# CAI FATIGUE TESTING IN CFRP: IS THE TEST REPRESENTING WHAT HAPPENS IN REAL STRUCTURES?

#### Davide Biagini\*, John-Alan Pascoe, René Alderliesten

\*D.Biagini-1@tudelft.nl



**Delft University of Technology** 

Aerospace Structures & Materials

# Impact delamination in CFRP



Delamination depth [mm]

## Delamination: plateau or gradual growth?

#### 1. No-growth of projected area

Fatigue behavior and lifetime distribution of impact-damaged carbon fiber/toughened epoxy composites under compressive loading

Toshio Ogasawara , Sunao Sugimoto , Hisaya Katoh & Takashi Ishikawa

To cite this article: Toshio Ogasawara , Sunao Sugimoto , Hisaya Katoh & Takashi Ishikawa (2013) Fatigue behavior and lifetime distribution of impact-damaged carbon fiber/toughened epoxy composites under compressive loading, Advanced Composite Materials, 22:2, 65-78, DOI: 10.1080/09243046.2013.768324

To link to this article: https://doi.org/10.1080/09243046.2013.768324



#### 2. Plateau phase projected area



International Journal of Fatipus 24 (2002) 217-261

Impact damage growth in composites under fatigue conditions monitored by acoustography

A.S. Chen, D.P. Almond ", B. Harris

Maurial: Research Centre, Department of Engineering and Applied Televise. University of Bash, BA2, 547, 128,



C-C load

#### 3. Gradual growth projected area



International

www.slain.ter.com/licate-Uffrague

Journal of

Fatique

COMPOSITES SCIENCE AND TECHNOLOGY

#### Effect of loading parameters on the fatigue behavior of impact damaged composite laminates

Composites Science and Technology 59 (1999) 2019 2018

Milan Mitrovic<sup>a</sup>, H. Thomas Hahn<sup>a,\*</sup>, Greg P. Carman<sup>a</sup>, Peter Shyprykevich<sup>b</sup> "Mechanical and Assumption Engineering Department, University of California, Los Angeles, CA 98003-1997, USA "FAA William J. Higher Technical Courte, Atlantic City International Asport, NJ 88485, USA

Received 26 July 1998; received in revised form 3 March 1999; accepted 13 April 1999





N = 10,000

Echo-pulse ultrasound scan (Dolphicam 2)



2. CFAI test



Through thickness transmission ultrasound scan





Acoustic emissions

### Growth inside the non delaminated cone must be considered



# Preferential growth of short delamination



### Preferential growth of short delamination



Growth of projected delaminated area is not sufficient



#### no growth in the C scan $\neq$ no damage growth





Are these results general?

# No growth of projected delamination area

#### long and short fatigue life same qualitative growth





# ≠ Setup

#### X Final growth 90 deg direction



Composites Science and Technology



Compression fatigue failure of CFRP laminates with impact damage

Nobuhide Uda \*\*, Kousei Ono \*, Kazuo Kunoo b

<sup>1</sup>Department of Aeronautics and Abtronautics. Apatha Detectory, 744 Mateola, Nabi Ea, Fakaola 819-8295, Japan <sup>9</sup>Department of Aeronaux Tystems Departming Sate Datorsky, 8-22-3 deala, Eamanute 888-8202, Japan





Composites Science and Technology 59 (1999) 2019 2018

COMPOSITES SCIENCE AND TECHNOLOGY

Effect of loading parameters on the fatigue behavior of impact damaged composite laminates

Milan Mitrovic<sup>a</sup>, H. Thomas Hahn<sup>a,\*</sup>, Greg P. Carman<sup>a</sup>, Peter Shyprykevich<sup>b</sup> "Mechanical and Assupece Engineering Department, University of California, Los Angeles, CA 90003-1997, USA "FAA William J. Inglus Technical Court. Adamic City International Algorit. JO 00005, USA

Received 26 July 1998; received in revised form 5 March 1999; accepted 12 April 1999







N = 10,000

## Real structures are different from test setup

Anti-buckling guides not present

Multidirectional loading

Large structures

# Conclusions

#### **Combining multiple techniques** $\longrightarrow$ **better understanding**

growth in the non delaminate cone growth of short delamination low frequency AE during early stages of fatigue

#### Results are highly dependent on the adopted fixture

Similar monitoring strategies should be used to non/standard fixture





- = Setup
- ≠ Impact energy
- ≠ Layups



**V** Final growth 90 deg direction



Composites Science and Technology 61 (2001) 1841-1852

COMPOSITES SCIENCE AND TECHNOLOGY

www.elsevier.com/locate/compscitech

Buckling behaviour and delamination growth in impacted composite specimens under fatigue load: an experimental study

L. Gunnar Melin\*, Joakim Schön Swedish Defence Research Agency, SE-172 90 Stockholm, Sweden

Received 5 January 2001; received in revised form 22 May 2001; accepted 7 June 2001

21<sup>st</sup> International Conference on Composite Materials Xi'an, 20-25<sup>th</sup> August 2017

#### FATIGUE LIFE AND FAILURE OF IMPACT-DAMAGED CARBON FIBRE COMPOSITES UNDER COMPRESSIVE CYCLIC LOADS

Fan Xu, Wenli Liu\* and Phil E. Irving

Centre of Aeronautics, Cranfield University, Cranfield MK43 0AL, UK \*Corresponding author (wenli.liu@cranfield.ac.uk)



