EVALUATING THE INTRALAMINAR TENSILE FRACTURE BEHAVIOR OF COMPOSITE MATERIALS UNDER HIGH RATE LOADING THROUGH ACOMBINED EXPERIMENTAL AND NUMERICAL METHODOLOGY

A. Cimadevilla

A. Vaz-Romero

J. Pernas-Sánchez

J. A. Artero-Guerrero

E. V. González P. Maimí E. De Blanpre V. Jacques (Universidad Carlos III Madrid) (Universidad Carlos III Madrid) (Universidad Carlos III Madrid) (Universidad Carlos III Madrid) (Universitat de Girona) (Universitat de Girona) (Dassault Aviation) (Dassault Aviation)

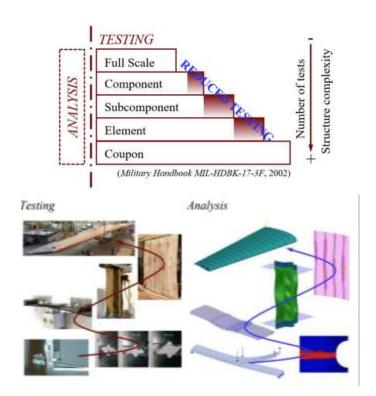
11th International Conference on Composite Testing and Model Identification (COMPTEST 2023)

Girona - 31st May 2023

Outline

- Introduction
- Methodology
- Results
- Conclusions

Outline


- Introduction
- Methodology
- Results
- Conclusions

Introduction

Composite Materials → NUMERICAL SIMULATION → EXPERIMENTS

Under QUASI-STATIC CONDITIONS

Well-established techniques (even for some cases of fatigue)

Under DYNAMIC CONDITIONS

- \rightarrow NUMERICAL SIMULATION
 - Based on static characterization properties
 - Model formulation without sensitivity to strain rates

→ EXPERIMENTS

- Methods under development. No standardization
- There is no consensus in the literature

BEDYN's GOAL

Define a methodology for numerical simulation and experiments for dynamic loadings

Dynamic characterization

"Coupons" → Composite material

	DYNAMIC	
ТАЅК	TEST	Tester
F3.1 2 bns	Longitudinal compression (at 0º)	SHPB-C
1 / T / T5.2 / T5.2	Transverse tensile + off-axis	SHPB-T
T2.	Transverse compression + off-axis	SHPB-C

<u>"Element"</u>

B)

	DYNAMIC
TASK	TEST
4.	Flexural effect: three point bending
t / T5 nts	Notch effect: Filled Hole Tension (FHT)
T2.3 / T3.3 / T5.4 Elements	Notch effect: Filled Hole Compression (FHC)
2.3 / El	Notch effect (and fracture toughness): Compact Tension (CT)
–	Bearing effect: Pinned Hole Tension

"Coupons" \rightarrow Interlaminar / bonded joint

	D	YNAMIC	
TASK	TEST		
		DCB (pure mode I)	
'n	Interlaminar characterization	ENF (pure mode II)	
Б		SLB (mixed-mode X%)	
.2 / T3.2 / ¹ Coupons		Mode I strength: steel adherents	
	Co-bonded	Mode II strength: Single Lap Shear	
12.	adhesive joint	DCB (pure mode I)	
		ENF (pure mode II)	
		SLB (mixed-mode X%)	

"Structure"

DY	(NAMIC
TASK	TEST
T2.4 / T3.4 / T5.4 Structures	Gelatin impact on CFRP panel

Dynamic characterization

"Coupons" → Composite material

	DYNAMIC	
ТАЅК	TEST	Tester
F3.1 2 ons	Longitudinal compression (at 0º)	SHPB-C
1 / T / T5.2 / T5.2	Transverse tensile + off-axis	SHPB-T
CC / .	Transverse compression + off-axis	SHPB-C

<u>"Element"</u>

B)

	DYNAMIC
TASK	TEST
4.	Flexural effect: three point bending
t / T5 nts	Notch effect: Filled Hole Tension (FHT)
T2.3 / T3.3 / T5.4 Elements	Notch effect: Filled Hole Compression (FHC)
2.3 / El	Notch effect (and fracture toughness): Compact Tension (CT)
	Bearing effect: Pinned Hole Tension

