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Abstract— Photo-mosaicing techniques have become popular
for seafloor mapping in various marine science applications.
However, the common methods cannot accurately map regions
with high relief and topographical variations. Ortho-mosaicing
borrowed from photogrammetry is an alternative technique that
enables taking into account the 3-D shape of the terrain. A serious
bottleneck is the volume of elevation information that needs to
be estimated from the video data, fused, and processed for the
generation of a composite ortho-photo that covers a relatively
large seafloor area.

We present a framework that combines the advantages of
dense depth-map and 3-D feature estimation techniques based on
visual motion cues. The main goal is to identify and reconstruct
certain key terrain feature points that adequately represent the
surface with minimal complexity in the form of piecewise planar
patches. The proposed implementation utilizes local depth maps
for feature selection, while tracking over several views enables
3-D reconstruction by bundle adjustment. Experimental results
with synthetic and real data validate the effectiveness of the
proposed approach.

I. INTRODUCTION

Visual surveys have become an important component of
seafloor mapping for scientific studies; e.g., [1], [2]. Develop-
ments in HDTV and very-high resolution digital systems have
enabled the imaging of benthic habitats with unprecedented
details, thus offering tremendous potential for exploration
and new discoveries in various domains of marine sciences,
including biology, geology and archeology. Coupled with
recent advances in automatic and autonomous navigation,
submersible imaging platforms provide mapping capabilities
far surpassing those achieved from traditional scientific diver-
based surveys. At the same time, these go hand in hand with
tremendous processing requirements and the need for techni-
cal/algorithmic developments to generate large-area composite
maps that match the resolution of individual frames (or exceed
it by the employment of super-resolution techniques [3]).

Mapping in the underwater environment is inherently a
complex problem. Light attenuation and backscattering dras-
tically limit the range and coverage area of optical sensors; at
best no more than a few meters in each dimension. For this

reason alone, extended effort has to be devoted merely to align
partially overlapping frames seamlessly in order to provide
a larger coverage one that may otherwise be available in a
single frame in the absence of limited visibility. Furthermore,
unstructured clutter in most benthic environments demand
more complex algorithms to process the image data. For
example, underwater mosaicing systems have been developed
based on the traditional photogrammetry mapping techniques
applied to satellite and aerial imagery, assuming the planarity
of the mapped scene; e.g., [4]. This enables the registration of
image frames using simple transformations with only a small
number of parameters, known as planar homographies; e.g.,
[5]. Unfortunately, most regions and (or) objects of interest
for scientistic studies are hardly planar; hydro-thermal vents,
coral reefs, and shipwrecks to name a few. This holds even
more true in close-range imaging, targeted for recording the
very fine-scale target details. In such cases, the parallax effects
induce image deformations that strongly violate the planar
homography model. However, there is sufficient information
within overlapping regions to estimate the 3-D relief of the
mapped area based on multiple-view geometrical constraints
[6]. This can then be used to generate a so-called ortho-
rectified mosaic [7], [8], [9].

In recent years, some work have explored the application
of stereo imaging for underwater 3-D terrain reconstruction
[10], [11]. This involves the use of two cameras (or generally
more) in order to obtain local 3-D maps from disparity cues.
The incremental local maps, generated as the stereo system
moves, may be merged into a global 3-D reconstruction of
the surveyed area [12]. Another approach is the application
of structure/depth from motion (SFM/DFM) methods based
on monocular images [6], [13]. SFM involves the extraction
and tracking of a sparse set of features in a sequence, and the
estimation of their 3-D positions using multiple views. This
can be achieved rather robustly based on a bundle adjustment
technique [14]. In theory, a 3-D dense map may then be
generated by surface interpolation [15]. However, the 3-D
dense reconstruction accuracy is highly dependent on the
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terrain complexity within interpolated areas. The high relief
and unstructured nature of most cluttered benthic environments
of interest significantly limit the utility of ”unguided” feature-
based methods. In contrast, the DFM techniques provide dense
local maps by exploiting the information redundancy over the
entire overlapping areas. However, the merging of (somewhat
noisy) dense local depth maps to generate an accurate large-
area global map is not trivial, and in fact remains a challenging
problem. Furthermore, although 3-D dense maps would pro-
vide rich and detailed information, large-area reconstruction
becomes prohibitive due to very high computational costs.

We propose a framework for the integration of SFM and
DFM paradigms that exploits the unique advantages each
offers. Here, dense depth maps serve to establish the topo-
logical characteristics of the terrain locally, and thus to guide
the selection of a small set of sparse surface features that
characterize the terrain complexity with a desired level of
accuracy. These features define the vertices of planar patches
that are fit to the local depth maps by Delaunay triangulation.
The 3-D piecewise planar representation is iteratively updated
by verifying consistency with the dense local maps.

Our surface modeling strategy is borrowed from various
other earlier applications, including synthetic generated images
and video in computer graphics. It is also motivated to achieve
significant computational savings by utilizing a minimal yet
suitable 3-D model in representing and processing a very
large volume of surface data. However, our method differs
from those in earlier applications for the necessity to estimate
critical 3-D information directly from monocular motion cues.
For example, we enforce global estimation consistency by
tracking features over several views, and recomputing their 3-
D positions by bundle adjustment. As a result, the need arises
for local adjustment in the selection of surface features to
ensure they are visually trackable.

The main advantages of the proposed approach include the
ability 1) to model relatively complex 3-D surfaces by a small
number of features; 2) to adaptively sample the terrain surface
by a non-uniform mesh as the local shape complexity dictates;
3) to maintain global consistency by bundle adjustment; 4) to
scale up the mapped terrain by the number of features, rather
than the region size, which provides tremendous computational
savings. In the balance of the paper, we provide a detailed
description of our system, present illustrative examples and
experimental results, and finally conclude with some guide-
lines describing the further work.

II. ALGORITHM DESCRIPTION

Fig. 1 outlines the main modules of the system, designed
to process data incrementally as it is acquired. This calls
for both local and global computations, where extracted local
information guides the global estimation. The first few steps
are applied to pairs of consecutive images to compute frame-
to-frame (F2F) disparities (optical fl ow); obtain local depth-
maps; estimate F2F camera motions; and extract the initial
set of image features. The second part deals with global
computations: To estimate the 3-D positions of the feature
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Fig. 1. Flowchart of proposed algorithm.

points and to utilize them in generating a 3-D model with
nonuniform surface meshes. The map is then adjusted iter-
atively to improve consistency with the dense data. Finally,
an ortho-mosaic is constructed. The detailed computations for
each module of the proposed method is described hereafter.

A. Optical Flow, 3-D Motion and Depth Map Computation

The first step is the computation of the 2-D optical fl ow v =
[u v]T from pairs of images. The adopted GDIM-based method
was proposed by Negahdaripour [16], and later generalized to
take advantage of color in addition to intensity information
for improved robustness and estimation accuracy [17]. The
computed optical fl ow for each pair {In,In+1} of consecutive
images provides an estimate of local disparities for feature
tracking and depth computation.

The differential image motion model of Longuet-Higgins is
the basis of the motion and depth estimation module [18]:

v = Aωω +
1

Z
Att (1)

Here, ω and t are the camera rotation and translation velocities
respectively, and Z is the distance to a scene point along
the optical axis. Utilizing image motion model in (1), F2F
3-D motions and depth maps are computed iteratively from
the optical fl ow [6]. One should note that both the 3-D
motion and depth maps are computed up to scale (due to
the well-known scale-factor ambiguity of monocular vision).
The correct scaling can be determined from a single distance
(depth) measurement, or knowledge of motion magnitude.
Fig. 2 illustrates an underwater image and its estimated dense
depth map.

B. Feature Extraction and Tracking

The image features that initially characterize the scene are
extracted using the Harris corner detector [19], also taking
into account the topological information. The Harris corner
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(a) (b) (c) (d)
Fig. 2. Depth map computation: Sample image of an underwater scene (a); depth map computed from two overlapping frames (b); boundary points of
regions with high depth gradient magnitude (c) to extract surface features according to intensity cornerness measure (d).

