Accurate characterisation and modelling of the nonlinear bending behaviour of non-crimp fabrics for composite process simulations

Challenge

The 11th International Conference on Composite Testing and Model Identification, Girona, Spain 2023-06-01

Aim: to accurately simulate defects (wrinkles) during the manufacturing of composite structures

AALBORG UNIVERSITY DENMARK

Challenge

The 11th International Conference on Composite Testing and Model Identification, Girona, Spain 2023-06-01

AALBORG UNIVERSITY DENMARK

Challenge and aim of this work

4

Accurate modelling of the bending behaviour of each fabric is important for accurate prediction of the defects arising during manufacturing

In this work, we will present:

- An accurate and reliable method for characterising fabric bending stiffness
- Application of FE models with non-constant bending stiffness

Outline

Background

The 11th International Conference on Composite Testing and Model Identification, Girona, Spain 2023-06-01

Material and bending stiffness

Unidirectional non-crimp fabric

State-of-the-art

Methodology - Experimental setup

The 11th International Conference on Composite Testing and Model Identification, Girona, Spain 2023-06-01

Experimental setup [2]

Light

Input image

AALBORG UNIVERSITY DENMARK

Peter Hede Broberg phb@mp.aau.dk

7

Methodology – Data processing

Methodology – Data processing

Results

Conclusions

The 11th International Conference on Composite Testing and Model Identification, Girona, Spain 2023-06-01

- Accurate characterisation and modelling of fabric bending stiffness are needed to predict process-induced wrinkles.
- An automatic and reliable method for processing the images from a cantilever bending test has been presented.

Model predicted wrinkling

 Using the measured bending stiffness, accurate predictions of wrinkle size and location is obtained.

AALBORG UNIVERSITY DENMARK

THANK YOU FOR YOUR ATTENTION

The 11th International Conference on Composite Testing and Model Identification, Girona, Spain 2023-06-01

You can read more about the method in our newly published journal paper: Broberg PH, Lindgaard E, Krogh C, Jensen SM, Trabal GG, Thai AF-M & Bak BLV (2023), One-click bending stiffness: Robust and reliable automatic calculation of moment-curvature relation in a cantilever bending test, Composites Part B: Engineering, 110763, https://doi.org/10.1016/j.compositesb.2023.110763

The CraCS team:

Assoc. Prot. Assoc. Prot. Esben Lindgaard Brian L. V. Bak Postdoc Ph.D. Studen Simon M. Jensen Iñigo U. Oca

Ph.D. Student Ph.D. Student Ph.D. Student Asbjørn M. Olesen Peter H. Broberg Alexander F. Thai

Project partners:

phb@mp.aau.dk

13

The 11th International Conference on Composite Testing and Model Identification, Girona, Spain 2023-06-01

[1]: Krogh C, Broberg PH, Kepler J & Jakobsen J (2022). Comprehending the Bending: A Comparison of Different Test Setups for Measuring the Out-of-Plane Flexural Rigidity of a UD Fabric, Key Engineering Materials 926 1257-1267

[2]: Broberg PH, Lindgaard E, Krogh C, Jensen SM, Trabal GG, Thai AF-M & Bak BLV (2023), One-click bending stiffness: Robust and reliable automatic calculation of moment-curvature relation in a cantilever bending test, Composites Part B: Engineering, 110763

[3]: Broberg PH, Krogh C, Lindgaard E & Bak BLV (2022). Simulation of wrinkling during forming of binder stabilized UD-NCF preforms in wind turbine blade manufacturing, Key Engineering Materials 926 1248-1256

[4]: Colin D (2022). Virtual development of non-crimp fabrics: numerical textile description at the scale of the filaments and forming simulation, Technische Universität München.

[5]: Thompson AJ, Belnoue JP-H, Hallett SR (2020). Modelling defect formation in textiles during the double diaphragm forming process, Composites Part B: Engineering, 108357

AALBORG UNIVERSITY DENMARK

Bonus slides

AALBORG UNIVERSITY DENMARK

The 11th International Conference on Composite Testing and Model Identification, Girona, Spain 2023-06-01

AALBORG UNIVERSITY DENMARK

Systematic errors

Modelling

The 11th International Conference on Composite Testing and Model Identification, Girona, Spain 2023-06-01

How to model a strongly heterogenous structure consisting of loose fibres as a homogenous continuum?

Deformation modes of the preform model

Ply-by-ply macro-scale modelling [3].

Bending model using asymmetric modulus

Ply deformation modes should be decoupled due to relative fibre motion Need a high tensile stiffness and a low bending stiffness.

AALBORG UNIVERSITY DENMARK

Pty N

Ply N-1

Pty 2

Phy 1

UD-NCF material

Homookheouk

binder interface

Simulation model

