed by Regression-Net,
a three-dimensional convolutional neural network. Later, the same
authors in Dimitriou et al. (2020) proposed an architecture based
on this network to model the geometric variations in manufacturing
parameters and predict upcoming events related to sub-optimal perfor-
mance. The method was also validated on a microelectronics use-case.
In the context of cultural heritage preservation, Rousopoulou et al.
(2019) proposed an integrated, portable solution based on a modular
architecture, for accurate multi-sensorial 3D scanning via a dedicated
motorized mechanical arm and efficient automatic 3D reconstruction of
a big variety of cultural heritage assets even in situ. The key strength
of their system is that it is a cost-effective and time-saving solution. Fo-
cused on automated 3D modeling of indoor spaces, Ingman et al. (2020)
compared the performance of three low-cost sensor systems; one RGB-D
camera, one low-end terrestrial laser scanner (TLS), and one panoramic
camera, using a cloud-based processing service to automatically create
mesh models and point clouds, evaluating the accuracy of the results
against a reference point cloud from a higher-end TLS. They concluded
the TLS performed the best both in terms of reconstructing the overall
room geometry and smaller details, with the panoramic camera clearly
trailing the other systems and the RGB-D offering a middle ground in
terms of both cost and quality. Centering on simultaneous localization
and mapping (SLAM), Liu et al. (2019) proposed an effective solution
for RGB-D based SLAM by integrating an Inertial Measurement Unit
into a recurrent and convolutional neural network that leads to en-
hanced pose estimation and point cloud registration. Kolhatkar and
Wagle (2020) reviewed the different techniques used in mapping and
localization of mobile robots and designing low-cost mobile platforms
with sensors like RPLIDAR and Microsoft Kinect. Sun et al. (2020)
proposed an innovative background modeling method by using both
the color and depth information from an RGB-D camera. Their method,
evaluated using a public RGB-D data set, was able to achieve supe-
rior performance compared with existing well-known methods. Park
et al. (2020) proposed a deep learning-based mobile augmented reality
(AR) for intelligent task assistance by conducting 3D spatial mapping
without pre-registration using AR markers, which can match virtual AR
objects to their corresponding physical objects automatically and accu-
rately using single snapshot-based RGB-D data. In all these applications
a rigorous calibration and error modeling of RGB-D camera data to
produce high-quality information is required (Darwish et al., 2017; Liu
et al., 2020). Regarding calibration techniques, Darwish et al. (2017)
presented a new model for calibrating the depth measurements of RGB-
D sensors based on the structured light concept. They also proposed
an automatic method for the calibration of all RGB-D parameters,
including internal calibration parameters for all cameras, the baseline
between the infrared and RGB cameras, and the depth error model.
When compared with traditional calibration methods, their approach
showed a significant improvement in depth precision for both near
and far ranges. More recently, Liu et al. (2020) proposed a novel
and accurate sphere-based calibration framework for estimating the
intrinsic and extrinsic parameters of color-depth sensor pair. They also
proposed and analyzed a method of depth error correction.

1.2. RGB -D cameras for the control of silos

There are several technologies that can be used to determine the
material level or amount of bulk solids within a storage silo. Some
of them were reviewed in Lewis (2004), where is concluded that
the most precise solutions are also the most expensive. However, the
advent of low-cost 3D sensors provides a promising and cost-effective
solution for this task. In the context of RGB-D cameras for silo’s content
measurements, few proposals have been advanced to date. Raba et al.
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Fig. 1. (a) A silo with two different cameras, the blue one in the ideal position (in a
coordinate system with 𝑧-axis coincident with gravity axis and XY-plane parallel to the
ground) and the red one in the common position; (b) Depth maps obtained from the
cameras with a blue/yellow color scale and expressed in meters, and (c) the obtained
point clouds. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

(2020) considered the use of RGB-D cameras for estimating silo volu-
metric measurements which provided unmatched accuracy compared
to single-point level sensors.

Note that in this use case, the camera placement is decisive for
the content measurement. Particularly, if the camera is placed at the
center of the silo and completely perpendicular to the ground, the
acquired data represent the distance between the silo content and
the image plane of the camera, and hence the silo content can be
easily computed. Unfortunately, in the majority of cases, this ideal
placing is not accessible, due to silo features or installation restrictions,
and specific processing of acquired data is required to measure the
silo’s content (see Fig. 1). To solve similar problems, point cloud
registration, gradient-based optimization or even deep learning pose
estimation techniques have been proposed. For instance, Holz et al.
(2015) proposed a point cloud registration framework based on the
Iterative Closest Point (ICP) algorithm widely used in the alignment
of 3D structures. The main limitation of this approach is that it is
necessary to know the silo’s geometry to obtain the target point cloud
to align with. In Fu and Hu (2012) the theoretical aspect of pertur-
bation analysis via conditioning with a broad range of applications of
perturbation analysis are presented. To be applied to our case, both the
geometrical parametrization of the silo as well as the camera position
serve as input variables which leads to high dimensionality with a large
solution space. The high computational costs required to avoid local
minima and reduce the dispersion in the solutions is the main limiting
factor. Regarding deep learning solutions, Kehl et al. (2016) proposed
a method for 6D pose estimation in 3D objects using locally sampled
RGB-D patches and a convolutional auto-encoder. In this approach, the
required training process that adds complexity to the method and the
requirement of a custom dataset are the main limiting factors.

