Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

R028 - CALIBRATION OF A DIGITAL TWIN FOR STRUCTURAL TESTING

CompTest2023, 1 June 2023, Girona Raffael Bogenfeld

Model improvement by test data Basic idea

Model improvement by test data Required Steps

- 1. Identification of the uncertainties
 - Parametric uncertainty description
 - Quantification of the uncertainties
- 2. Study the parameter influence
 - Sensitivity of the nominal model
- 3. Target variables of the optimization
- 4. Optimization procedure
- 5. Validity check

Development Case: stiffened panel

Identification of the uncertainties

- Boundary conditions at the fixtures
- Stringer attachment stiffness
- Geometrical imperfection
- Simplifications of the elastic material parameters
- Load introduction
- Laminate thickness
- Measurement uncertainties

Development Case: stiffened panel Measured data and deformation

Physical

- 30 back-to-back strain gauges
- 3D displacement measurement through ARAMIS DIC

Virtual

- Virtual strain gauges through inverse distance averaging
- Displacements through inverse distance averaging measurements

Physical strain gauge position

Virtual strain gauge position

Calibration procedure

A non-linear least squares (LSQ) approach

<section-header>

Parameter x1

 $\min \left| \left| f(x, \beta) - y \right| \right|^2$

y: measured target values

Nonlinear LSQ Estimation

Calibration procedur Nonlinear Least Squares

- Full computation time: $T_{total} = T_s \cdot (1 + (m + 1) \cdot K)$
- Reduced computation time $T_{red} = T_s \cdot (1 + m + K)$
- Stiffened panel
 - $m\approx$ 15, K \approx 10 , $T_{s}\approx$ 1min
 - $-T_{Total_panel} \approx 2,5h$
 - $T_{red_panel} \approx 0,3h$
- Fuselage Section
 - m \approx 50, K > 10 , T_s \approx 2h
 - $T_{Total_barrel} > 1000h$
 - $T_{red_barrel} \approx 120h$

Computation times

Calibration procedur Nonlinear Least Squares

 Pre-calculation of the Jacobian matrix

 $J^{k} = J^{0}$; assumption: $\left(\frac{\partial^{2} r_{i}}{\partial \beta_{j} \beta_{l}}\right)_{j,l=1...m} \Rightarrow \mathbf{0}$

- damped LSQ (Levenberg Marquardt)
 → reduces the improvement step with per increment
- Sequential LSQ: Different groups of parameters are optimized in separate loops
- WLSQ: weight is chosen according to the sensitivity of an output variable toward the active parameter set

Calibration parameters Visualization of the sensitivity

Significant uncertainties

- o Elastic parameter
 - E11 (due to differing tension/compression values)
 - G12 (linearized value)
- o t laminate thickness
- $\circ\,$ Attachment stiffness of the stiffeners
- $\circ\,$ Rotational stiffness at the panel boundary
- Geometrical imperfections
- Any skalar value in the model could be included as a parameter
- Normalized Jacobian:

Percentage of output differencePercentage of parameter difference

Results: FE-based calibration

Reference simulation with different parameter set

Calibration point: F = 200 kN

Parameter set	E11	E22	v12	G12	К
Guess	156000	9090	0.228	5500	1000
Real Value	166000	8090	0.3	4500	1100
Intial Guess (relative)	94%	112%	76%	122%	91%
Initial guess error (relative)	-6%	12%	- 24%	22%	- 9%
Calibration result (absolute)	170800	8490	0.288	4756	1160
Calibration result (relative)	103%	105%	96%	106%	105%
Result error	3%	5%	-4%	6%	5%

Three Iterations (k=3)

Results: FE-based calibration Different measured values Calibration point: F = 200 kN

					the second se
Parameter set	E11	E22	v12	G12	K
Guess	156000	9090	0.228	5500	1000
Real values	166000	8090	0.228	3500	1055
Initial values (relative)	94%	112%	100%	157%	95%
Initial guess error (relative)	-6%	12%	0%	57%	-5%
Results (outside) k=3	173200	8627	0.224	3840	1049
Results (inside) k=3	181000	9180	0.22	3971	1072
Results (both sides) k=3	173000	8615	0.228	3870	1160

30 strains from both sides

12

15 strains on outer skin

15 strain on inner skin

Results: FE-based calibration Incompatible parameter sets

Calibration point: F = 200 kN

Zu schätzende Parameter	E11	E22	v12	G12	K
Guess	156000	9090	0.228	5500	1000
Real Value	140000	9090	0.228	5500	1000
Anfangswert (rel)	111%	100%	100%	100%	100%
Initial guess error (relative)	11%	0%	0%	0%	0%
Results k=3	156000	11540	0.23	6161	1049
Results k=1	156000	12143	0.23	6244	1058
Results (relative) k=3	111%	134%	101%	114%	106%
Fehler im Ergebnis k=3	11%	34%	1%	14%	6%

13

Results: Experiment-based calibration A real digital twin

Comparison is only possible with output values

	E11 [Mpa]	G12 [Mpa]	K_rot [Nmm/rad]	imperfect mode1	imperfect mode3
Initial	156000	5500	500000	1	1
Final	167112	4641	586500	0.36	0.178

$\beta_i^0 \{ j \in [1..m] \}$ structural model Jacobi matrix J^0 $\frac{\partial r_i}{\partial \beta_j}$ deviation Numerical $r_i = \varphi_i^{num} - y_i^{test}$ prediction φ_i^{num} WLSQ algorithm k+1Improved Improved parastructural meter set β_i^k model Cutoff criterion / Digital

k iterations

Twin

Review

Nominal

Advantages and disadvantages of the proposed procedure

Measurement

 y_i^{test}

Initial parameter set

Comparison of the relative influence of different factors to the accuracy of the calibration

Next steps

- MAAXIMUS barrel section
- Detection of local degradation
- Validation of model accuracy by virtual sensors

Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

Thank you! Dr.-Ing Raffael Bogenfeld raffael.bogenfeld@dlr.de

DAMAGE LOCALIZATION

Impact damage on the stiffened panel

Properties of the damage

- Gasgun impact 140J
 - Supported from behind
 - Central position
- Damage
 - 4000mm² projected delamination
 - symetrical damage
 - delamination differs per interface
 - Fiber fracture on the impact side

Impact damage on the stiffened panel Influence of damage to the compression test

Impact damage on the stiffened panel Degradation localization through refinement

- Hirarchical division of the structure into subdomains
- Probability based approach to find the most likely region of degradation
- References only for horizontal and vertical refinement sections
 Junhandy in terms of storage and computational effort
- Sensitivity of the local stiffness is very low
 → Even a 4000mm² is hardly detectable and likely leading to an implausible optimization

22

Impact damage on the stiffened panel Grid-based degradation localization

 Each refinement requires its own reference
Junhandy in terms of storage and computational effort

 Sensitivity of the local stiffness is very low
→ Even a 4000mm² is hardly detectable and likely leading to an implausible optimization 1st calibration layer (vertical localization) 2nd calibration layer (horizonal localization)

Calibration procedure Reference data aquisition

Nelelelice uala aquisilic

1. Point-based calibration

 Selection of an individual loading point for the calibration

2. History-based calibration

 Inclusion of the entire load path or a subsection from it for the calibration

3. Nonlinear history-based calibration

- Der gesamte Belastungspfad, oder ein Teil davon wird in die Kalibrierung einbezogen
- \circ Parameter $p_j(t)$ sind keine skalaren Kennwerte sondern Funktionen

