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IAcoustic emission testing
g |

Q [0,/90,/0,] laminates

O 0.3 mm thick Hexply® 8552 plies

PicoHF | | micro80 ‘

O Epoxy resin/AS4 carbon fiber (60%
7

Instrumentation

PicoHF | 3 2 micro80 sensors (Mistras
| Group, Princeton, NJ, USA)

Q 2 picoHF sensors (Mistras
Group, Princeton, NJ, USA).



Acoustic emission (AE)
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AE - damage mechanisms classification

Carbon fiber / epoxy matrix
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Matrix
crackin
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(c) Panel 3 double 90°
Interior Cracks

PF .. Peak Frequency
FC .. Frequency centroid

% Acoustic signal classification
approaches

Anastassopoulos et al,
Non Des, Test., 1996

Morizet et al,

* H H .
% Limits: Mech. Sys. Sig. Proc, 2016

= Lot of experiments needed

. . Godin et al,

— Material/equipment dependence App. Sci, 2018
= Validation of quantitative links Baker et al,
> (57,2015

between damage mechanisms and signals

(d) Panel 4 Surface S0° Crack
Baker etal, CS7, 2015

(1) Surface 90 ply cracking
= low PF and low FC

(2) Inner 9o ply cracking
=» higher frequency content

=> Numerical simulation to gain
confidence in experimental
approaches



Acoustic Emission simulation

Wave
propagation
Acoustic signals

Fiber breakage
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Zelenyak et al,
Ultrasonics, 2018

Le Gall et al,

Sause et al,
App. 5ci, 2019

JNDE., 2010
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Sause et al,
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IObjective

O Identify the acoustic signature of transverse crack in [0,/90,,/0,] or [90,,/0,/90,] (n=1 or 3)

Surface
crack

| influence of ply thickness |




Media and source simulation

O Static loading step Q Perfect point sensor

Sensor +
acquisition chain

Q [o,/90,/0,] or [90,/0,/90,]

n-tors 0 Node release to open
O Transverse crack initiation the crack O Sensor influence through
frequency response curve
O Implicit dynamic wave + sensitivity function

O Coupled criterion to determine the

transverse crack initiation loading propagation step

Leqguillon,
EIMAS, 2002

Transverse crack
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Frequency (kHz)
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Influence of the ply thickness (theory)

% Energy criterion (Finite Fracture Mechanics) = Does not work for thick plies Hashin, /1775 1996

Nairn, ///, 2000

% |dea; add a stress criterion to assess crack nucleation Leguillon,
EJMAS, 2002

Parvizi, JMS, 1978
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Influence of the ply thickness (experiments)

% Energy criterion (Finite Fracture Mechanics) = Does not work for thick plies Hashin, J/A775 1996

o : : , , Nairn, /// 2000
% |[dea: add a stress criterion to assess crack nucleation Leguillon,

EIMAS, 2002
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Ilnﬂuence of the ply thickness (simulation)

 Perfect sensor located at crack epicenter
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crack
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Sensor

Transverse
crack

O 2D FFT =» excited modes
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Influence of the source-sensor distance

L Perfect sensor
located at several
distances from the
source
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Influence of the source-sensor distance

amplitude

O Perfect sensor Sensors

located at several
distances from the
source

Transverse
crack

+ [0,/90,/0,]
o [80,/0,/90,] |-
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[ Iﬁner crack ]
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(Vi

Frequency frequenc
\centroid

O Frequency decrease with wave
propagation (damping)

sequence
a Frequency content difference

between outer and inner cracks

influence of

ply
ICKNESS
O Outer crack = Same frequency

content whatever the thickness

O Inner crack = frequency content
different close to the source,
similar far from it
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ISummary/conclusions

(A No univocal Llink between transverse cracking and the acquired AE signal

O Transverse cracking AE signals strongly depend on the stacking sequence/ crack position
within the thickness

Q Outer ply thickness has a limited influence on transverse cracking EA signals
 Inner ply thickness has a strong influence on signals only if the sensor is close to the source

Q Inner and outer ply cracking could be considered as two different damage mechanisms in
classification approaches
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Influence of the ply thickness

JOURNAL OF MATERIALS SCIENCE 13 (1978) 195-201
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Constrained cracking in glass arge plies: energy excess ->
. 2 ; multiple cracks
fibre-reinforced epoxy cross-ply laminates
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Influence of the ply thickness

JOURNAL OF MATERIALS SCIENCE 13 (1978) 195-201

Constrained cracking in glass

fibre-reinforced epoxy cross-plv laminates

A.PARVIZI,K.W. GARRETT*, J. E. BAILEY
Department of Metallurgy and Materials Technology, Uni
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s Thin plies: All the energy is
consumed in crack initiation

O Experimental £y

Theoretical Eqy
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Frequency (MHz)

O Time-frequency analysis
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Frequency (MHz)

Transverse
crack

[90,/0,/90,]

o
o

Frequency (MHz)

[00/0/90]

200

Time (ps)

Sensor

Inner cracks:
Higher frequency
content for
thinner plies

Frequency
content decrease
with propagation
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Relatively similar
frequency

content for outer
cracks whatever
the ply thickness
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Preliminary comparison with experiments

g 3
Media + source \X/avef Sensor +
propagation acquisition chain
Acoustic signals
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Quantitative comparison between simulation and experiments not trivial
O Relation between out-of-plane velocity and the sensor tension

Q Consider all acquisition chain elements

0 Modeling uncertainty (source/homogeneous ply assumption, etc)

O Experimentally, isolated damage mechanism?



Preliminary comparison with experiments

Media + source
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IPreliminary comparison with experiments

- [ [0/90/0] J O Micro80 sensor

O Isolated damage mechanisms
experimentally?

O Uncertainties from numerical modeling:
e.g. source,acquisition chain

experiments
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Example of modeling uncertainty:
the AE source

Q Similar qualitative trend

0 Quantitative differences

* Unbutonning + CC
O  Cohesive zone _
o Unbutonning + crack velocity
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