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A B S T R A C T

Distinguishing among different marine benthic habitat characteristics is of key importance in a wide set
of seabed operations ranging from installations of oil rigs to laying networks of cables and monitoring the
impact of humans on marine ecosystems. The Side-Scan Sonar (SSS) is a widely used imaging sensor in this
regard. It produces high-resolution seafloor maps by logging the intensities of sound waves reflected back
from the seafloor. In this work, we leverage these acoustic intensity maps to produce pixel-wise categorization
of different seafloor types. We propose a novel architecture adapted from the Vision Transformer (ViT) in an
encoder–decoder framework. Further, in doing so, the applicability of ViTs is evaluated on smaller datasets. To
overcome the lack of CNN-like inductive biases, thereby making ViTs more conducive to applications in low
data regimes, we propose a novel feature extraction module to replace the Multi-layer Perceptron (MLP) block
within transformer layers and a novel module to extract multiscale patch embeddings. A lightweight decoder
is also proposed to complement this design in order to further enhance multiscale feature extraction. With the
modified architecture, we achieve state-of-the-art results and also meet real-time computational requirements.
We make our code available at https://github.com/hayatrajani/s3seg-vit.
1. Introduction

High-resolution acoustic maps of the seafloor are a central tool
for a wide variety of operations underwater. Application scenarios
include activities as varied as environmental monitoring, marine ar-
chaeology, geology surveying, structure inspection, security, search and
rescue, and others. If these maps include topographical features and
bottom types correctly identified and classified, they would become
fundamental for the scientific, naval and economic exploration of the
oceans. An aftermath of the surveys for creating such maps, however,
typically involves a tedious and labour-intensive process of manually
identifying and labelling those features, which is expensive in terms of
time and cost. Automating this task of pixel-wise classification, in real-
time, while the surveys are being conducted would not only alleviate
this burden but also open new avenues for Autonomous Underwater
Vehicles (AUVs) to help automate the process of mission planning and
navigation, where real-time processing of data is all the more crucial.

Although the use of optical sensors for conducting such surveys has
seen several advances, they are severely affected by light attenuation
and colour shift caused by the variability in water conditions. This
imposes limitations on the range of operation, restricting samples to
be acquired only over small areas. The use of acoustic sensors, on the
other hand, makes it possible to perceive the underwater environment
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even in zero-visibility conditions regardless of the depth, also allowing
them to cover a much wider area in a single pass. The Side Scan Sonar
(SSS) is one such acoustic sensor that is very widely used in marine
surveys. It is very easily adaptable to numerous types of sea vessels
without the need for specific configurations and consumes low power,
making it very economical and easy to deploy. As such, this work is
aimed at semantic segmentation of acoustic images acquired from a
SSS.

Much of the prior work carried out in this area makes use of
traditional image processing and pattern recognition approaches such
as clustering strategies (Celik and Tjahjadi, 2011; Yao et al., 2000),
Markov Random Field (MRF) (Mignotte et al., 1999, 2000) or active
contouring (Lianantonakis and Petillot, 2007). These methods are based
on hand-crafted features and either lack the efficiency to be used in
real-time or the capacity for generalization, among other issues.

In this paper, we propose to leverage the capabilities that Deep Neu-
ral Networks (DNNs) have showcased in pixel-wise labelling in recent
years. In particular, we adopt Vision Transformers (ViTs) for the above-
mentioned task due to their ability to draw long-range associations
among different regions of an image. The motivation behind using long-
range associations comes from the fact that expert geophysicists often
use global context to disambiguate among similarly looking classes. We
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Fig. 1. The vanilla ViT architecture.
Source: Adapted from Dosovitskiy
et al. (2021).
believe that ViTs would enable the model to efficiently capture enough
global context so as to make more informed decisions. This study, thus,
also serves as a proof-of-concept of the feasibility of ViTs for tasks such
as SSS segmentation. Given sufficient speed of computation, we can
then use larger images (for instance, 512 × 512) to capture more global
information and further improve results.

The Transformer was originally developed as a sequence transduc-
tion model, for tasks such as machine translation, where it is essential
for the model to formulate a thorough understanding of the language
by capturing how the different components in a text interact with each
other, the different semantics they might adopt in different contexts
and the various syntactical patterns that might arise. Vaswani et al.
(2017) designed a computationally efficient mechanism, called the
multi-head self-attention, to capture such global dependencies, which
eventually led Transformer-based models to become the state-of-the-art
in many Natural Language Processing (NLP) tasks. Later, Dosovitskiy
et al. (2021) transferred these principles to computer vision, giving rise
to an architectural paradigm called the Vision Transformer, as depicted
in Fig. 1.

Since the original Transformer was designed to operate on a se-
quence of 1D word embeddings, as opposed to the 2D or 3D images
that vision models usually deal with, ViT breaks down the input image
into a sequence of patches and linearly projects the flattened patches
into an embedding space. This is essentially what allows the multi-head
self-attention mechanism to ingest the 𝑛-D input and draw associations
between different regions of the image, thereby capturing global con-
text. However, in doing so, the spatial correlations between patches are
lost and the structure of the image is no longer preserved. This requires
the use of positional encodings as a way to embed this structural in-
formation within the architecture. Unfortunately, positional encodings
must be learnt from scratch as the model has no knowledge about
the relative location of the patches to begin with. This increases the
dependence of ViTs on large datasets, resulting in poor generalization
otherwise. However, for domains such as marine robotics, where the
data is typically very scarce, employing such architectures becomes
infeasible, especially without any pre-training.

Convolutional Neural Networks (CNNs), on the other hand, have the
grid-structure of the image built into their architectural design. This
acts as a strong prior for the model resulting in properties such as shift
invariance and equivariance. Moreover, although ViTs possess a global
receptive field, convolutions tend to be more effective in extracting
local features. We, therefore, propose two architectural modifications
in an attempt to inject these characteristics into ViTs and to make them
more suitable for applications that lack sufficiently large datasets.
2

• We replace the linear patch embeddings at the beginning of each
transformer stage with multiscale patch embeddings inspired in
part by the design choices of Inception-v2 (Szegedy et al., 2016).

• We replace the non-linear projections of the Multi-layer Per-
ceptron (MLP) block within each transformer layer with a fea-
ture extraction block inspired by Ghost convolutions (Han et al.,
2020).

The benefits are multifold. Not only does the use of convolutions
within these modules introduce the notion of a grid-like structure, but
posing them as stacked separable convolutions also reduces the number
of parameters that the model needs to optimize. This further relaxes
the need for position encodings while also enabling multiscale feature
extraction. Consequently, this improves the capabilities of our modified
architecture in capturing high-frequency details and generalizing well
in the absence of huge datasets for training.

Furthermore, (hierarchical) ViT-based encoders, due to their ability
to draw associations between different regions of an image, especially
at multiple scales, tend to produce strong latent representations, which
are readily suitable for the task of semantic segmentation. This permits
the use of simple decoder designs without the need for computationally
expensive modules. We model our decoder after the lightweight design
proposed by Xie et al. (2021), by supplementing it with auxiliary
output blocks inspired by DeepLab’s Atrous Spatial Pyramid Pooling
(ASPP) (Chen et al., 2018).

With our modified design, we surpass the results of previous state-
of-the-art by a margin of over 3% in mIoU for our smallest model and
over 10% for our largest model while also meeting the computational
considerations for real-time implementation. Consequently, we demon-
strate the applicability of ViTs for tasks such as semantic segmentation
of the seafloor using SSS waterfalls, for which large datasets are seldom
available. We believe that such hybrid ViT-based architectures have
a large potential in underwater applications. To encourage further
exploration of these approaches and to ease the reproducibility of our
results, our code will be made available online at https://github.com/
hayatrajani/s3seg-vit.

The remainder of this paper is organized as follows. Section 2
presents a brief review of previous works on SSS segmentation using
DNNs and related literature in the context of semantic segmentation
using ViTs. Then, Section 3 provides thorough details of our proposed
architecture. Next, Section 4 presents an overview of the dataset and
the experimental setup. Section 5 reports and visualizes our results. And
finally, Section 6 concludes this study by outlining the planned efforts.

https://github.com/hayatrajani/s3seg-vit
https://github.com/hayatrajani/s3seg-vit
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2. Related work

2.1. CNNs for SSS segmentation

The approach in this paper is, to the best of our knowledge, the
first to demonstrate the applicability of ViTs to SSS segmentation.
Nonetheless, a number of previous studies have adopted CNNs and
attention-based mechanisms for this task. Wang et al. (2019) propose
a U-Net (Ronneberger et al., 2015) like encoder–decoder architecture
for real-time SSS segmentation. They employ a two-way branching
structure exploiting depth-wise separable convolutions in their encoder
for efficiency and a combination of pooling indices and direct skip con-
nections to feed the lost spatial information back into the decoder. Wu
et al. (2019), on the other hand, focus on dealing with different
sources of noise in SSS imagery and the issue of class imbalance. They
employ residual blocks in their encoder and propose the use of side-
output blocks, in addition to the typical encoder–decoder design, to
leverage multi-level information from each encoder. Similarly, Zhao
et al. (2021) focus on dealing with different sources of noise in SSS
imagery for real-time segmentation. Apart from carefully designing the
encoder and decoder modules, they propose a novel DCblock employing
dilated convolutions that sits between the encoder and the decoder to
attain more context. Whereas, Burguera and Bonin-Font (2020) target
the problem of building a semantic map of the seafloor, specifically
to search for loop candidates in a SLAM context. They propose an
end to end framework in this regard while employing a lightweight
encoder–decoder architecture for online multi-class SSS segmentation.
However, Wang et al. (2022b) argue that such simple encoder–decoder
designs are vulnerable to noise interference and only work well for SSS
images with simple backgrounds. They propose an adaptive receptive
field mechanism on the skip connections between the encoder and de-
coder branches to improve target shape fit. They further supplement the
encoder branch with dynamic multiscale dilated convolution blocks to
extract multiscale target features, and supplement the decoder branch
with attention-based feature fusion blocks to better fuse global and
local features while suppressing background noise. Furthermore, they
propose a tree structure optimization module to refine the produced
segmentation masks, thus, reducing the rate of misclassifications. Wang
et al. (2022b) also propose a boundary loss based on structural similar-
ity and weighted binary cross-entropy to improve classification along
the contour of the target. However, we believe these enhancements to
be specifically directed towards the problem of target segmentation,
which is the main purpose of their work, as opposed to our objective
of seafloor segmentation. Moreover, from the reported results, the
architecture seems to have a very large number of parameters, and
consequently a much lower inference speed. Therefore, we do not
draw direct comparisons with this approach. Yu et al. (2021), on the
contrary, propose a novel approach for SSS segmentation by employing
recurrent residual convolutions to capture global context followed by a
self-guidance block for further refinement of results. The self-guidance
block takes inspiration from the discriminator component of Generative
Adversarial Networks (GANs) and serves to distinguish the generated
segmentation mask from the ground truth. Although the authors claim
a boost in segmentation results with their approach, the inference
speed is significantly slow. Moreover, they mainly draw comparisons
with models such as the U-Net (Ronneberger et al., 2015) and Seg-
Net (Badrinarayanan et al., 2017), which are over 15 times larger than
our proposed architecture. We, therefore, do not include this approach
in our comparative study either. Yu et al. (2022), take this approach
further in another publication directed towards target segmentation.
They propose a dual-branch framework comprising a segmentation
branch and a refinement branch. The segmentation branch adopts a
MobileNetv2 (Sandler et al., 2018) backbone, additionally consisting
of local attention and recurrent residual modules to dampen the effect
of irrelevant features, thereby facilitating better emphasis on the target.
3

This also addresses the overfitting caused by unbalanced datasets. The s
refinement branch further tunes this output with the help of holistic
attention blocks for multi-level feature fusion. Both branches are fur-
ther complemented by ASPP modules (Chen et al., 2018) for enlarged
receptive fields and better contextual understanding. However, this
results in an architecture that is parameter-heavy, being almost 6 times
larger than ours. Further, since this work is also intended for target
segmentation, as opposed to our objective of seafloor segmentation, we
do not draw direct comparisons with it.

2.2. ViTs for semantic segmentation

The vanilla ViT, as proposed by Dosovitskiy et al. (2021), yields
low resolution feature maps of uniform scale, making it less desirable
for dense prediction tasks such as semantic segmentation. To address
this, Wang et al. (2021) proposed as an alternative a hierarchical struc-
ture composed of a progressively shrinking pyramid capable of extract-
ing features at multiple scales. This readily allowed ViTs to be plugged
into standard dense prediction frameworks. They further apply spatial
reduction to key and value embeddings before attention computation
o handle the quadratic complexity associated with the traditional self-
ttention operation. Based on this hierarchical design, Ren et al. (2022)
nd Yao et al. (2022) propose different flavours of spatially-reduced
ttention to preserve image details. Where the former downsamples the
ey and value embeddings with different rates for different attention

heads, the latter employs discrete wavelet transforms. Liu et al. (2021),
on the other hand, proposed a window-based self-attention scheme to
reduce memory and computational costs. Attention is computed among
tokens within non-overlapping local windows and the windows are
shifted by a certain amount between consecutive layers to facilitate
cross-window connections. This approach to self-attention computation
was followed up by several other works (Huang et al., 2021; Wang
et al., 2022a; Dong et al., 2022; Wu et al., 2022) proposing different
schemes of windowing and cross-flow of information among windows.
However, these approaches are still restricted by the number of input
tokens. To increase efficiency in processing high-resolution images, Ali
et al. (2021) propose cross-covariance attention which computes self-
attention among feature channels thereby making the computation
linear in the number of tokens. Koohpayegani and Pirsiavash (2022)
take this a step forward by replacing the softmax in self-attention with
L1-normalization of key and value embeddings to further boost compu-
ational efficiency. In our proposed architecture, we use an adaptation
f this approach, and draw comparisons with notable window-based
nd spatially-reduced self-attention mechanisms.

A related but independent line of work addresses the lack of CNN-
ike inductive biases in ViTs in order to improve their efficiency in cap-
uring high-frequency details. There have been several studies (D’Ascoli
t al., 2021; Srinivas et al., 2021; Wu et al., 2021; Guo et al., 2022;
i et al., 2022; Ma et al., 2022; Mehta and Rastegari, 2022; Si et al.,
022; Zhang et al., 2022) in this regard, which adopt one or a combina-
ion of diverse strategies such as introducing convolutions within the
ransformer blocks of ViTs, modifying the self-attention computation
sing convolutions, replacing the MLP blocks of ViTs with convolutions,
r introducing transformer blocks within CNNs. The approach by Guo
t al. (2022) is the closest to ours in that they also use a convolutional
tem and adapt the MLP block of ViTs by introducing convolutions,
part from adopting convolutions inside their self-attention mechanism.
owever, in addition to inducing CNN-like inductive biases in the
rchitecture, one of our primary objectives is to enhance the repre-
entability of objects of different scales, driving us to adopt distinct
esigns.

While the aforementioned studies focus on modifying the design of
he ViT-based encoder counterpart of the framework, there have been
handful of efforts directed towards an efficient decoder design. For

nstance, Cao et al. (2021), taking inspiration from U-Net (Ronneberger
t al., 2015), propose a Swin Transformer (Liu et al., 2021) based

ymmetric upsampling decoder, and Strudel et al. (2021) propose as
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Fig. 2. Overview of the proposed architecture. 𝐻 ′ and 𝑊 ′ refer to the spatial dimensions of the input. 𝐶 denotes the initial embedding dimension. 𝑁 denotes the number of
classes.
a decoder a mask transformer that jointly processes patch and class
embeddings. Bousselham et al. (2021), on the other hand, propose an
end-to-end trainable self-ensembling approach to leverage multi-scale
features that are produced by different stages of the encoder, without
the need of expensive feature fusion operations. However, Xie et al.
(2021) propose a much simpler design, solely consisting of feature
aggregating MLP blocks, that is capable of producing powerful rep-
resentations while being computationally inexpensive. We model our
decoder after an adaptation of this approach as detailed in Section 3.2.

3. Proposed architecture

Fig. 2 depicts an overview of the proposed architecture. It follows
the general scheme of an encoder–decoder structure for semantic seg-
mentation consisting of downsampling encoder blocks and upsampling
decoder blocks with skip connections from the corresponding encoders.
However, instead of building the decoder as a symmetric counterpart
of the encoder, a much lighter-weight approach is adopted that is not
only computationally more efficient but also yields better segmentation
results, as discussed later in Section 5. The following two subsections
describe the encoder and decoder modules in further detail.

3.1. A multiscale convolutional ViT encoder

The encoder adopts a modified version of a conventional 4-stage
hierarchical ViT that begins with an initial patch size of 4 × 4 pixels,
projected onto a 𝐶-dimensional embedding space. We set the initial
length of embeddings to 24. For an input of size 𝐻 × 𝑊 pixels, this
results in a sequence of (𝐻 ⋅𝑊 ) ⁄ 16 24-dimensional patch embeddings.
Between two successive transformer stages, patches in non-overlapping
2 × 2 neighbourhoods are merged together while the length of their
embeddings is doubled. This essentially downsamples each patch by
a factor of 2 and, consequently, reduces the sequence length by a
factor of 4. As a result, each transformer stage operates on a different
scale, thereby making it possible for the encoder to construct a feature
pyramid comparable to that of traditional CNN backbones.
4

Traditionally, the patch embedding and merging modules are com-
posed of reshaping, flattening and linear projection operations. Our
approach, on the other hand, leverages the local feature extraction
capabilities of convolutions. We begin by applying a 7 × 7 convolution
with a stride of 2 to the input image, resulting in a feature representa-
tion of size 𝐻

2 × 𝑊
2 × 12. Before each transformer stage, we then place

a patch merging module that downsamples the input by a factor of
2 and doubles the number of feature channels. The produced feature
representation is subsequently flattened along the spatial dimensions
to make it suitable to be processed by the corresponding transformer
stage. Thus, each transformer stage, 𝑖 ∈ {1, 2, 3, 4}, operates on an input
of size 𝐻 ⋅𝑊

2𝑖+1 × 12⋅2𝑖.
The patch merging module, as illustrated in Fig. 3, was in part

inspired by the design of Inception-v2 (Szegedy et al., 2016). It consists
of four parallel branches of stacked depthwise convolutions of different
receptive fields with appropriate padding to maintain spatial dimen-
sions. Apart from introducing convolutional priors, the main rationale
behind the patch merging module was to be able to adequately repre-
sent objects of different scales such as small pebbles to large boulders.
The parallel convolutional branches enable feature extraction over
various spatial footprints to generate multi-scale patch embeddings.
Such a design further complements self-attention to draw finer global
associations. Further, employing depthwise convolutions instead of full
convolutions and factorizing convolutions with larger kernels by a
stack of 3 × 3 convolutions, significantly saves on parameters while
maintaining the effective receptive field. Each depthwise convolution
operation is also followed by group normalization (Wu and He, 2018)
with the number of groups set to 1. We then apply average pooling,
preceded by a Hard Swish non-linearity (Howard et al., 2019), to
downsample the generated feature representations by a factor of 2
followed by a pointwise convolution to project the aggregated multi-
scale representations to twice the length of the input embeddings.
Moreover, we introduce a residual connection, composed of a pointwise
convolution and average pooling, for stability. The overall parameter
count still remains lower as compared to employing a single full 3 × 3
convolution with a stride of 2 for patch merging, as proposed by Wu
et al. (2021) and Dong et al. (2022), in lieu of linear projections.
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Fig. 3. Overview of a transformer stage together with illustrations of the patch merging module, the proposed FFN and ghost convolutions. 𝐻 ′ and 𝑊 ′ refer to the spatial
dimensions of the input. 𝐶 ′ denotes the number of input channels. 𝐷𝑊 denotes a depthwise convolution.
Fig. 3 also illustrates the transformer stage in more detail. Each
transformer stage consists of 𝐿 ∈ {3, 6, 12, 3} transformer layers. Each
transformer layer, as in the original ViT design (Dosovitskiy et al.,
2021), is composed of a self-attention module and an MLP block, each
preceded by layer normalization (Ba et al., 2016) and accompanied by
a residual connection (He et al., 2016). Traditionally, the MLP block
comprises two linear projections separated by a GELU non-linearity.
Since naïvely replacing the linear projections by 3 × 3 convolutions
increases the overall parameter count 9-fold, we instead adopted ghost
convolutions as conceived by Han et al. (2020). They try to replicate
the redundancy in feature maps generated by full convolutions through
cheap linear operations. Specifically, a full convolution is split into two
parts: a pointwise convolution in order to generate the primary feature
maps followed by a 3 × 3 depthwise convolution (portrayed as a cheap
linear operation) in order to generate secondary ‘‘ghost’’ features that
add redundancy. We later extended this design by applying an addi-
tional 5 × 5 depthwise convolution, implemented as a stack of two 3 × 3
depthwise convolutions, to the primary features before concatenating
them with the ghost features. We use this extended ghost convolution
to replace the first linear projection in the original MLP. Again, after
each convolution operation, we employ group normalization with a
group size of 1. We also employ a Hard Swish non-linearity before the
final linear projection. The resultant module not only introduces image-
specific priors into the design but also reduces the parameter count
when compared to a corresponding MLP block with an expansion ratio
of 2.
5

Finally, due to the linear complexity in the number of patches, we
use the attention mechanism as proposed by Ali et al. (2021). To further
reduce computational cost, we remove the expensive softmax-based
normalization of the attention matrix and, instead, L1-normalize the
key and query embeddings before computing the attention scores as
proposed by Koohpayegani and Pirsiavash (2022). To avoid ambiguity
in comparison, we term this modified attention mechanism SimXCA, a
contraction of the names of the two referenced approaches. We set the
number of attention heads to {2, 4, 8, 16} for the four transformer stages
respectively, and we do not use any kind of positional encoding.

3.2. A SegFormer-ASSPP decoder

Classical CNN-based approaches to semantic segmentation, such as
U-Net (Ronneberger et al., 2015) and SegNet (Badrinarayanan et al.,
2017), design the decoder as a symmetric counterpart to the encoder
together with skip connections in order to add the lost spatial infor-
mation back from the multi-resolution feature pyramid of the encoder.
However, we observed that adopting such a symmetric design for ViT-
based encoder–decoder frameworks yields quite poor results. This can
be particularly attributed to the dependence of ViTs on large datasets
to overcome their inherent lack of CNN-like inductive biases, which is
further amplified by the symmetric decoder. Despite our modifications
to induce CNN-like inductive biases in the design, we postulate that
such complex architectures are not really necessary for the decoder.
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Fig. 4. Overview of the modified ASPP module. 𝐻 ′ and 𝑊 ′ refer to the spatial
dimensions of the input. 𝐶 ′ denotes the number of input channels. 𝐶 denotes the
initial embedding dimension. 𝐷𝑊 denotes a depthwise convolution.

The encoder, due to its ability to draw associations between different
regions of the input image and extract multi-scale local features, al-
ready tends to produce strong latent representations that are readily
suitable for the task of semantic segmentation. This permits the use
of simpler designs for the decoder, which also drastically reduces the
number of trainable parameters. As such, we base our decoder after the
design proposed by Xie et al. (2021).

First, feature representations from each encoder stage are linearly
projected to the initial embedding dimension, 𝐶, and are bilinearly
upsampled to match the size of the initial patch embedding, 𝐻

4 ×𝑊
4 . The

projected representations are then fused together by addition, instead
of concatenation as proposed by Xie et al. (2021). This is followed
by another linear projection to the initial embedding dimension. This
fused representation then undergoes a final linear projection to an 𝑁-
dimensional space, where 𝑁 is the number of classes, in order to predict
the segmentation mask, which is subsequently upsampled by a factor
of 4 to match the input image resolution.

However, we postulate that such a simple feature aggregating de-
coder is unable to completely leverage the multi-scale representations
generated by the encoder, especially for small-scale objects. Therefore,
contrary to Xie et al. (2021), we also employ two auxiliary blocks,
based on the ASPP module (Chen et al., 2018), that operate on the
feature representations from the second and the third encoder stages.
The ASPP module can effectively enlarge the receptive field and in-
corporate multi-scale context, which also compensates for the lack of
explicit modelling of global associations in the decoder, thereby further
reducing the rate of misclassification. Since the bulk of the transformer
blocks lie within the third stage of the encoder, the so produced feature
representations are rich-enough for ASPP-decoding. Also, the spatial
resolution is adequately high to not suffer significantly from the loss of
information caused by downsampling. To further sharpen the results,
we also adopt the feature representations from the second encoder stage
for ASPP-decoding due to the relatively higher spatial resolution.

Our modified version of the ASPP module is illustrated in Fig. 4.
First, we project the input feature representations onto the initial
embedding dimension, 𝐶. The projected representation is then passed
through the four parallel atrous convolution branches with dilation
rates 𝑟 ∈ {1, 2, 4, 8}, and a kernel size of 3. Each atrous convolution
is implemented as a depthwise convolution and is followed by group
normalization (Wu and He, 2018) with the number of groups set to
1. The feature representations from each atrous branch are then con-
catenated together and projected to the initial embedding dimension.
This projection is preceded by a Hard Swish non-linearity (Howard
et al., 2019). Finally, the aggregated representation from the two
auxiliary blocks is upsampled to match the size of the initial patch
6

embeddings. These upsampled representations are then concatenated
with the previously fused representation from all four encoder stages,
before predicting the final segmentation mask.

4. Experimental setup

4.1. Dataset

The datasets used in the course of this work were acquired with
a Klein 3000 Side Scan Sonar during various surveys in the Balearic
Sea. Approximately 52 km of coastal area was surveyed at an altitude
varying from 4 to 21 m. Four categories of sediments were identified,
namely Sand Ripples, Rocks, Maerl and Fine Sediments (such as silt
and mud) covering approximately 50.60%, 13.90%, 12.06% and 23.44%
of the total area respectively.

The raw SSS waterfalls were recorded in the eXtended Triton Format
(XTF) and subsequently processed using SonarWiz for mosaicing. The
mosaiced SSS waterfalls were then georeferenced and annotated by
two expert geophysicists using ArcGIS. Fig. 5 depicts an example of a
portion of the SSS mosaic and the corresponding annotation. We further
processed the raw SSS waterfalls for blind zone removal and slat range
correction. The available navigation data was then used to geocode
each bin of the waterfall. This allowed us to fetch the corresponding
annotations from the ArcGIS interpretations and automatically generate
the ground truth for the SSS waterfalls. However, since the annotations
were fetched from SSS mosaics while the ground truth was being
generated for SSS waterfalls, misalignments in the mosaic may result in
slight pixel-wise errors in the ground truth. Moreover, the annotations
were made on a much coarser resolution than the SSS waterfalls
and also suffered from human error resulting in ambiguous inter-class
boundaries, missing labels and skewed or misaligned annotations for
certain areas. However, despite the noisy ground truth, our model is
able to generalize quite well, as discussed in Section 5.

The waterfalls and the corresponding ground truth were then parti-
tioned in batches of 256 lines to generate images of size 256 × 256
with a 128 pixel-overlap along-track and across-track. This resulted
in a total of 47,420 images, divided by an 80–20% split to form the
training and validation sets respectively. Further, another set of images,
equivalent to about 5% of the training set, was generated from a
separate non-overlapping transect with similar class distribution as the
training set to form a test set of 1800 additional images. The noisy
ground truth of these test images was then manually corrected so as
to be able to produce accurate metrics for evaluation. Fig. 6 illustrates
some examples of the images and the different seabed types contained
in the dataset.

4.2. Training and evaluation

All our models were trained on an NVIDIA A100 Tensor Core
GPU for 100 epochs with a batch size of 64. We utilized the AdamW
optimizer with a weight decay of 1𝑒−2 and learning rate of 6𝑒−5,
decayed using a polynomial learning rate scheduler with a warm-up
of 3 epochs. Weighted Cross Entropy was set as the loss function
in order to tackle class imbalance. We also adopted standard train-
time data augmentation techniques such as random rotation, random
resized crop, random horizontal and vertical flip, random variations
in contrast and/or sharpening and Gaussian blur. The models were
implemented in PyTorch 1.11.0 and Python 3.8.10. The source code
with all hyper-parameter configurations and pre-trained models will be
made available at https://github.com/hayatrajani/s3seg-vit.

All trained models were then evaluated on a standard laptop
equipped with an NVIDIA GeForce GTX 1650 Mobile GPU and an Intel
Core i5-9300H CPU operating at 2.40GHz running Ubuntu 20.04.5,
Python 3.8.10 and PyTorch 1.9.0 + cu111. We report model perfor-
mance in terms of mean Intersection over Union (mIoU) and inference
speed in number of images processed per second (FPS).

https://github.com/hayatrajani/s3seg-vit
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Fig. 5. SSS mosaic (left) and the corresponding interpretation (right). Note that in some areas the annotations are not accurate (as marked in blue) and may also be missing for
certain areas (as marked in green).

Fig. 6. Dataset overview: (a,b) gravel; (c) fine sediment with a chunk of rock; (d, e) rippled sand; (f) fine sediment with a strip of rippled sand; (g) fine sediment with rippled
sand; (h) rocks, fine sediment and rippled sand; (i) rocks and gavel; (j, k) rocks and rippled sand; (l) rocks.
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Table 1
Comparison between our proposed architecture and different state-of-the-art CNNs for
SSS segmentation.

Method mIoU (%) Parameters (M) FPS Model size (MB)

ECNet 62.68 4.67 70 18.8
DCNet 78.02 0.09 260 0.4
RTSeg 77.75 0.74 190 3.1

Ours† 81.24 0.08 525 0.47
Ours†† 84.65 0.26 311 1.2
Ours‡ 88.58 0.97 188 4.1

Ours 89.54 1.91 112 7.9

Best results are indicated in bold. Second best results are underlined.

5. Experiments and results

5.1. Comparisons with state-of-the-art CNNs

The CNN-based frameworks RTSeg (Wang et al., 2019), ECNet (Wu
et al., 2019) and DCNet (Zhao et al., 2021) were adopted as baselines
for primary comparison. We use our own implementation of these
architectures since the authors’ code was not made publicly available.
All the architectural configurations were maintained as suggested in
the original publications. However, we noticed certain inconsistencies
in the architectures for RTSeg and DCNet. The former had a deviation
of about 0.24M between the number of parameters computed from the
description of the architecture and that reported by Wang et al. (2019).
Whereas in the latter, Zhao et al. (2021) do not specify the output
feature dimensions for convolutions in their DCblock. We tried to set
the parameters that we considered best to replicate the architectures as
closely as possible. However, the results might deviate from the original
implementations of the respective authors.

Table 1 presents a comparison of our proposed architecture with the
above-mentioned approaches. Although our architecture has a signifi-
cantly larger number of parameters than DCNet and RTSeg, the gain in
mIoU is also significantly higher. Further, given that the ping rate of our
SSS is 20 per second, it takes about 12.8 s to collect 256 swaths. Since
each swath has about 1024 bins per side (port and starboard) and we
generate images of size 256 × 256 with a 128 pixel-overlap, the mini-
mum processing speed required for real-time segmentation is 14 images
per 12.8 s, which equates to 1.01 frames per second. This is including
the bins corresponding to the water column which we however do not
take into account for segmentation. Even considering the overhead for
I/O operations, pre-processing and stitching the segmented images back
together into a coherent waterfall, our architecture is readily suitable
for real-time segmentation.

In order to ensure a more fair comparison with the aforementioned
approaches, Table 1 also presents the results of three variants of our
proposed architecture with a significant reduction in parameters to
match those of RTSeg and DCNet. These variants are indicated as Ours†,
Ours†† and Ours‡. We reduce the lengths of the initial embeddings
for the first two variants down to 8 and 12 respectively. We also
reduce the number of attention heads down to {1, 2, 4, 8} for each of
heir respective transformer stages. Furthermore, for the first variant,
e set the number of layers in each transformer stage to {1, 1, 3, 1},

whereas for the second and third variants, we set the number of
layers in each transformer stage to {1, 3, 7, 1}. All other configurations
remain the same. Despite the significant reduction in parameters, our
architectures perform substantially better. With this, we establish a new
state-of-the-art for SSS segmentation.

5.2. Feasibility of ViTs for SSS segmentation

The secondary objective of our study is to evaluate the feasibility
of ViTs for applications such as SSS segmentation, which typically
8

lack sufficiently large datasets. We therefore draw comparisons of our
Table 2
Comparison among different self-attention mechanisms for SSS segmentation.

Method mIoU (%) Parameters (M) FPS Model size (MB)

Swin 84.94 2.35 160 10.3
CSWin 84.95 2.12 146 8.7
LSDA 84.96 2.12 186 8.7
LMHSA 81.31 2.15 176 8.3
Wavelet 85.33 4.37 152 17.3
SimXCA 85.97 2.10 204 8.5

SimXCA† 86.23 2.14 186 8.7

Best results are indicated in bold.

Table 3
Ablations of our proposed architecture.

Method mIoU (%) Parameters (M) FPS Model size (MB)

SimXCA 86.23 2.14 186 8.7
− MLP 88.18 1.98 136 8.1
+ Multimerge 89.28 1.90 116 7.9
+ ASSPP 89.54 1.91 112 7.9

modified architecture with certain notable self-attention mechanisms in
the vanilla hierarchical ViT setting, as presented in Table 2.

Specifically, to switch back to a vanilla hierarchical ViT, we discard
all our architectural modifications and simply employ the original MLP
block within each transformer layer and use 3 × 3 convolutions with
a stride of 2 for patch merging. Furthermore, we adopt the decoder as
proposed by Xie et al. (2021) in its original form, without our modified
ASPP module. We then train different architectures by replacing the
self-attention modules in each transformer layer with the self-attention
mechanism proposed by Liu et al. (2021) (Swin), Dong et al. (2022)
(CSWin), Wang et al. (2022a) (LSDA), Yao et al. (2022) (Wavelets
block) and Guo et al. (2022) (LMHSA block). Since, the approach to
self-attention proposed by Wang et al. (2022a) works by alternately
applying long-distance attention and short-distance attention in dif-
ferent layers, it suggests the use of an even number of transformer
layers for each transformer stage. Therefore, in order to ensure a fair
comparison, we set the number of transformer layers 𝐿 to {2, 4, 16, 2}
or the four encoder stages for all flavours of attention mechanisms,
nless stated otherwise. Also, we do not include positional encodings
hen employing the Wavelets block, the LMHSA block or SimXCA as

he attention mechanism, as suggested by the respective works. All
ther architectural configurations remain the same. Additional hyper-
arameter configurations specific to each self-attention mechanism, are
s given below:

• LSDA: Group size, 𝐺 = 8
• SWin: Window size, 𝑀 = 8
• CSWin: Stripe Width for each encoder stage, 𝑠𝑤 = {1, 2, 8, 8}
• LMHSA block: Spatial reduction scale of key and value embed-

dings for each encoder stage, 𝑠 = {8, 4, 2, 1}
• Wavelet block: Spatial reduction scale of key and value embed-

dings for each encoder stage, 𝑠 = {4, 2, 1, 1}

The LMHSA block generates quite poor segmentation masks due
o the loss of information that results from spatial downsampling of
ey and query embeddings. The Wavelet block significantly recovers
his drop in quality by leveraging wavelet transforms that allow in-
ertible downsampling. However, this approach turns out to be too
arameter-heavy and also quite computationally expensive. Although
ith a slightly lower mIoU, the window-based self-attention mecha-
isms are quite efficient. The variability in their performance stems
rom the adopted windowing mechanism, where LSDA performs the
est due to the alternating structure of local and global attention that
esults in self-attention computation between fewer tokens than Swin
r CSWin. However, window-based self-attention mechanisms are still
compromise to global self-attention. SimXCA, on the other hand,
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Fig. 7. Visualization of segmentation masks.
gives the best results owing to its transposed self-attention computation
and absence of Softmax-based normalization. We also observed that
redistributing the number of transformer layers 𝐿 to {3, 6, 12, 3} for
SimXCA produces slightly better segmentation masks, while keeping
the total number of transformer layers the same. We indicate this as
SimXCA† in Table 2.

In Table 3, on the other hand, we ablate our modified architecture
to present the individual performance gains from each of our archi-
tectural modifications. The top row represents SimXCA in the vanilla
9

hierarchical ViT setting with the number of transformer layers 𝐿 to
{3, 6, 12, 3}. We then replace the MLP block within each transformer
layer with our modified feature extraction block, denoted as ‘‘− MLP’’.
Next, we replace the patch merging module in the resultant architecture
with our proposed multiscale patch merging module, denoted as ‘‘+
Multimerge’’. Finally, we add the proposed ASSPP block to the decoder
design, completing our modified architecture.

Furthermore, Figs. 7 and 8 illustrate the segmentation masks gener-
ated by our modified architecture as compared to those generated by
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Fig. 8. Visualization of segmentation masks (continued).
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SimXCA in the hierarchical ViT setting. Despite the noisy groundtruth,
our modified architecture is able to generalize quite well as depicted
in the top row of the figure. Moreover, our model is also effective in
representing classes such as fine sand ripples and small pebbles of rocks,
which the vanilla ViT misses in most cases.

6. Conclusion and future work

In this work we demonstrate the applicability of ViTs for seman-
tic segmentation of the seafloor in SSS waterfalls. To the best of
our knowledge, we are the first to employ ViTs for this task. De-
spite having a small dataset, through our modified design, we achieve
results that surpass previous state-of-the-arts by a significant mar-
gin while also meeting the computational considerations for real-time
implementation.

However, we are still constrained by the lack of precise ground truth
to supervise model training. To overcome this weak supervision, we are
currently investigating Self-Supervised pre-training followed by Weakly
Supervised fine-tuning on image-level labels while also leveraging our
noisy ground truth as pseudo masks to regularize training.

Moreover, with the help of the geophysical surveys being conducted
by Tecnoambiente SL, we are in the midst of expanding our dataset
with additional classes, pixel- and image-level annotations, navigation
information and auxiliary metadata. We plan for an eventual release of
a large-scale SSS dataset for seafloor segmentation to facilitate further
research in this direction.
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