To overcome all these limitations, in this paper, a method to auto-
matically obtain the new reference system and the adjusted point cloud
is proposed. This approach is tailored to the measuring environment
by exploiting the fundamental geometrical properties of the grain silos
to ensure a reliable and simple approach that does not require prior
information on the geometry of the silo. Furthermore, the method does
not require installation parameters to be known nor specific calibration
techniques. It takes as input the acquired RGB-D data and returns
the coordinate system transformation parameters to represent acquired
data in this new reference system, with the 𝑧-axis coincident with the
gravity axis and the xy-plane parallel to the ground plane. To test and
show the well-performance of the proposal, synthetic and real silos with
different geometries, content states, and camera positions have been
considered.
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Fig. 2. Real point clouds acquired with a 3D sensor (in red) and the adjusted ones (in blue), (a)–(c) 𝑆𝑖𝑙𝑜𝑅1, (d)–(f) 𝑆𝑖𝑙𝑜𝑅2 of Table 2. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. The transformation procedure to position the input point cloud captured by the camera (represented in red) into the desired position (represented in blue). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Besides this introduction, the paper has been structured as follows.
In Section 2, the proposed adjustment approach is presented with a
detailed description of the theoretical framework behind the proposal.
The real and synthetic datasets used for the testing process are also
described as well as the different experiments that have been carried
out. Obtained results are presented and discussed in Section 3. Finally,
conclusions and future work are given in Section 4.

2. Materials and methods

2.1. Problem description

To describe the problem a RGB-D camera placed at the top of the
silo acquiring depth maps from its interior has to be considered. For
each acquisition, a depth map, 𝐃, is obtained and a point cloud 𝐏 is
generated by directly assigning the depth value of each pixel to the
𝑧−coordinate and calculating the 𝑥− and 𝑦−coordinates using Eqs. (1)
and (2) (see Fig. 2). In these, 𝑓𝑥 and 𝑓𝑦 are the intrinsic camera
parameters corresponding to the horizontal and vertical focal lengths
and 𝑐𝑥, 𝑐𝑦 are the principal point of the camera, both expressed in
pixels.

𝑥 = 𝑧
𝑓𝑥

⋅ (𝑢 − 𝑐𝑥) (1)

𝑦 = 𝑧
𝑓𝑦

⋅ (𝑣 − 𝑐𝑦) (2)

As shown in Fig. 2 the 3D reconstructions obtained from the depth
maps using the camera coordinate system (represented in red), do not
match the silo boundaries defined in the reference system (represented
in blue). To transform acquired points to the silo reference coordinates
system, it is necessary a rotation plus translation adjustment (see
Fig. 3). The challenge is how to automatically compute this transfor-
mation taking into account the variability of situations that can appear
due to both silos and content shapes.

2.2. Theoretical framework

To tackle the problem, we will focus on the mathematical properties
of the points that are part of the silos walls. To extract these properties
the shape tensor needs to be introduced.
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2.2.1. The shape tensor
The shape tensor (or the second fundamental form) is a mathemati-

cal tool used to measure the intrinsic curvature of a surface, i.e., a way
of measuring in a neighborhood of a point on a surface how fast the
surface moves away from the tangent plane to the surface at the point.
Its mathematical formulation is based on the concepts of normal section
and normal curvature.

Being 𝑝 a regular point on a surface 𝑆 (all tangents to 𝑆 through 𝑝
lie on a plane), let 𝑁 and 𝑇 be the unitary normal vector and a unitary
tangent vector of 𝑆 at 𝑝, and 𝜋(𝑝, 𝑇 ,𝑁) the plane defined by 𝑝, 𝑇 and
𝑁 . The curve resulting from the intersection of 𝑆 with 𝜋(𝑝, 𝑇 ,𝑁) is the
normal section of 𝑆 at 𝑝 along 𝑇 , and its curvature is the normal curvature
of 𝑆 at 𝑝 along the direction of 𝑇 (see Fig. 4).

The shape tensor of 𝑆 at 𝑝 is the function 𝐾𝑝(𝑇 ) that measures the
normal curvature of 𝑆 at 𝑝 along the direction of 𝑇 . If {𝑇1, 𝑇2} is an
orthonormal basis of the tangent plane to 𝑆 at 𝑝, the tensor of curvature
can be expressed by the quadratic form

𝐾𝑝(𝑇 ) =
(

𝑡1 𝑡2
)

(

𝑘11 𝑘12
𝑘21 𝑘22

)(

𝑡1
𝑡2

)

,

where 𝑇 = 𝑡1𝑇1 + 𝑡2𝑇2.
Such a function 𝐾𝑝(𝑇 ) has two extreme values, 𝑘1 ≥ 𝑘2, called

the principal curvatures of 𝑆 at 𝑝. Their associated tangent vectors,
{𝐸1, 𝐸2}, are called the principal directions of 𝑆 at 𝑝. It can be proved
that 𝑘1, 𝑘2 are the eigenvalues of the 𝐾𝑝(𝑇 ) matrix. Besides, {𝐸1, 𝐸2}
is an orthonormal basis that can be computed from the 𝐾𝑝(𝑇 ) matrix
eigenvectors (𝑒11, 𝑒21) and (𝑒12, 𝑒22) by 𝐸1 = 𝑒11𝑇1 + 𝑒21𝑇2 and 𝐸2 =
𝑒12𝑇1 + 𝑒22𝑇2. See do Carmo (1976) for full details and to find out how
the shape tensor can be computed on parametric surfaces.

2.2.2. The shape tensor on a cylinder or a cone
Once the shape tensor has been introduced let us analyze it on

the geometric structures defining our silos. In the following, 𝑆, will
represent a silo’s surface, i.e., the union of a cylinder and a cone,  its
axis, 𝑋 the direction vector of , 𝑝 a point on 𝑆 (different from the
cone’s vertex), and 𝑅 the cylinder’s radius.

Note that the cylinders and cones defining silos have the (revo-
lution) axis perpendicular to the basis, and the cylinder generatrix
parallel to its axis. For the sake of simplicity, we talk about cylinders
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Fig. 4. Normal sections and principal curvatures.

nd cones, but they are right cylinders and right cones. Due to their
ightness, the following well-known properties hold.

roperty 1. For any 𝑝 on 𝑆, 𝑘2 = 0 and 𝐸2 is the direction vector of the
generatrix of 𝑆.

Since a straight-line normal section always exists, its normal curvature
is 0 and hence 𝑘2 = 0 and 𝐸2 is its director vector.

roperty 2. Given a point 𝑝 on 𝑆 the plane 𝜋(𝑝, 𝐸2, 𝑁) contains , the
urface revolution axis.
This plane contains the generatrix and the normal vector, therefore it

lso contains the axis.

roperty 3. Given two points 𝑝 and 𝑝′ on 𝑆, the axis  is parallel to
1 × 𝐸′

1, i.e., 𝑋 = 𝐸1 × 𝐸′
1.

The principal direction 𝐸1 is orthogonal to 𝐸2 and 𝑁 , and according to
Property 2 it is also orthogonal to 𝑋. Since 𝐸1 and 𝐸′

1 are both orthogonal
to 𝑋, 𝑋 is their cross-product.

Property 4. Being 𝑝 a point on a cylinder, its principal direction 𝐸2 is the
direction 𝑋 of the cylinder’s axis.

The cylinder’s generatrix and the axis are parallel, hence 𝑋 = 𝐸2.

Property 5. Given a point 𝑝 on the cylinder, 𝑘1 = 1∕𝑅.
The normal sections of a cylinder at 𝑝 change from a circle perpendicular

to the axis to the generatrix, passing through a set of ellipses. Hence, its
maximal curvature 𝑘1 is the curvature of the circular section which is 1∕𝑅.

Note that Properties 4 and 5 only hold on cylinders, they are not
true on cones.

2.2.3. Silo’s characterization
The silo surface can be partitioned into three regions that can be

fully characterized as follows:

• 0 composed of non-regular points, i.e., the con vertex, the
cylinder–cone connecting zone and the cylinder end. For these
points the tangent plane does not exist and the shape tensor is
not defined.

• 1 are points of the cylinder interior for which 𝑘2 = 0, 𝐸2 = 𝑋
and 𝑘1 is constant in a neighborhood and equal to 1∕𝑅. Due to
Properties 1, 4 and 5.

• 2 are points of the cone interior for which 𝑘2 = 0 and 𝑘1 is not
constant in a neighborhood. Due to Properties 1 and Properties 5.

If the silo is empty, 𝐏 = 0 ∪ 1 ∪ 2, otherwise a feed region, 3,
348

corresponding to the feed surface has to be added.
Moreover, two points 𝑝 and 𝑝′ on 1∪2 fully characterize the silo’s
axis. Due to Properties 2 and 3, Eqs. (3) and (4) hold:

𝑋 = 𝐸1 × 𝐸′
1 (3)

 = 𝜋(𝑝,𝑋,𝑁) ∩ 𝜋(𝑝′, 𝑋,𝑁 ′) (4)

2.3. The adjustment algorithm

The proposed algorithm applies the presented theoretical frame-
work to compute the silo’s axis taking as input a point cloud 𝐏 obtained
from a RGB-D camera. Different to the ideal case previously described,
our input data will be a discretization of the ideal case. Moreover, in
case of a real sensor, such data will have noise due to temperature,
humidity, and other phenomena. Therefore, to obtain robust results it
is necessary to consider several points and average measures in order
to determine the silo’s axis and its direction.

The proposed algorithm is composed of the following steps:

1. Pre-processing of input data. Depth map points are transformed
to real world coordinates and downsampled using a 0.05 m ×
0.05 m × 0.05 m grid. This will led to a spatial uniform distri-
bution and a reduction on the total number of points decreasing
computational costs.

2. Normal vectors and shape tensors computation. The normal vec-
tor of each input point 𝑝 is computed by the method presented
by Hoppe et al. (1992). That is, given 𝑘 points 𝑝𝑖 in a local
neighborhood of 𝑝, the normal of 𝑝 is computed as the smallest
eigenvector of the matrix

𝑀 = 1
𝑘

𝑘
∑

𝑖=1
(𝑝𝑖 − 𝑝) ⋅ (𝑝𝑖 − 𝑝)𝑇 .

Then, the discrete shape tensor is calculated using the normal
components of the point and its local neighborhood according
to the adjacent-normal cubic approximation method described
in Goldfeather and Interrante (2004).

3. Selection of candidate points. To reduce the number of points re-
quired for the computations while increasing the ratio of points
that belong to the silo structure a subset of input point cloud
is selected. Particularly, we select a subset of points with the
minimum 𝑘2 component, i.e., points that potentially belong to
1 ∪2 and not to 3.

4. Determination of cylinder and cone axis direction 𝑋. By applying
Eq. (3) to each pair of candidate points a collection of estimated
vectors 𝑋 is obtained. From this, the direction of maximum vari-
ability is computed using principal component analysis (PCA)
decomposition. Such a direction corresponds to the cylinder and
cone axis direction and defines the rotation applied to the input
points at Step 6 to get the position represented in Fig. 3(a).

5. Determination of a point 𝑎 on the cylinder and cone axis  at
the camera world-height. We compute a collection of estimated
points on the axis by using Eq. (4) over a set of pairs of candidate
points. As the set of all possible pairs between candidate points
is very large, for each candidate point 𝑝 we select 𝑠 candidate
points 𝑝′ satisfying that the dot product between 𝑁 ×𝑋 and 𝑁 ′

is in the 1st quartile. For each pair (𝑝, 𝑝′), we intersect the plane
𝜋(𝑝,𝑋,𝑁) with the normal line 𝑝′ + 𝜆𝑁 ′ obtaining an estimated
point on the axis. Then, we project all the estimated points into
the plane perpendicular to 𝑋 containing the origin and obtain 𝑎
using the median operator. Since the origin is the camera and the
plane is perpendicular to 𝑋, the plane is parallel to the floor and
the projected points and 𝑎 are at the camera world-height. Point
𝑎 leads to the translation to apply at step 6 to get the matching

of Fig. 3(b).
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Fig. 5. A schema of the algorithm steps with summaries, images, and the computational costs.
6. Adjustment of input points via rotation plus translation. The
rotation and translation that brings  to the 𝑧-axis is applied
to input points obtaining the adjusted data for proper computa-
tions. In order to perform this transformation, we can perform a
change of basis or apply a sequence of rotation and translation
operations that can be defined in a single transformation matrix
(see Eq. (5)). Because the structure of a silo (wall of a silo)
presents revolution symmetry, it is possible to define the rotation
with just two rotation components: rotation on the 𝑥-axis (𝑟𝑥)
and rotation on the 𝑦-axis (𝑟𝑦). These rotation components can
be obtained from 𝑋 = (𝑥, 𝑦, 𝑧) by using the formulas of Eq. (6).
The final translation can be directly obtained from point 𝑎′ =
(𝑥𝑎′ , 𝑦𝑎′ , 𝑧𝑎′ ) being 𝑎′ the rotations applied to the point 𝑎. Because
we decided to respect the height of the camera placement, the
translation is described by the component in the 𝑥-axis (𝑡𝑥) and
the component in the 𝑦-axis (𝑡𝑦) according to Eq. (7).

⎡

⎢

⎢

⎣

cos(𝑟𝑦) sin(𝑟𝑥) sin(𝑟𝑦) cos(𝑟𝑥) sin(𝑟𝑦) 𝑡𝑥
0 cos(𝑟𝑥) − sin(𝑟𝑥) 𝑡𝑦

− sin(𝑟𝑦) sin(𝑟𝑥) cos(𝑟𝑦) cos(𝑟𝑥) cos(𝑟𝑦) 0

⎤

⎥

⎥

⎦

(5)

𝑟𝑥 = arcsin
(

𝑦∕
√

1 − 𝑥2
)

𝑟𝑦 = arcsin(−𝑥) (6)

𝑡𝑥 = −𝑥𝑎′ 𝑡𝑦 = −𝑦𝑎′ (7)

In Fig. 5 the information obtained at each step of the algorithm is
illustrated.

2.4. Testing scenarios

In this section, the synthetic and real testing scenarios, procedures,
and sensors that have been used to evaluate the performance of the
algorithm are presented.
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2.4.1. Perfect synthetic scenario
The perfect synthetic scenario simulates a silo with a perfect geom-

etry in a controlled discharge sequence with a known feed distribution
and shape. The feed has been modeled as a Gaussian-shaped surface
that, in the orthonormal reference system centered at the vertex of the
silo and third vector parallel to the axis of the silo, is given by

𝑧 = 𝐻 − 0.75𝑅

(

1 − 𝑒−
𝑥2+𝑦2

𝑅2

)

,

where 𝐻 is the maximum height of the feed with respect to the vertex
of the silo and 𝑅 is the silo’s cylinder radius. The camera position and
orientation are also known and hence the exact values of rotation and
translation that have to be applied to obtain the point cloud in the
reference coordinate system can be computed. The three configurations
collected in Table 1 have been considered: 𝑆𝑖𝑙𝑜1, is small silo, with
a proportionally short cone and a camera placed very close to the
center with a slight rotation on the camera so that the camera points
towards the con vertex; 𝑆𝑖𝑙𝑜2, is a bigger silo with a camera placed
near the cylinder wall and with a more severe rotation such that the
camera points towards the vertex’s cone; and 𝑆𝑖𝑙𝑜3, is a silo with a short
cylinder but a large cone and with the camera rotated and translated
in both axes such that the field of view only captures a small portion
of the cylinder walls. Note that, 𝑆𝑖𝑙𝑜1 and 𝑆𝑖𝑙𝑜2 aim to reproduce the
common placement of real cases where the maximum field of view of
the inner silo is desired while 𝑆𝑖𝑙𝑜3 recreates an undesired situation.

For each setup configuration, we have evaluated a full discharge
sequence considering the feed level ranging from the maximum height
to the minimum in 100 steps. For each step, we have generated a
synthetic depth map using the camera intrinsic parameters, the position
according to the translation and rotation values, and the geometrical
parametrization of the silo structure (see Fig. 6). The 100 depth maps
serve as input of the algorithm, while the reference parameters serve
as the ground truth for the performance evaluation.
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Table 1
Geometrical specifications and reference adjustment parameters for each synthetic silo

𝑆𝑖𝑙𝑜1 𝑆𝑖𝑙𝑜2 𝑆𝑖𝑙𝑜3
Cylinder Height (m) 4 4 1
Cone Height (m) 1 3 3
Radius (m) 1 1.5 1.25
Translation X (𝑡𝑥) (m) 0.25 1.25 0.75
Translation Y (𝑡𝑦) (m) 0 0 −0.75
Rotation X (𝑟𝑥) (rad) 0 0 0.15
Rotation Y (𝑟𝑦) (rad) 0.15 0.35 0.25

Fig. 6. Generated synthetic depth maps for different feed levels corresponding to 𝑆𝑖𝑙𝑜1
(a–c), 𝑆𝑖𝑙𝑜2 (d–f), and 𝑆𝑖𝑙𝑜3 (g–i). To enhance the visualization of the shape in every
depth map, we have applied a color map that spans from the minimum (blue) to the
maximum (yellow) depth value in meters. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

2.4.2. Perturbed synthetic scenario
Despite being widely used in robotics and computer vision, a

main limitation of low-cost cameras is the acquisition error caused by
their physical characteristics and algorithms used for their measure-
ments (Cabrera et al., 2018). An error that, in case of large range
acquisition, can still be more relevant. The perturbed synthetic scenario
simulates this error by considering a new set of synthetic perturbed
depth maps with the same geometrical specifications of Table 1. To
create the maps, the error of the Orbect Astra S (similar to the Orbbec
Astra used in our real scenario) has been used. Following Giancola et al.
(2018) the error has been modeled by a normal distribution with mean
𝑠(𝑑) (see Eq. (8)) and standard deviation 𝑟(𝑑) (see Eq. (9)). Note that this
error measurement is quadratic with respect to the measured distance.
Synthetic perturbed depth measurements are obtained from Eq. (10)
where 𝑑′ is the real measured distance and 𝑒(𝑑′) is the error on the
given distance. Fig. 7 shows a perturbed depth map for 𝑆𝑖𝑙𝑜2 of Table 1.

𝑠(𝑑) = (2.2093𝐸 − 5)𝑑2 − 0.017878𝑑 + 3.4397 [mm] (8)

𝑟(𝑑) =
(3.𝐸 − 6)𝑑2 − (5.𝐸 − 4)𝑑 + 0.5

2
√

3
[mm] (9)

𝑑 = 𝑑′ + 𝑒(𝑑′) (10)

The impact of this error is analyzed with the same silos and dis-
charge sequences of Section 2.4.1.

2.4.3. Real scenario
Two real silos with different geometries and camera placements

have been considered. For each silo, we have captured a complete
discharge with one camera acquisition per hour obtaining 296 depth
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Fig. 7. The left column shows the exact depth map, the error corresponding to each
point, and the perturbed depth map for 𝑆𝑖𝑙𝑜2. The right column shows the exact
synthetic silo (in blue) and the perturbed one (in red). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Table 2
Geometrical specifications and the reference adjustment parameters
(manually obtained) for each real silo.

𝑆𝑖𝑙𝑜𝑅1 𝑆𝑖𝑙𝑜𝑅2
Cylinder Height (m) 2.75 1.4
Cone Height (m) 2 1.85
Radius (m) 1.18 1.07
Translation X (𝑡𝑥) (m) 0.7 0.54
Translation Y (𝑡𝑦) (m) −0.04 0.01
Rotation X (𝑟𝑥) (rad) 0.013 0.1
Rotation Y (𝑟𝑦) (rad) 0.16 0.1

maps for 𝑆𝑖𝑙𝑜𝑅1 and 418 for 𝑆𝑖𝑙𝑜𝑅2 (see Fig. 8). Note that, different
to synthetic case, external conditions such as temperature, camera
errors, or calibration, can introduce noise and lead to errors on the 3D
reconstructions.

For real silos, when low-cost cameras are used, and contrarily to the
synthetic scenarios, the exact camera position and orientation are not
known and a trial-and-error manual process has been applied to obtain
them. This process applies rotations and translations to several point
clouds and inspects the results until a visually satisfactory approxima-
tion is found. The parameters obtained by this process are presented in
Table 2 and considered the ground truth.

2.4.4. Testing procedure
For the tests, a complete discharge process has been considered and,

for most of the cases, no silo’s wall was visible in the initial images.
Since the accuracy of the results depends on the silo’s wall visibility, the
algorithm has been applied to every step of the discharge captured by
the camera, providing a set of estimated parameters. At each new step,
more accurate parameters have to be expected since more silo’s wall
has been captured. Note that, there can be some steps of the discharge
where there is no output parameters, because the wall visibility is
too small and the algorithm did not have enough candidate points to
provide a result.

In the perfect synthetic scenario, the last estimated set of parameters
provided by the algorithm has been used as the adjustment result.
Whereas, in the perturbed synthetic and real scenarios, in order to
obtain the adjustment results for each silo, we have averaged the last
10 sets of estimated parameters to reduce the noise fluctuations. To
evaluate the relationship between silo’s wall visibility and algorithm
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Fig. 8. The RGB and depth map captures for different feed levels corresponding to the
𝑆𝑖𝑙𝑜𝑅1 (a–c) and 𝑆𝑖𝑙𝑜𝑅2 (g–i). Depth value represented in meters using a color map.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

accuracy, the cylinder, cone and feed ratios have been computed. These
are defined as the relationship between the number of depth map points
belonging to the cylinder, the cone and feed compared to the total
number of points with depth information, respectively. The error of the
adjustments has been computed considering the difference between the
estimated transform (translation plus rotation) and the ground truth
transform obtained from the camera position. The last is known for
the synthetic case, while for the real one has been manually obtained.
Finally, to measure the goodness of the adjustment, the PC average
distance, denoted by PC average distance along the paper, has been
used. This indicates how well is an adjustment by measuring the
average distance of the points between the ground truth adjustment
and the estimated one. It is computed from Eq. (11) where 𝑃𝑎(𝑛) is a
point of the adjusted point cloud and 𝑃𝑟(𝑛) is the closest point of the
reference point cloud to 𝑃𝑎(𝑛), i.e. at lowest distance.

𝐷𝑖𝑠𝑡 = 1
𝑁

⋅
𝑁
∑

𝑛=1
𝑃𝑎(𝑛) − 𝑃𝑟(𝑛) (11)

2.4.5. Sensor comparison
Measurements can differ between sensor technologies due to their

accuracy and camera calibration features. To evaluate this effect on the
algorithm performance a new empty real silo and four different sensors
(the structured light Orbbec Astra, the active stereo Intel RealSense
D415 and Intel RealSense D455, and the LIDAR sensor Intel RealSense
L515) have been considered. The silo’s geometry (manually obtained)
is 1.65 m cylinder height, 1.7 m cone height, and 0.78 m radius.
Each sensor has been evaluated independently. It has been placed on a
reference zone at the top side of the silo in such a way that part of the
cone wall is visible. Due to sensor features, the rotation will be different
for each camera. Once placed, each sensor captured a depth map that
will be processed using the proposed algorithm to obtain the silo axes
and the transformations to be applied.

A synthetic point cloud generated from the silo geometrical mea-
surements has been used to measure the point cloud-to-point cloud
distance. In addition, for the Intel Real Sense D455 and L515 use
cases, the accelerometer of these devices has been used as the camera
orientation ground truth.
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Table 3
For each perfect synthetic silo, the error on 𝑡𝑥 and 𝑡𝑦 and the point cloud average
distance (PC average distance) in mm, and 𝑟𝑥 and 𝑟𝑦 in 𝑚𝑟𝑎𝑑 on the stabilized zone.

Measured error 𝑆𝑖𝑙𝑜1 𝑆𝑖𝑙𝑜2 𝑆𝑖𝑙𝑜3
Translation X (𝑡𝑥) (mm) 0.61 −0.01 −0.40
Translation Y (𝑡𝑦) (mm) −0.02 0.57 0.67
Rotation X (𝑟𝑥) (mrad) −0.01 0.13 0.33
Rotation Y (𝑟𝑦) (mrad) −0.39 0.06 −0.25
PC average distance (mm) 0.66 0.32 0.96

3. Results and discussion

The proposed approach has been implemented in Python 3.7.4 and
tested on a laptop with an Intel Core i7-7700HQ as a CPU and memory
of 16 GB DDR4 at 2400 MHz. To present the results of our tests, first,
we are going to evaluate the synthetic cases and then, the real one.
Afterwards, some general considerations will be presented taking into
account both situations.

3.1. Perfect synthetic scenario evaluation

To evaluate the algorithm convergence, in Fig. 9(a–c), for each per-
fect synthetic silo, the algorithm estimated parameters errors (i.e. the
error in 𝑟𝑥, 𝑟𝑦, 𝑡𝑥, and 𝑡𝑦) at different discharge steps are plotted. In
addition, to assess the relationship between the algorithm convergence
and the distribution of points in the depth map, in Fig. 9(d–f), the
cylinder, the cone, and the feed ratios with the PC average distance
are plotted. For all the cases, the PC average distance improves as the
cone plus cylinder ratio increases up to the point of convergence. Note
that, to achieve the maximum accuracy the visibility of an empty silo
is not required. For all tested silos, the algorithm results became stable
after the feed level reached 35% of the total height of the silo.

For each synthetic silo, Table 3 shows the adjustment values when
the algorithm results stabilized with an average PC average distance of
0.65 mm (see PC average distance in the table). Hence, the average
adjustment inaccuracy of the algorithm achieved less than 1 mm of
error. Indeed, all silo adjustment results converged at the same pace
and achieved sub-centimeter accuracy once the feed ratio was below
50%. Therefore, the different silo geometries and the different camera
positions did not have a great impact on the convergence speed nor on
the accuracy of the algorithm when processing exact data. To visually
illustrate these results, in Fig. 10, for each one of the synthetic silos,
the correct adjustment (in blue) and the estimated with the proposed
adjustment algorithm after convergence (in red) are presented.

3.2. Perturbed synthetic scenario evaluation

To evaluate the algorithm convergence, in Fig. 11(a–c), for each per-
turbed synthetic silo, the algorithm estimated parameters error (i.e., the
error in 𝑟𝑥, 𝑟𝑦, 𝑡𝑥, and 𝑡𝑦 values) at different discharge steps are plotted.
In addition, to assess the relationship between the algorithm conver-
gence and the distribution of points in the depth map, in Fig. 11(d–f),
the cylinder, the cone, and the feed ratios with the PC average distance
are plotted. It can be observed that the differences in the rotation and
translation values, as well as the PC average distances, are no longer
converging to zero. They exhibit more significant fluctuations due to
the added random error. Additionally, these values increase with the
feed discharge, as the camera progressively captures further distances
that are subject to more measurement errors, thereby distorting the
geometry. Note that the algorithm provides a silo axis different than the
one used to generate the data. Moreover, the axis error is proportional
to the feed amount and the camera rotation.

Table 4, for each perturbed synthetic silo, shows the adjustment
values when the algorithm results stabilized with a PC average distance
of 14.06 mm, 62.55 mm, and 27.67 mm, respectively. As expected,



ISPRS Journal of Photogrammetry and Remote Sensing 203 (2023) 345–357

352

O. Vila et al.

Fig. 9. From (a) to (c), the algorithm output error, i.e., 𝑡𝑥 , 𝑡𝑦 , 𝑟𝑥, and 𝑟𝑦, at different steps of the algorithm for the perfect 𝑆𝑖𝑙𝑜1, 𝑆𝑖𝑙𝑜2 and 𝑆𝑖𝑙𝑜3 respectively. From (d) to (e) the
cylinder, the cone, and the feed ratios with the PC average distance.

Fig. 10. Perfect synthetic silos (in blue) and their adjustments (in red). (a) 𝑆𝑖𝑙𝑜1, (b) 𝑆𝑖𝑙𝑜2 and (c) 𝑆𝑖𝑙𝑜3. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 11. From (a) to (c), the algorithm output error, i.e., 𝑡𝑥 , 𝑡𝑦 , 𝑟𝑥, and 𝑟𝑦, at different steps of the algorithm for the perturbed 𝑆𝑖𝑙𝑜1, 𝑆𝑖𝑙𝑜2 and 𝑆𝑖𝑙𝑜3 respectively. From (d) to (e)
the cylinder, the cone, and the feed ratios with the PC average distance.
Table 4
For each perturbed synthetic silo, the difference with the real values on 𝑡𝑥 and 𝑡𝑦 and
the PC average distance in mm., and 𝑟𝑥 and 𝑟𝑦 in 𝑚𝑟𝑎𝑑. Due to remaining fluctuation
the average of the last 10 measures has been used.

Measured error 𝑆𝑖𝑙𝑜1 𝑆𝑖𝑙𝑜2 𝑆𝑖𝑙𝑜3
Translation X (𝑡𝑥) (mm) −1.68 −52.29 −12.55
Translation Y (𝑡𝑦) (mm) −1.66 −4.50 6.55
Rotation X (𝑟𝑥) (mrad) −0.69 −1.56 −10.89
Rotation Y (𝑟𝑦) (mrad) −4.21 −10.43 −10.29
PC average distance (mm) 14.06 62.55 27.67

𝑆𝑖𝑙𝑜2 has the maximum error since it is the highest one, and the
modeled error increases with distance. Concerning 𝑆𝑖𝑙𝑜1 and 𝑆𝑖𝑙𝑜3,
although 𝑆𝑖𝑙𝑜1 is higher, the asymmetric perturbations of 𝑆𝑖𝑙𝑜3 depth
maps due to camera position lead to worse adjustments.

Fig. 12 illustrates, for each synthetic silo, the correct adjustment (in
blue) and the one obtained with the algorithm estimated parameters
(in red). Since perturbed synthetic maps have been used, the output
values do not match exactly with the silo characterization of Table 1.
The algorithm output adjusts the perturbed silos and not the exact ones.
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3.3. Real scenario evaluation

As in the synthetic case, for each real silo, the algorithm outputs (𝑟𝑥,
𝑟𝑦, 𝑡𝑥, and 𝑡𝑦 values) at different discharge steps (see Fig. 13(a–b)) as
well as the percentage of points that belongs to the cylinder, the cone or
the feed surfaces with the PC average distance (see Fig. 13(c–d)) have
been plotted.

In this scenario, the algorithm requires more steps to converge to
a stable set of parameters and the convergence values have a higher
deviation compared to the synthetic scenario. It happens because the
geometry and the feed captured by the camera is not a perfect represen-
tation of the reality. The 3D point cloud is slightly distorted because of
the camera error and the measurements have noise. Therefore, neither
the normal vector estimation and the shape tensors calculation are ac-
curate, mostly because the surfaces are not perfect. These inaccuracies
can lead to the inclusion of more feed points into the candidate point
selection which can alter the final result. These phenomena has been
illustrated in Fig. 14 where the estimated vectors 𝑋 before applying
PCA to the real (14 (a–c)) and perfect synthetic silos (14(d–f)) are
presented. Note how dispersion is much higher on the real cases than
the synthetic ones. Focusing on 𝑆𝑖𝑙𝑜 (see Fig. 13(a) and (c)), it can be
𝑅1
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Fig. 12. From (a) to (c), the adjusted resulting perturbed synthetic silos (in red) and the ground truth adjustment (in blue). The adjustment uses the last estimated set of parameters
provided by the algorithm. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 13. (a) and (b) the algorithm output error, i.e., 𝑡𝑥 , 𝑡𝑦 , 𝑟𝑥, and 𝑟𝑦, at different steps of the algorithm for the real 𝑆𝑖𝑙𝑜𝑅1
and 𝑆𝑖𝑙𝑜𝑅2

respectively. (c) and (d) the cylinder, the
cone, and the feed ratios with the PC average distance. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
seen that the algorithm reached its best accurate parameters after the
step 223 when the feed level reached 61% of the total silo height and
a structure ratio of 65% from which 46% corresponds to cone points.
For 𝑆𝑖𝑙𝑜𝑅2 (see Fig. 13(b) and (d)), the algorithm reached the best
accuracy at the step 315 when the feed level reached 61% of the total
silo height and a structure ratio of 53% from which 83% corresponds
to cone points. Therefore, for real silos the algorithm requires a higher
structure ratio to converge and provide stable and accurate results.

In Table 5, for each silo, the errors on 𝑟𝑥, 𝑟𝑦 in mrad, and 𝑡𝑥, 𝑡𝑦,
and the PC average distance in mm are shown after the results have
stabilized. Note that for both silos, the algorithm results have stabilized
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at the end of the discharge with a PC average distance of 28.09 mm and
11.94 mm (see PC average distance on the table). Hence, the average
adjustment inaccuracy of the algorithm achieved is less than 3 cm of
error (see Fig. 15).

3.4. Sensors evaluation

In Table 6, for each tested sensor, the PC averaged distance between
the transformed point clouds and the synthetic silo using the measured
geometry is shown. Note that there is only a slight difference between
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Fig. 14. The collection of estimated vectors 𝑋 for real (a–c) and perfect synthetic (d–e) silos.
Table 5
The average error of the last 10 measures after the results stabilized on
𝑡𝑥, 𝑡𝑦 and PC average distance (PC average distance) in mm, and the
errors on 𝑟𝑋 and 𝑟𝑌 in mrad.

Measured error 𝑆𝑖𝑙𝑜𝑅1 𝑆𝑖𝑙𝑜𝑅2
Translation X (𝑡𝑥) (mm) −47.92 −38.33
Translation Y (𝑡𝑦) (mm) 58.50 37.69
Rotation X (𝑟𝑥) (mrad) −22.99 −0.02
Rotation Y (𝑟𝑥𝑦) (mrad) 1.01 −0.01
PC average distance (mm) 28.09 11.94

Fig. 15. The ground truth adjustment (blue) compared to the algorithm adjustment
result (red) for the real silos. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

cameras which can be due to the errors in the silo geometry measure-
ments. From these results, it can be seen that in the case of small silos
the algorithm performance does not depend on the sensor technology.
In all situations, the algorithm returns a cylinder axis that adjusts the
point cloud to the expected geometry.
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Fig. 16. (a) Captured point clouds in the camera coordinates (Orbbec Astra dark-blue,
Intel D415 light-blue, Intel D455 green, Intel L515 yellow) and the well-aligned silo
geometry (red). (b) The corresponding adjusted point clouds with the algorithm. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Table 6
The PC average distance between the different camera acquisitions after being
transformed using our method and the silo measured geometry.

Orbbec Astra D415 D455 L515

PC average distance (mm) 37.66 59.87 28.06 45.48

In Table 7, the camera orientation extracted with the accelerometer
(Accel values) integrated into the Intel D455 and D515 sensors and
the one provided by the proposed algorithm (Proposed method) are
presented. Note that the algorithm output is close to the accelerometer
values and with similar errors to the ones of the perturbated synthetic
scenario (see Table 4). Therefore, the method behaves appropriately
regardless of the type of sensor (see Fig. 16).
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Table 7
The values of rotation X (rx) and rotation Y(ry) obtained with the accelerometer and
the proposed algorithm as well as the PC average distance after applying these rotation
values and the PC average distance in mm.

D455 D515

Accel values rx,ry (mrad) 75.88,312.65 −19.17,305.32
Proposed method rx,ry (mrad) 64.23,307.80 −9.86,300.59
Error rx,ry (mrad) 11.65,4.85 −9.31,4.72
PC average distance (mm) 22.09 18.41

Fig. 17. PC average distance between the estimated adjustment and the ground truth
for synthetic and real silos.

3.5. Global evaluation

Experiments have demonstrated the algorithm properly performs
in both synthetic and real scenarios as shown in Fig. 17 where the
PC average distance of the five analyzed silos with respect to the
normalized step number is illustrated. It can be seen that the point
cloud average distance between the real and the algorithm adjustments
in almost all the cases is under 3 cm except for 𝑆𝑖𝑙𝑜2 with 6 cm.

Comparing synthetic and real silos results, it has been seen that
synthetic silos require less structure to be captured to converge with
fewer fluctuations and noise in the results. Therefore, the closer we
are to a perfect geometry the more robust the algorithm is. Regarding
camera position, it has been seen that better results are obtained when
the camera points to the axis and to the cone vertex with rotations in
only one of the camera’s axis and with a symmetric field of view trying
to cover as much structure as possible.

The average running time required to adjust the analyzed silos
considering the last discharge image (corresponding to empty silos)
is of 8.03 s. Even though the running times are good enough, the
implementation has not been optimized and could potentially run
faster.

3.6. Limitations

Although the different experiments that have been carried out show
the good performance of the proposed approach, there are some limi-
tations that have to be taken into account.

The first one is related to assessing metrics. In our work, we have
used the metrics of different structure ratios in order to assess the
amount of structure present in each capture. A direct measurement of
the surface in the 3D space could have been a more precise metric than
measuring the total number of points in a depth map. Depending on the
inclination and position of the camera, it could happen that depth maps
with the same number of structure points have different equivalent
surface structures in the 3D world.

The second one is related to simulated feed shapes. For both the
synthetic and real scenarios, we considered very regular feed shapes
which differ from silos walls and hence benefit the candidate point
356
selection and the algorithm performance. For a more complete eval-
uation, it is necessary to consider complex shapes where the feed can
resemble parts of the silo structure in order to evaluate the algorithm’s
performance in more challenging conditions.

Finally, the size of the silo is another factor that requires further
evaluation. In our tests, we have only considered sizes that can be
supported by the used devices. For the completeness of the experiments,
it will be necessary to consider silos of higher dimensions.

4. Conclusions

In this paper, a new method to support RGB-D sensor-based solu-
tions for the monitoring of silos’ content has been proposed. Due to
the silo’s features, RGB-D sensors can be placed in a limited number
of positions in the upper zone of the silo and the acquired data cannot
be directly interpreted requiring specific processing. To carry out this
processing, a method that only requires a sensor capture, and no in-
formation on camera placement nor silo geometry, has been presented.
Exploiting the silo’s geometry properties, the method takes as input the
sensor acquired data and obtains a reference system such that the 𝑧-axis
coincides with the gravity axis and the xy-plane parallel to the ground
plane which is used to obtain the adjusted silo’s point cloud. From
this, content measures can be easily obtained. The proposed approach
has been tested on synthetic and real silos with different geometries,
content states, and camera positions, and the obtained results have
shown its good performance.
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