A novel benchmark test for composites under complex loading sequences resulting in nonself-similar damage evolution

<u>Jordi Renart</u>¹, Laura Carreras¹, Iñaki Leciñana², Javier Zurbitu², Albert Turon¹ Girona, 31st May 2023

Introduction

Introduction

■ Characterization tests provide information about the fracture in composites

B But they are not representative of the in-service loading conditions of a structure:

Introduction

n Predictive models should not be validated by characterization tests

n But larger structures are more complex and expensive to test

Development of a new validation test method:

■ Allows the combination of complex loading modes (I, II and III):

- 3D crack fronts
- Switching between different loading modes

Test coupon as simple as a standardized specimen

A novel test concept

Test concept

■ By rotating the block, the R-curve evolves dissimilarly

We can rotate the loading blocks at different angles (α) sequentially achieving an ever-evolving non-self-similar delamination process

6

Monitoring of the delamination

The delamination front is monitored with X-ray

An algorithm (low pass filter + moving linear regression) is used to identify the crack tip and detection of damage

Case study

Material properties and specimen design

CFRP – AS4D/PEKK-FC, UD prepreg, ply thickness 0.138 mm

Cured in autoclave (consolidation process)

Specimen dimensions: 250mm x 25 mm x 4.2 mm

n Insert: 12.5 μ m polyimide film 60 mm

Tijs et al. Characterization and analysis of the interlaminar behavior of thermoplastic composites considering fiber bridging and R-curve effects. Composites Part A (2022)

Loading sequence and test procedure (I)

Combination of:
Static and fatigue tests
Mode I and mode II loading

Step	Loading mode	Loading angle	Maximum displacement	Number of cycles
0	Mode I (DCB)	+0°	Precrack	-
1	Shear mode (ELS)	+30°	7 mm	12 000
2	Mode I (DCB)	-30°	5 mm	30 000
3	Mode I (DCB)	-30°	10 mm	-
4	Mode I (DCB)	-30°	10 mm	400 000

■ Monitoring the delamination

SEM of the fractured surfaces

Loading sequence and test procedure (II)

DCB with inclined blocks

D ELS with inclined blocks

UdG

Results

Results - Step 1: ELS at +30°

D Fatigue, $\delta_{\text{max}} = 7 \text{ mm}, R = 0, 1$

- * Leading delamination tip
- + Start of damaged area
- * Crack tip after step 0

Results - Step 1: ELS at +30°

D Fatigue, $\delta_{\text{max}} = 7 \text{ mm}, R = 0, 1$

- * Leading delamination tip
- + Start of damaged area
- * Crack tip after step 0

- The damaged area created by the Mode I pre-crack disappears after 500 cycles.
- SEM images show that fibres from fibre bridging are broken

16

D Fatigue, $\delta_{\text{max}} = 7 \text{ mm}, R = 0, 1$

- + Start of damaged area
- * Crack tip after step 0

The Mode II fatigue test creates a new damaged area

Results - Step 2: DCB at -30°

D Fatigue, $\delta_{\text{max}} = 5 \text{ mm}, R = 0, 1$

- + Start of damaged area
- * Crack tip after step 0
- * Crack tip after step 1

Inclined delamination tip following the inclination of the blocks

Results - Step 2: DCB at -30°

 \square Fatigue, $\delta_{\text{max}} = 5 \text{ mm}$, R = 0, 1

- * Leading delamination tip
- + Start of damaged area
- * Crack tip after step 0
- * Crack tip after step 1

The damaged area created by the Mode II fatigue tests does not disappear even after the application of Mode I loading

Results - Step 2: DCB at -30°

D Fatigue, $\delta_{\text{max}} = 5 \text{ mm}$, R = 0, 1

- * Leading delamination tip
- + Start of damaged area
- * Crack tip after step 0
- * Crack tip after step 1

Plastic deformation traces at shear mode fracture regions were more pronounced in regions where a higher strain energy release rate was applied

* Leading delamination tip

- + Start of damaged area
- * Crack tip after step 0
- Crack tip after step 1
- * Crack tip after step 2

Results - Step 3: DCB at -30°

G Static, $\delta_{\text{max}} = 10 \text{ mm}$

New Mode I failure surface created (fiber bridging)

- * Leading delamination tip
- + Start of damaged area
- * Crack tip after step 0
- Crack tip after step 1
- * Crack tip after step 2

Results - Step 4: DCB at -30°

 \square Fatigue, $\delta_{\text{max}} = 10 \text{ mm}$, R = 0, 1

- * Leading delamination tip
- + Start of damaged area
- * Crack tip after step 0
- * Crack tip after step 1
- * Crack tip after step 2

Inclined delamination tip following the inclination of the blocks

Results - Step 4: DCB at -30°

D Fatigue, $\delta_{\text{max}} = 5 \text{ mm}, R = 0, 1$

- * Leading delamination tip
- + Start of damaged area
- * Crack tip after step 0
- * Crack tip after step 1
- * Crack tip after step 2

 \square Same fracture surface along the entire step.

Conclusions

Conclusions

A novel benchmark test for composite materials is presented where:
3D delamination fronts are obtained by rotating the loading blocks.
It allows testing any combination of loading conditions resulting in non-self-similar delamination process.

■ A case study was provided with AS4D/PEKK-FC thermoplastic composite material, which is known to have a strong R-curve behavior:

- The loading mode history must be considered in materials that exhibit R-curve effects to accurately model the delamination process
- The loading severity must be considered when evaluating the mode history and the Rcurve effects

http://amade.udg.edu testlab.amade@udg.edu

Universitat de Girona

Part of:

