

The 11th International Conference on Composite Testing and Model Identification (CompTest 2023)

ADAPTED BUCKLING SUPPORT TO INVESTIGATE THE COMPRESSIVE PROPERTIES OF LONG AND THIN SPECIMEN

- B. Kötter², J. Mittelhaus¹, J. Körbelin¹ and <u>B. Fiedler^{1*}</u>
- ¹ Hamburg University of Technology, Institute of Polymers and Composites, Hamburg, Germany
- ² Kyoto University, Department of Mechanical Engineering and Science, Kyoto, Japan

01.06.2023, Girona

- Suppression of delaminations
- Failure behaviour changes from delamination-dominated (Thick) to brittle, fibre-dominated (Thin) behaviour
- Significantly increased strength with decreasing layer thickness

Constant-Life-Diagram (CLD)

- Superior static behaviour with decreasing layer thickness
- Superior fatigue behaviour with decreasing layer thickness independent of stress ratio

- No Delaminations occur in the case of the 30 gsm and 60 gsm
- 60 gsm samples exhibit a high number of inter-fibre fractures

Fatigue R = - 0.5 (Tension – Compression)

Thin-Ply:

• High stresses

 \rightarrow Failure in the region of load introduction due to high-stress concentrations

High cycles

 \rightarrow Less degradation \rightarrow Higher fatigue performance

Girona, 01.06.2023

Fatigue R = - 0.5 (Tension – Compression)

- Impact energy: 8J
- No edge delamination
- No fibre fracture
- Clamping in accordance with ASTM D-7136-5

- Anti-buckling support in accordance with ASTM D-6484
- Free transversal contraction
 - Less edge delamination
- Stress ratio R = -0.5

- Fatigue tests
- Stepwise fatigue tests
 - Ultrasonic scans
 - Computer tomography
 - Microsections

Impact

With **decreasing** layer thickness:

- Larger projected delamination area
- Less indent deformations
- Suppression of inter-fibre fracture
- Shape of delamination change from a peanut shape to a circular shape
- Only 3 delaminations yield to sublaminates (30gsm)

Fatigue after impact– CT images

- Less damage growth due to lower interlaminar shear stresses
- Sublaminates exhibit a positive influence on the fatigue performance under compressive stresses

Conclusion

Reminder Thin-Ply:

- Higher static tensile and compressive strength with decreasing layer thickness
- Failure behaviour changes from delamination-dominated (Thick) to fibre-dominated (Thin) behaviour

Fatigue behaviour:

- Thin-Ply composites exhibit a superior fatigue performance independent of the stress ratio
- Fatigue behaviour under tensile-compressive stresses
 - Thin-Ply: Failed under tensile stress
 - Thick-Ply: Failed under compressive stress
- \rightarrow Fibre fracture
- \rightarrow Delaminations

Fatigue after impact:

• Thin-Ply:

٠

- Larger delaminated areas projected
- Superior fatigue behaviour \rightarrow Less damage growth

Acknowledgements

Thin-Ply

- Layer thickness below 100 μm, down to 18 μm
- Tow spreading process to spread 24k tows
- Higher laminate qualities
 - More homogeneous fibre distribution
 - Less and smaller resin-rich areas

More degrees of freedom in design:

- Possibilities to optimize the laminate
- Low influence of design-rules

Significantly higher strength:

- Tensile tests of quasi-isotropic laminates:
 - Improved onset of damage (+230%)
 - Improved ultimate strength (+41%)

[Amacher 2014]

Zugversuche - Bruchbilder

- Zunehmende Zug- und Druckfestigkeit mit abnehmender Schichtdicke
 - Spröderes Versagensverhalten
 - Keine bzw. geringe Vorschädigungen
- Gleiche Festigkeiten von 30 und 60 gsm Proben

Zugversuche – AE Untersuchungen

