

Liberté Égalité Fraternité

Experimental characterization and numerical modeling of damages induced by low-velocity impacts in recent composite materials

S. Chaibi, **F. Laurin**, J. Rannou, J. Berthe $C.$ Bouvet $|C \triangle A$ and F. Congourdeau

This document and the information contained herin is proprietary information of ONERA and shall not be disclosed or reproduced without the prior authorization of ONERA.

.

Context of the study

Impact damage threat

ONERA

THE FRENCH AEROSPACE LAB

RÉPUBLIOUE **RANCAISE**

Drop tools issues

- Occur during manufacturing or maintenance
- Low velocity / low energy impact cases
- Induce non negligible damage
- Decrease drastically the residual performances

[Lopes 09 , Gonzales 12, Hongkarnjanakul 13]

• Material with interface toughness increased

❖ **Objective of the study**

❖ **Real-time instrumented LV/LE impact tests**

❖ **Analysis of damage patterns through FE simulation**

❖ **Conclusions/Perspectives**

Classical experimental setup

Test campaign

Experimental setup

LVE/LVI performed according to the standard ASTM D7136

16 mm diameter impactor with a weight of 13 kg

4 impact energy levels are defined (6.5-11-20-35 Joules)

Specimens

2 different stacking sequences (16-20 plies)

Quasi-isotropic QI laminate [(0/45/90/-45)²]s , Oriented OR laminate [0/-45/0/45/0/90/45/0/-45/0]^s

according to the standard ASTM D7136

Post-mortem analysis methods

Ultrasonic fast scans

1 mm resolution 5 MHz probe Fast scanning method **Projected damaged area**

X-ray µ-tomography

14-19 microns resolution Deep learning segmentation **3D damage assessment**

Micrographs observation

Cuttings at 0, 45 or 90° optical microscope, SEM **Nature of the different damage**

Specificities of the studied composite material

Damage close to impactor

- Lower delaminated areas than other former composite material
- Many fibre kinkings observed close the impactor

Intra-ply delamination

- Intraply delamination cracks observed only in top plies (QI & OR)
- Fibre kinkings initiate the observed intra- ply delamination

Complexity of the post-mortem damage pattern

Strong damage interactions → **very complex damage scenario**

Real time damage monitoring

Real-time damage observation

- Modification of the existing setup
- 2 high speed IR cameras
- 2 high speed visible cameras
- Observation of impacted and rear faces
- Mandatory to establish damage scenario

Medium-speed infrared camera (CEDIP)

High-speed infrared camera (TELOPS)

Composite sample

8

High-speed optical cameras x2 (FASTCAM)

Rear side

THE FRENCH AEROSPACE LAB

Impact damage monitoring in QI laminate at 21J

On the impacted side

RÉPUBLIQUE **FRANCAISE** Liovric
Égalité
Frateraité

THE FRENCH AEROSPACE LAB

- Fibre kinkings arise at 68 % of max load
- Propagation of kinking during loading

On the rear side

Splitting cracks in 0 ply trigger delamination

9

• Fibre failure in tension at 3,9ms

Chronology of the different damage events have been established

❖ **Objective of the study**

❖ **Real-time instrumented LV/LE impact tests**

❖ **Analysis of damage patterns through FE simulation**

❖ **Conclusions/Perspectives**

Finite element model of the impact experimental setup

Impact simulation configuration

- Each ply is meshed using solid elements
- Interface elements are used between each ply
- Dynamic scheme with an **implicit solver** is used
- Initial velocity is applied to the impactor
- 6.5, 11, 20 and 35 J impact tests are simulated
- Non linear geometry is considered
- Frictionless contact with impactor and setup

Intra-ply damage and failure modelling

 $Z = 6$

 $\mathfrak{E}_{bulk}(\varepsilon,\phi)=g(\phi)\frac{1}{2}\varepsilon^{t}\mathbb{C}(\phi)\varepsilon=(1-\phi)^{2}\frac{1}{2}(\sigma_{11}\varepsilon_{11}+2\sigma_{12}\varepsilon_{12}+2\sigma_{13}\varepsilon_{13})$

• Alternate resolution (mechanical and phase-field)

[Miehe 15, Bleyer 18, Quintanas 20, Bourdin 2000]

Inter-ply damage modelling

Delamination modelling

- Cohesive zone modeling using a traction/separation law
- Reinforced for combined compression/shear TTS loading
- Phenomenological coupling between transverse cracks (noted D_{coup}) and delamination (*both* σ_c *and G_c*)
- Analysis of discrete ply model to define that coupling $|C \wedge$

Influence of the different model improvements

Damage pattern explanation

x H

Liovric
Égalité
Frateraité

- Analysis of the damage pattern for a QI laminate impacted at 21J
- Reinforcement for combined shear/compression explains absence of damage under striker
- Strong effect of coupling between delamination and intra-ply damage mechanisms

Comparison with available experimental data (1/2)

Predicted global responses

FRANCAISE Égalité
Fraterait

THE FRENCH AEROSPACE LAB

- Good agreement between tests and simulations performed with OPFM (ONERA) and DPM (ICA)
- Load drop at 35J can be improved for the two models but dissipated energy in good agreement

Both QI and OR laminates have been considered

Comparison with available experimental data (2/2)

Predicted damaged area

- Good agreement between tests and simulations performed with OPFM (ONERA) and DPM (ICA)
- At 35J prediction of DPM model is better due to coupling trans. cracking/delamination

- ❖ **Objective of the study**
- ❖ **Real-time instrumented LV/LE impact tests**
- ❖ **Analysis of damage patterns through FE simulation**
- ❖ **Conclusions/Perspectives**

Conclusions / Perspectives

QI laminate at 35J

Conclusions

- Fine analysis of damage mechanisms in a new generation of Carbon/Epoxy material (high toughness)
- Real time damage monitoring thanks to super-fast IR cameras
- Analysis of test results with advanced models to explain interaction between the different damage mechanisms

- Simulations for different locations of impact in composite plates (potential interaction free with edges)
- Considering compression after impact with both ONERA and ICA models and comparison with test results

Liberté Égalité Fraternité

ONERA

THE FRENCH AEROSPACE LAB

www.onera.fr