"Coupons" \rightarrow Interlaminar / bonded joint

	<u> </u>	PYNAMIC	
TASK	TEST		
		DCB (pure mode I)	
ņ	Interlaminar characterization	ENF (pure mode II)	
2 / T5.3 Ins	characterization	SLB (mixed-mode X%)	
2 / T3.2 / ¹ Coupons		Mode I strength: steel adherents	
	Co-bonded	Mode II strength: Single Lap Shear	
T2.2	adhesive joint	DCB (pure mode I)	
	dullesive joint	ENF (pure mode II)	
		SLB (mixed-mode X%)	

"Structure"

DY	(NAMIC
TASK	TEST
T2.4 / T3.4 / T5.4 Structures	Gelatin impact on CFRP panel

Previous work

E)

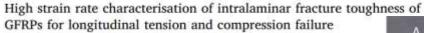
Contents lists available at ScienceDirect

Composites Science and Technology

2018 (Tensile Split Hopkinson bars)

Determination of the strain-energy release rate of a composite laminate under high-rate tensile deformation in fibre direction

Justus Hoffmann", Hao Cui^b, Nik Petrinic"


^aDepartment of Engineering Science, University of Oxford, Parks Road, Oxford, OK2 3PJ, UK ^b Centre for Aeronianics, Cranfield Daternity, UK

Paper	Method	Material	QS G _{IC} [KJ/m ²]	Dyn G _{IC} [KJ/m²]
McCarrol (2011)	СТ	IM7/8552	74.9	67.8
Hoffman et al. (2018)	CT	IM7/8552	196.2	82.0
Kuhn et al. (2018)	DENT	IM7/8552	195.5	241.0
Yoo et al. (2022)	DENT	IM7/8552	281.5	371.8
Cheng et al. (2022)	CT	T700/LT03A	166.5	112.9

G. Catalanotti^{0,*}, P. Kuhn^b, J. Xavier^c, H. Koerber^b

*Advanced Composition Research Group (ACRG), School of Machanical and Aerospace Engineering, Queen Linuxenity Reflam, Boljam B79 54 * Technical University of Munich, Department of Mechanical Engineering, Boltzmannuringle 15, 85748 Garching, Germany Engement of Mechanical and Industrial Engineering, UNIBMI, Faculty of Sciences and Technology, NOVA University eLisbon, 2928-518

Previous work

Contents lists available at ScienceDirect

Composites Science and Technology

2018 (Tensile Split Hopkinson bars)

Determination of the strain-energy release rate of a composite laminate under high-rate tensile deformation in fibre direction

Justus Hoffmann^{®,*}, Hao Cui^b, Nik Petrinic[®]

^aDepartment of Engineering Science, University of Oxfand, Parks Road, Oxfand, OKI 3PJ, UK
^b Centre for Aeronautics, Cranfield University, UK

Same geometry/data reduction as QS Appropiate for cohesive law determination

High strain rate characterisation of intralaminar fracture toughness of GFRPs for longitudinal tension and compression failure

G. Catalanotti^{0,*}, P. Kuhn^b, J. Xavier^c, H. Koerber^b

*Advanced Companian Research Group (ACRG), School of Machanical and Aerospace Engineering, Queen's University Bellux, Bellux, Bellux B79-54 * Technical University of Manich, Department of Mechanical Engineering, Boltzmanniargle 15, 83748 Garching, Gormany * Department of Mechanical and Industrial Engineering, UNIBEM, Facalty of Sciences and Technology, NOVA University of Liston, 2928-518

Less size scale effect law (3 geom in HR vs 6 in QS)

Paper	Method	Material	QS G _{IC} [KJ/m ²]	Dyn G _{IC} [KJ/m²]
	СТ	IM7/8552	74.9	67.8
Hoffman et al. (2018)	СТ	IM7/8552	196.2	82.0
Kuhn et al. (2018)	DENT	IM7/8552	195.5	241.0
Yoo et al. (2022)	DENT	IM7/8552	281.5	371.8
Cheng et al. (2022)	СТ	T700/LT03A	166.5	112.9

Propose a new data reduction scheme on CT Dynamic test through a combined experimental-numerical methodology

Int J Fract (2009) 158:211-223 DOI 10.1007/s10704-009-9366-z

ORIGINAL PAPER

A procedure for superposing linear cohesive laws to represent multiple damage mechanisms in the fracture of composites

Carlos G. Dávila · Cheryl A. Rose · Pedro P. Camanho

Previous work

Contents lists available at ScienceDirect

Composites Science and Technology

2018 (Tensile Split Hopkinson bars)