Fig. 3. Simple 2D example of ideal features extraction from topological point
of view: 4 feature points provide a good initial piece-wise linear approximation
of the curved profile.

detector basically yields points with high eigenvalues of the
second moment matrix of image intensities. Use of solely
this information provides a good basis for feature tracking
and matching in most 2D mosaicing applications. However,
we seek image features that additionally have the following
properties:

• serve as vertices of planar patches that suitably represent
the local surface;

• minimize characterization redundancy.

In order to better understand the concept, consider the simple
example illustrated in fig. 3, which illustrates a 2-D profile as
the cross section of a 3-D relief. By extracting features around
the edges of the slopes (marked in dark grey) and applying
linear interpolation (dotted lines), a good initial approximation
of the shape is obtained. To locate the sloped edges, we use the
first derivatives of the depth map, selecting only the regions
with high depth gradient magnitude; see fig. 2(c). The edge
of the segmented regions are then extracted, providing a mask
for the Harris corner detector operator. The goal is to locate
a number of features that have optimal “photometric” 1 and
topological properties; they can be readily tracked visually, and
also serve as appropriate initial nodes in splitting the surface
into planar patches (see fig. 2(d) and also section Surface
Splitting).

In our approach we take advantage of the optical fl ow to
confine the search for the match of a point p = (x, y ) in the
second view by normalized correlation: The search is centered
at p′ = [x+u, y +v] in a (Cu+1)×(Cv+1) window; (Cu, Cv)
presents the pixel position uncertainty determined from the
optical fl ow estimation error covariance. By using a suitable
search window that is adjusted locally based on the optical
fl ow and its uncertainty, the probability of outliers is reduced
while using small correlation windows. We also avoid the need

1We use this term loosely to imply strong local texture.

for higher-order transformations, e.g., affine or projective, that
may often be necessary within regions of high surface relief.

We next check for outliers, to ensure robust tracking as each
feature point position pn+1 is determined in image In+1. This
is carried out by evaluating the first order approximation of
the geometric error d (Sampson distance) [5]:

d =
(pn+1)T Fpn

|Fpn|
2

+ |Fpn+1|
2

(2)

where F is the fundamental matrix:

F = (K−1)T SRK−1 (3)

Here, K is the camera intrinsic matrix, S is the translation
skew-symmetric matrix (Sx = t× x for any vector x), and R

is the rotation matrix of the camera. (R, t) is computed in the
motion and depth estimation module.

C. 3-D Feature Estimation

The 3-D features reconstruction is carried out by means of
bundle adjustment [14]. In our case, the problem can be stated
as a large-scale non-linear estimation having N = 6 NC +3 NP

unknowns where NC and NP are the numbers of camera and
3-D point positions, respectively, with M = 2

∑Nc

i= 1
Npi >

N redundant observations (Npi is the number of features in
camera view i). The cost function is defined based on the
projection error of the features:

ep = |p̃ − CP̃ | (4)

where C is the camera matrix and {P̃ , p̃} denotes the homoge-
nous coordinates of {3-D,2-D} points {P, p}.

In order to achieve convergence and accurate results, the
bundle adjustment has to be provided with a good initial
estimate of the unknown parameters. We can use the estimated
3-D motions and local depth maps. For a better estimate
of each 3-D point, we triangulate using the matched 2-D
projections from two views with the largest disparity.

D. 3-D Surface Construction and Adjustment

The previous module generates sparse 3-D points. The
surface model is generated using the Delaunay technique with
the 3-D points as the vertices of triangular patches. The next
step is to examine how well the estimated model agrees with
the dense depth maps and to adjust it suitably.
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Fig. 4. Ellipse contour approximation

The surface modelling is inspired by the 2-D curved contour
representation problem, demonstrated with the ellipse in fig. 4.
Starting as the initial estimate with the line connecting the
two points where the ellipse intersects its major axes, the
next contour point is selected where the distance between the
ellipse and the line segments (discrepancy) is maximum. At
each iteration, exactly one line segment is replaced by two new
lines connected at the point of maximum distance. The process
continues until no distance between the line and the ellipse is
larger than a pre-specified threshold. The final result is an
effective representation of the curve by a chain of vertices,
where the lines join. In our application, the use of a depth map
for discrepancy test presents an important disadvantage: Being
a local map, there exists viewpoint-dependent ambiguities
due to scale and local surface orientation. A more effective
approach is to assess the discrepancy in the image domain,
by comparing the dense disparities predicted by the estimated
planar model with the measured optical fl ow.

Each planar patch L(PA, PB , PC), defined by the vertices
PA, PB , PC , is projected in all nearby camera views. The best
view Ik is chosen where the patch projection lk(pA, pB , pC)
has maximal area, offering the highest resolution for discrep-
ancy computation. For each pixel p = (x, y) within lk, the
discrepancy is defined by

e =

∣∣∣∣
uk − ûk

vk − v̂k

∣∣∣∣ (5)

(uk, vk) represents the estimated optical fl ow at p in image Ik,
and (ûk(x, y), v̂k(x, y) is the predicted disparity of the planar
patch:

v̂k =

[
h1·p
h3·p
h2·p
h3·p

]
− p (6)

where hi’s are the rows of plane homography:

k+1HL
k = R − tnT

L (7)

R and t are respectively the relative rotation matrix and
translation vector between camera positions k and k + 1 and
nL is the normal to the plane L. Moving parallel to the surface
in fig. 5(a), we obtain the discrepancy map in (b), if the fl at
plane at the base of the true surface is assumed as the 3-D
model.

The function e depends on the 3-D distance between the
real surface and the estimated plane along camera principal
axis, and is camera rotation invariant. As a result, an ideal
point ps to split the surface is where e is maximum. However,
this measure alone does not necessarily yield a locally distinct
point that can be readily tracked in order to establish its 3-D
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Fig. 5. Synthetically generated surface (a), and Computed discrepancy e

based on a fl at surface model for an arbitrary camera motion (b).

position and the camera trajectory by bundle adjustment. For
this reason, a revised measure is introduced:

m = e′ + µc (8)

where e′ is obtained by Gaussian smoothing and normalization
of e, and c is the normalization of the cornerness measure from
the Harris feature detector [19]. The parameter µ may be set
based on desired characteristics, as in a suitable function of
distance from the peak-point of e. Here we have selected µ em-
pirically. To avoid splitting the planes indefinitely, a threshold
th is applied: There is no further splitting if ma x(e′) < th. To
summarize, the discrepancy of each plane from the surface is
computed and thus split accordingly, the surface representation
in updated with the newly extracted 3-D points and the fit of
the new model to the depth data is checked. The algorithm
iterates until the model stabilizes, i.e., no new 3-D points are
added to the model.

E. Ortho-mosaic Construction

The construction of the ortho-mosaic can be summarized in
two main steps:

1) Selection of the projection plane O for the 2-D ortho-
view;

2) Rendering of the ortho-mosaic.
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TABLE I
OUTLINE OF THE SURFACE CONSTRUCTION AND ADJUSTMENT

ALGORITHM

while adding new points
perform Delaunay triangulation
for each plane L

find best view Ik

compute e
if ma x (e′) > th

compute measure m
find new ps

track ps in the sequence
compute Ps by bundle adjustment

end
end

end

O

A

B

C
D

B’

C’

A’

D’

Fig. 6. Example: Ortho-projection of tetrahedron A B C D onto plane O
parallel to the base of tetrahedron.

The plane O is chosen to have the same tilt as the 3-D
reconstructed surface. This maximizes the projection area, pro-
viding the highest level of mosaic detail. All the planar patches
forming the 3-D model are mapped onto the destination plane
along the projection rays parallel to the normal vector; see the
example in fig. 6 for the ortho-projection of a tetrahedron onto
the plane O. Note that the points [A B CD ] are projected along
rays perpendicular to O.

The plane O is digitized based on a predefined resolution;
each point m on the grid is a pixel in the ortho-mosaic. In order
to render the mosaic, the following transformation relating
each point m to a corresponding point p from the original
images is defined:

p = CkTnpm (9)

where Tn is the ortho-projection transformation of the patch
Ln and Ck is the camera projection matrix corresponding
to the k-th view; see fig. 7. The remaining problem is to
determine which view Ik to use for rendering the patch L′

n.
The decision criteria has been set such that we minimize the
distortions introduced by projecting from the original images
onto the ortho-mosaic. An affine homography is computed
for each camera view k where a surface patch Ln is visible.
This homography describes the transformation between the
projection in camera view and ortho-projection L′

n according
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Fig. 7. Ortho-mosaic rendering process.

to
[pk] =k An[mn]; (10)

Using Singular Value Decomposition [5], kAn can be ex-
pressed as

kAn = E





sx 0 0
0 sy 0
0 0 1









co s(α) −sin (α) 0
sin (α) co s(α) 0

0 0 1



 (11)

where E is the homography defining an Euclidian trans-
formation, α represents the affine rotation, and sx and sy

represent the anisotropic scaling factors in x and y directions
respectively. The distortion measure is defined as

dn
k = 1 −

min (sx,sy)

ma x(sx,sy)
(12)

The camera view with the lowest value of dn
k , corresponding

to the least rendering distortion, is chosen.

III. EXPERIMENTAL RESULTS

The testing of the ortho-mosaicing system is carried out in
two ways:

• synthetic data, mainly focused on quantifying the effi-
ciency of the surface splitting module;

• real data, assessing the proposed approach in entirety.

A. Synthetic Data

The objective of these experiments are to investigate the ef-
ficiency of the surface splitting algorithm and the discrepancy
evolution using ground truth data. The surface topography,
given in fig. 8a, resembles a natural terrain. In every case, we
start with a fl at-plane surface model and iteratively adjust it
with new vertices based on the discrepancy measure, as de-
scribed in section II-D. The termination criteria is established
by threshold th, which is chosen to maintain a balance between
the final discrepancy and model complexity.

We first show the results when the splitting is based merely
on the surface shape properties. This corresponds to the ideal
case where any selected terrain feature has sufficiently strong
texture to be accurately tracked and matched in multiple
views. The final model comprising 74 vertices is obtained after
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11 iterations, corresponding to a “normalized” discrepancy
measure (NDM) at 2.16% (with respect to the initial fl at
surface); see fig. 8b. This can be further reduced at the cost
of increased model complexity. For example, the NDM is
marginally reduced to 1.47% in 20 iterations, with a total of
212 vertices.

The second set of experiments focuses on examining how
the intensity gradient measure may infl uence the behavior of
the algorithm, utilizing 2 different texture maps. For a rela-
tively rich and homogeneous texture, the algorithm generates
an uniformly adjusted model with a final NDM at 3.29%;
see fig. 8(c,d). The second case involves a weaker texture
with various low-contrast regions. The final result is somewhat
less accurate, with NDM=5.47%; see fig. 8(e,f). The variation
in NDM performance can be observed in fig. 9. In the two
cases, the algorithm reaches the converged values in 10 and 7
iterations, respectively, without reaching the threshold (fixed
as in the ideal case). This is mainly because no new points for
surface splitting can be identified with sufficient texture to be
tracked robustly in the sequence.
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Fig. 8. Experimental results with synthetic data: (a) True surface; (b)
Computed model with 74 vertices after 10 iterations of surface splitting
algorithm, and selection of surface feature points (vertices) based solely on
topographical measure; see discrepancy function in (5). Same surface rendered
with two different texture maps (c,e), and computed surface models based on
combined topographical and radiometric measure (d,f); see (8).
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Two important issues should be highlighted:
• Poor texture results in sparse high gradient points and

regions that reduce the algorithm efficiency;
• The regions with highest discrepancy in the final model

correspond to quasi-null texture areas (low contrast re-
gions, saturated regions, etc.), where the algorithm is not
able to find reliable splitting points.

