Imperial College London

CompTest 2023 Girona, Spain May 31 – June 2

A Bio-inspired Embedded Composite Stiffener for Improved Damage Tolerance via AFP

A.D. Whitehouse, Y. Yang, V. Médeau, L. Mencattelli, E. Greenhalgh, S.T. Pinho Imperial College, Faculty of Engineering

> supported by J. Finlayson Rolls-Royce plc

EPSRC DTP 2020-2021, grant reference no. EP/T51780X/1 UKRI-Innovate UK project FANDANGO (FAN Design And iNtegrity, GO) No. 113232

adw15@ic.ac.uk www pinholab.cc.ic.ac.uk

Outline

Background & Motivation

Background & Motivation

Stiffener Debonding

Background & Motivation

Stiffener Manufacture

Bio-inspired Damage Tolerant Design

Bio-inspired Damage Tolerant Design

Design for AFP Manufacture

Design for AFP Manufacture

Design for AFP Manufacture

Prototype Specimen

Prototype Specimen

Manufacturing Development

Manufacturing Development

Manufacturing Results

Baseline

Bio-Inspired

Manufacturing Results

Baseline

Testing Setup

Specimen Design

- 1. Skin transfers load to stiffener, which provides support
- 2. Local skin instability
- 3. Translaminar fracture of skin propagates towards stiffener

- 1. Skin transfers load to stiffener, which provides support
- 2. Local skin instability
- 3. Translaminar fracture of skin propagates towards stiffener

- 1. Skin transfers load to stiffener, which provides support
- 2. Local skin instability
- 3. Translaminar fracture of skin propagates towards stiffener

1st Iteration

Parametric Study

Sequence

- 1. Skin transfers load to stiffener, which provides support
- 2. Local skin instability
- 3. Translaminar fracture of skin propagates towards stiffener

1

Parametric Study Results

Relative total displacement

- Skin transfers load to stiffener, which provides support
- 2. Local skin instability
- 3. Translaminar fracture of skin propagates towards stiffener

Parametric Study Results

Skin transfers load to stiffener, which provides support

11.9 kN -2. Local skin instability

18.5 kN - 3. Translaminar fracture of skin propagates towards stiffener

Next Steps

Numerical Model Simulating Failure Propagation

Imperial College London

CompTest 2023 Girona, Spain May 31 – June 2

A Bio-inspired Embedded Composite Stiffener for Improved Damage Tolerance via AFP

A.D. Whitehouse, Y. Yang, V. Médeau, L. Mencattelli, E. Greenhalgh, S.T. Pinho