Determination of the strain-energy release rate of a composite laminate under high-rate tensile deformation in fibre direction

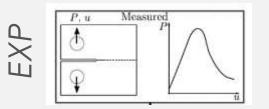
Justus Hoffmann^{®,*}, Hao Cui^b, Nik Petrinic[®]

^aDepartment of Engineering Science, University of Oxfand, Parks Road, Oxfand, OKI 3PJ, UK
^b Centre for Aeronautics, Cranfield University, UK

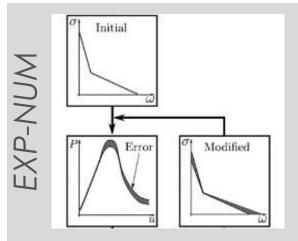
Same geometry/data reduction as QS Appropiate for cohesive law determination

Paper	Method	Material	QS G _{IC} [KJ/m ²]	Dyn G _{IC} [KJ/m²]
McCarrol (2011)	СТ	IM7/8552	74.9	67.8
Hoffman et al. (2018)	СТ	IM7/8552	196.2	82.0
Kuhn et al. (2018)	DENT	IM7/8552	195.5	241.0
Yoo et al. (2022)	DENT	IM7/8552	281.5	371.8
Cheng et al. (2022)	СТ	T700/LT03A	166.5	112.9

Propose a new data reduction scheme on CT Dynamic test through a combined experimental-numerical methodology

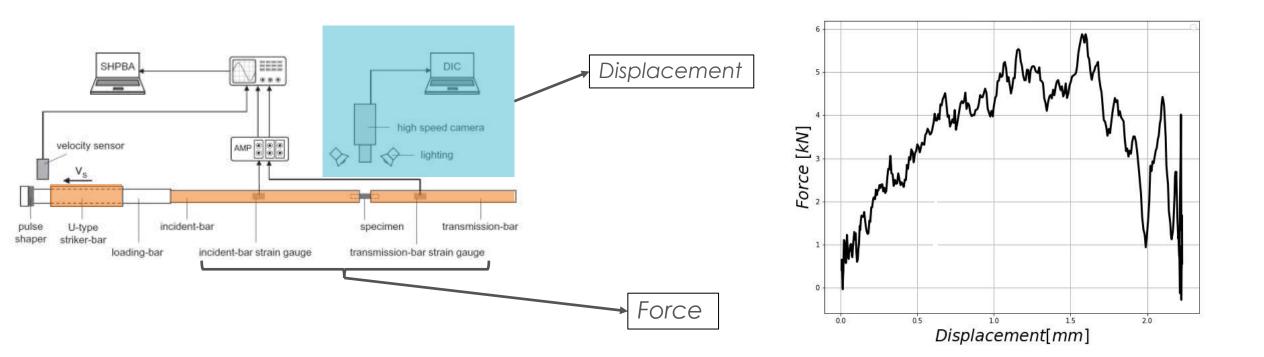

High strain rate characterisation of intralaminar fracture toughness of GFRPs for longitudinal tension and compression failure

G. Catalanotti^{0,*}, P. Kuhn^b, J. Xavier^c, H. Koerber^b


*Advanced Composition Research Group (ACRG), School of Machanical and Aerospace Engineering, Queen's University Bellux, Bellux, Bellux B79-54 * Technical University of Marich, Department of Mechanical Engineering, Boltzmannistrafie 15, 83748 Garching, Gormany * Department of Mechanical and Industrial Engineering, UNIDEM, Facalty of Sciences and Technology, NOVA University of Liston, 2928-518

Less size scale effect law (3 geom in HR vs 6 in QS)

-	σ Final values	
>		
)		
*		

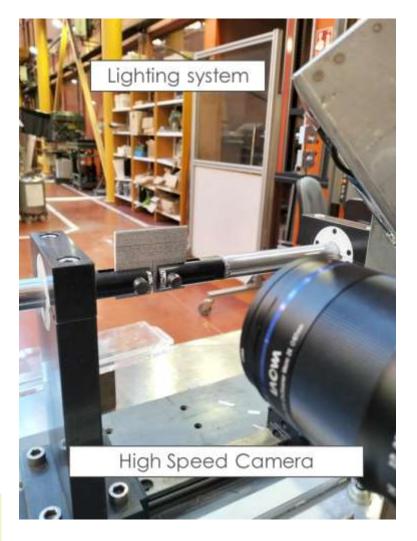

Outline

- Introduction
- