Simulation of damage induced acoustic emission in laminates

A. Doitrand

Z. Hamam, N. Godin, P. Reynaud, C. Fusco, N. Carrère

COMPTEST, Girona, 01-06-2023

Acoustic emission testing

Material

- \Box [0_n/90_n/0_n] laminates
- □ 0.3 mm thick Hexply[®] 8552 plies
- $\square Epoxy resin/AS4 carbon fiber (60%)$

Instrumentation

- 2 micro80 sensors (Mistras Group, Princeton, NJ, USA)
- 2 picoHF sensors (Mistras Group, Princeton, NJ, USA).

Acoustic emission (AE)

AE – damage mechanisms classification

Amplitude (dB)

 Acoustic signal classification approaches

 \Rightarrow Lot of experiments needed

 \Rightarrow Material/equipment dependence

Morizet *et al.*, *Mech. Sys. Sig. Proc.*, **2016**

> Godin *et al.*, *App. Sci.*, **2018**

Anastassopoulos et al.,

Non Des. Test., 1996

 $\Rightarrow \between damage mechanisms and signals? \between damage mechanisms and signals \between damage mechanisms \between damage mechanisms \between damage mechanisms \between damage mechanisms \between damage \betwe$

(c) Panel 3 double 90° Interior Cracks

PF ... Peak Frequency FC ... Frequency centroid

✤ Limits:

(d) Panel 4 Surface 90° Crack Baker *et al.*, *CST*, **2015** (1) Surface 90 ply cracking
→ low PF and low FC

(2) Inner 90 ply cracking → higher frequency content

→ Numerical simulation to gain confidence in experimental approaches

Acoustic Emission simulation

□ Identify the acoustic signature of transverse crack in $[0_n/90_n/0_n]$ or $[90_n/0_n/90_n]$ (n=1 or 3)

Media and source simulation

Media + source

- $\square [O_n/9O_n/O_n] \text{ or } [9O_n/O_n/9O_n]$ n=1 or 3
- □ Transverse crack initiation
- Coupled criterion to determine the transverse crack initiation loading

Wave propagation Acoustic signals

- □ Static loading step
- Node release to open the crack
- Implicit dynamic wave propagation step

Sensor + acquisition chain

- Perfect point sensor
- Sensor influence through frequency response curve
 + sensitivity function

Influence of the ply thickness (theory)

♦ Energy criterion (Finite Fracture Mechanics) → Does not work for thick plies Hashin, JMPS, 1996

✤ Idea: add a stress criterion to assess crack nucleation
Leguil

Leguillon, EJMAS, 2002

Nairn, *IJF*, **2000**

Influence of the ply thickness (experiments)

♦ Energy criterion (Finite Fracture Mechanics) → Does not work for thick plies Hashin, JMPS, 1996

Idea: add a stress criterion to assess crack nucleation

Leguillon, EJMAS, **2002**

Nairn, *IJF*, **2000**

Influence of the ply thickness (simulation)

Perfect sensor located at crack epicenter

Ply thickness/Stacking sequence

Influence of the source-sensor distance

Influence of the source-sensor distance

Frequency decrease with wave propagation (damping)

similar far from it

Summary/conclusions

□ No univocal link between transverse cracking and the acquired AE signal

Transverse cracking AE signals strongly depend on the stacking sequence/ crack position within the thickness

Outer ply thickness has a limited influence on transverse cracking EA signals

Inner ply thickness has a strong influence on signals only if the sensor is close to the source

Inner and outer ply cracking could be considered as two different damage mechanisms in classification approaches

Any Questions?

Influence of the ply thickness

JOURNAL OF MATERIALS SCIENCE 13 (1978) 195-201

Constrained cracking in glass fibre-reinforced epoxy cross-ply laminates

 Large plies: energy excess => multiple cracks

Influence of the ply thickness

JOURNAL OF MATERIALS SCIENCE 13 (1978) 195-201

Constrained cracking in glass fibre-reinforced epoxy cross-<u>plv laminates</u>

Thin plies: All the energy is consumed in crack initiation

Ply thickness/Stacking sequence

$\hfill\square$ Time-frequency analysis

- Inner cracks:
 Higher frequency content for thinner plies
- Frequency content decrease with propagation time
- Relatively similar frequency content for outer cracks whatever the ply thickness

Preliminary comparison with experiments

Quantitative comparison between simulation and experiments not trivial

- Relation between out-of-plane velocity and the sensor tension
- Consider all acquisition chain elements
- Modeling uncertainty (source/homogeneous ply assumption, etc)
- Experimentally, isolated damage mechanism?

Preliminary comparison with experiments

Preliminary comparison with experiments

□ Micro80 sensor

- Isolated damage mechanisms experimentally?
- Uncertainties from numerical modeling:
 e.g. source,acquisition chain

Example of modeling uncertainty: the AE source

Similar qualitative trend

Quantitative differences

