UNIVERSITY OF TEXAS ARLINGTON

Independent mesh method and RX-FEM modeling of 3d interlock woven composites with open hole

David Mollenhauer (US AFRL)

UTARI: Kevin H. Hoos, Hari K. Adluru, Endel V. larve

UDRI: Eric Zhou

SWRI: Carl Popelar

AFRL: M. Keith Ballard

Comptest 2023 June 1, 2023 Girona, Spain

LITARI Content

- Analysis Methods:
 - Discrete Damage Approach
 - Virtual Textile Morphology Suite (VTMS)
 - Independent Mesh Method (IMM)
- Building the Models
 - Tow architecture
 - Tow properties
 - Homogenized properties
- Unnotched Strength Prediction
- Open Hole Tension Strength Prediction
- Results & Discussion
- Conclusions & Future Work

LITAR Analysis Methods

• BSAM:

- 3D FE damage modeling code developed for unidirectional & textile composites
- Discrete intra-ply matrix cracks (Rx-FEM Cracks)
- Discrete inter-ply delamination (CZM)
- Progressive fiber fracture (CDM)
- Catastrophic fiber fracture (CFV)

Independent Mesh Method (IMM):

- FE implementation for complicated textile geometry stress and failure analysis
- Avoids difficult meshing situations

• Virtual Textile Morphology Suite(VTMS):

- Mechanistic simulation of textile processing
- Linkage to IMM and BSAM

Determining Weave Architecture LITAR

accurate

LITAR Determining Tow Properties

Initial Assumptions

- Tow properties are tape properties with orientation that follows tow geometry
- Warp tows and fill tows have different FVF, but all tows in the same direction have same FVF
- FVF in the tow does not change with changing cross-sectional area

Using Chamis's Equations + Experiment

- Chamis provides straightforward method for scaling strength for tape based on FVF and constituents
- However, Chamis's equations are ideal and experiment data differs
- Concept: use Chamis's equations with results normalized at experiment FVF to scale experiment values

All tow elastic and strength properties scaled.

Fracture properties are not scaled.

Chamis, "Simplified composite micromechanics equations for hygral, thermal and mechanical properties", 1983. NASA-TM-83320.

Elastic Homogenization

Periodic Cluster Method (PCM)

- 1. Add clusters to all 6 sides of model and tie displacement on opposing faces together
- 2. Connect added clusters to model using penalty connection
- 3. Apply displacement shift to one side of model to introduce strain
- 4. Repeat for six different loading cases and then homogenize results

Note: the above (a-c) are a conceptual drawing, not the textile architecture considered herein

Validation: Results

Property	Error from Experiment	
E ₁₁	0.5%	
E ₂₂	1.8%	
V ₁₂	-44.3%	
G ₁₂	-9.7%	

Strain (normal or shear)

Warp-Direction Loading

In-plane Shear Loading

Unnotched Strength Prediction

UTAR Unnotched Strength Prediction

- Use PCM, removing periodicity in 1 or 2 directions, depending...
- Fill and Warp test coupon width: 25 mm
- Warp direction:
 - 11 mm wide \rightarrow periodicity in x and z directions
 - Width much smaller than test specimen
- Fill direction:
 - 22 mm wide \rightarrow periodicity in z direction only
 - Width close to test specimen
- Through-thickness: no periodicity

Warp direction

► X

 u_z

С

UTAR Unnotched Warp Direction Tension

Warp Loading Simulated vs X-ray CT Damage

UTAR Unnotched Fill Direction Tension

Open Hole Tension Prediction

LITARI RML2 OHT Tow Models

Warp Direction Loading

ITAR RML2 OHT Property Assignment and Damage

Macro-level modeling; homogenized properties; No damage

Meso-level modeling; matrix and tows modeled separately; No damage

Meso-level modeling; matrix and tows modeled separately; Damage enabled

UTAR OHT Stress-Strain Results

Fill-Direction Loading

Warp-Direction Loading

n = 4	Error from Experient	n = 2	Error from Experient
Modulus (1000-3000 µe)	2.9%	Modulus (1000-3000 µe)	-4.4%
Strength	-8.9%	Strength	5.9%

Note: these predictions were blind with no knowledge of experimental results

LITAR Fill Direction Damage Progression

Warp Direction Damage Progression

LITAR Conclusions & Future Work

Conclusions

- Processing to Performance simulation procedures yielded good results
 - Morphology developed successfully with VTMS
 - Homogenized properties were calculated using PCM.
- Unnotched tension predictions
 - Warp ~ 6%
 - Fill ~ 22%
- Open Hole Tension
 - Warp ~5% blind prediction vs experiment
 - Fill ~9% blind prediction vs experiment

Future Work

- Open Hole Compression using OHT models
- Processing-induced flaws
- Bonded joining

Questions?

This work was supported by Southwest Research Institute of San Antonio, TX, subcontract to the University of Texas at Arlington under AFRL contract FA8650-19-C-5213.

Additional Charts

LITAR Fill Direction Damage Progression

Warp Direction Damage Progression

Discrete Damage Approach (in BSAM)

• <u>Rx-FEM</u>

- AFRL-unique methodology
- Captures matrix crack discontinuity
- Preserves integration schema
 - Cracks & delams behave well numerically!

• Initiation (Matrix Damage)

- LaRC-04 for matrix cracks {NASA}
- Hashin-Rotem + Miner Rule for fatigue
 - Matrix cracks & delamination {AFRL}

• **Propagation** (Matrix Damage) {AFRL}

- Cohesive Zone Method for static & fatigue
- CZM altered according to Miner Rule

• Initiation/Propagation (Fiber Damage)

- Critical Failure Volume (stochastic) {AFRL}
- Continuum Damage Mechanics {mod. NASA}
- Damage Mechanics {ONERA France}

Moisture, Oxidation, Swelling, etc.

- Mixture Theory for Oxidation {RXCC Rick Hall}
- Moisture {UTA & Stevens Institute}

LITAR Virtual Textile Morphology Suite (VTMS)

Multi-Chain Digital Element Method

5-module software suite

 DISTRIBUTION STATEMENT C. Distribution authorized to U.S. Government Agencies and their contractors only. Critical Technology (9 May 2023). Other requests for this document shall be referred to A EPL (PXN)C

Independent Mesh Method (IMM)

Standard FEA Approach

- Generally depends on <u>perfect</u> definition of geometry and nodal connectivity between regions
- Even if meshable, it can still produce elements with unacceptable aspect ratios

- Does <u>not</u> depend on perfect definition of geometry
- Region connectivity accomplished through penalty method.
- Region meshing becomes tractable

