

Characterization of a filament wound thinply composite for a cryogenic tank for liquid hydrogen **Robin Olsson** Erik Marklund, Matthias Merzkirch, Dimitra Ramantani **Department of Polymers, Fibres and Composites RISE, Mölndal** Presentation at CompTest, Girona 2023-05-31

Background

Hydrogen as fuel

- Low weight & high energy suitable as fossil free fuel for aircraft
- High energy/kg but too large volume if not kept liquid at -253°C

Composite tanks

- Carbon fibres provide lowest weight
- Thin plies required to prevent thermal cracking

Challenges

- Small hydrogen molecules make it hard to prevent leakage
- Large thermal stresses in cryogenic tanks

Fibres

Fibres

Thin plies for linerless design

Thin composite bands in angle-ply layup used to prevent matrix cracking

LH2-Tanks project

Two year Swedish project on linerless CFRP tanks for liquid hydrogen (2021-2023)

Partners: **RISE**, Oxeon, Konvegas, Chalmers University, Linköping University Funding: Swedish Energy Agency (project P2021-90061) Co-funding: Oxeon,

⁴ Complex 2023: LH2-Tanks Material tests (R. Olsson)

Composites made by filament winding

 $(\pm 41^{\circ})_{n}$: FVF $\approx 54\%$

 $(\pm 0.5^{\circ})_{n}$: FVF \approx 57-61%

- UD-plies not homogenous filaments separated by resin rich regions
- Material is a result of winding data for the composite must be measured Aim: determine properties of UD material as a basis for design of optimum layup

Testing at various temperatures

- Limited to tensile testing
- Focus on matrix dominated properties

Material tests at RISE RT & -150°C (using LN2)

https://www.instron.com

Material tests at INTA -253°C=20 K (using He)

Picture by INTA

Transverse tensile tests

- *E*₂ increases about 30% at cryogenic temperature
- No increase in strength Y_t at -253°C, **maybe** due to higher defect sensitivity caused by a more brittle matrix behaviour

Shear test methods

Shearing by 10° off-axis tension

Corrected strength in pure shear by using Tsai-Hill criterion for 10° and 90° data

- Nonlinear shear effects very small at 20 K
- Shear strength increases significantly at 20 K

CTE tests

Measured at Netzsch with dilatometer between -180°C and +100°C Measured at INTA with biaxial fibre optic sensors (FBGS) during cooling from RT to -253°C

https://analyzing-testing.netzsch.com

- Mean CTE varies almost linearly between -200°C and T_g
- CTE drops sharply below -200°C

Intralaminar toughness tests

- *Intra*laminar toughness required to estimate in-situ strengths
- Measured as *inter*laminar toughness in $(\pm 0.5^{\circ})_{n}$ specimens as angle-ply layup causes severe intralaminar fibre bridging
- Toughness measured by DCB and ENF, but only at RT ٠

DCB Mode I tests

Conclusions for our design

- Micromechanics used to correct material properties for differences in FVF between UD test coupons and real tank
- Variation in CTE replaced by an average CTE from T_α (93°C) to service temperature (-253°C)

Composite cylinder with titanium end caps for simplified manufacture

Adhesive joints between composite and end caps, with axial rods as "safety belts".

• To avoid adhesive joint failure the composite layup was selected to match its CTE in the hoop direction to the titanium end caps (and not to maximize laminate strength).

Thin-ply/LH₂ activities at RISE

	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Internal	FRP piping											
Swedish		UpInT	heBlue								LF	12-Tanks
Swedish											Н	2JET
Bilateral			D	AMTEX	e					-	KCTech	:•:
EU			CHA	NTT .				10	drogen s	torage CFRP		
Airbus-Eur.			Thin ply m	eetings, Hb	g			H	vith thin P	ity		