B. Real Data

We now present the experiment carried out using an image
sequence of a coral reef site in the Bahamas acquired with
a handheld camcorder. The sequence comprises 66 images
of 360×240 pixels, covering an area of approximatively 4×7
meters.

The first result, depicted in fig. 13(a), is the photo-mosaic
generated with a traditional 2-D mosaicing technique. Inac-
curate estimate of image deformations are obtained due to
inability to correctly model the terrain relief by the simplistic
homography models, thus producing excessive distortions and
various misalignments at the mosaic seams (some regions with
distinct discontinuities have been highlighted). This drawback
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becomes even more obvious when analyzing the erroneously
estimated camera trajectory, in comparison to the estimate by
bundle adjustment; see fig. 10.

Applying the method described in the paper to this image
sequence, 76 features are initially identified and tracked.
After 5 iterations of plane splitting, the resulting surface
model comprise 184 vertices and 356 planar patches. The
3-D model is depicted in fig. 12(a,b) from two views, with
the estimated camera trajectory superimposed on the first.
Fig. 13(b) illustrates the ortho-mosaic, generated from the 3-D
model. Noticeable distortions are present at the extremities of
the mosaic, due to two reasons:

1) For some planes, we have min(dn
k ) À 0 meaning

that none of the camera views can provide suitable
information to render the surface (see section II-E);

2) Most of the 3-D points defining planes at the extremities
of the ortho-mosaic are surface features that are viewed
at low gazing angles, and are thus poorly reconstructed
by triangulation from multiple views;

It is concluded that for this sequence comprising a single short
transect, there is insufficient and less reliable observations near
the boundaries to be able to project the regions accurately
onto the ortho-mosaic. To map the entire region with uniform
precision, one needs to plan transects over these areas to
acquire several near upright views. This allows the selection
and accurate 3-D estimation of suitable features to model the
local terrain surfaces.

To reduce the distortion effect, some post-processing of the
3-D model can be done by assuming that these “inaccurate” 3-
D points at the extremities of the model are (nearly) coplanar.
This gives the modified 3-D model in fig. 12(c), which can be
compared with the pre-processed model in (b). This gives the
improved ortho-mosaic illustrated in fig. 13(c).

IV. CONCLUSIONS AND FURTHER WORK

A framework based the integration of dense depth compu-
tation and 3-D feature reconstruction from monocular views
has been proposed for seafl oor ortho-mosaic construction over
large survey areas. The key aspect of the methodology is to
adequately model the terrain surface with minimal complexity.
Our implementation builds on the use of dense local depth
maps to select suitable features as initial vertices of piecewise
planar meshes, tracking these features over the video sequence
to accurate estimate their 3-D positions by bundle adjustment,
and iteratively revising the model to obtain an accurate rep-
resentation. The 3-D surface model provides the basis for
the construction of the ortho-mosaic. Our experimental results
validate the effectiveness of the proposed approach. Topics
from ongoing work deal with improving the various modules
of the algorithm:

• Incorporating more robust feature tracking techniques (i)
in the presence of high affine transformations and (ii) to
allow matching over surface regions with weaker texture,
thus increasing efficiency in surface splitting module;

• Using higher-order surface models to allow continuity of
surface gradients and a better surface representation;

• Implementation of a scene consistent Delaunay triangu-
lation algorithm;

• Automated detection/correction of rendering distortions;
• Compensation of scene illumination changes to enhance

the ortho-mosaic.
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Features

(a) (b) (c) (d)
Fig. 11. Selected results for real data: (a) A sample frame, and (B) corresponding local depth map. (c) Boundary points of regions with large depth gradient
magnitude are used to select the initial set of features in (d) for this view.
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(a) (b) (c)
Fig. 12. (a) 3-D model of surveyed area and estimated camera trajectory; (b) Same model from lateral view; (c) Model after post-processing, assuming
extremity regions to be coplanar to minimize rendering distortions.

(a) (b) (c)
Fig. 13. 2-D mosaic of the coral reef sequence in surveyed area, with discontinuities in circled areas (a). Ortho-mosaic before (b) and after (c) post-processing.
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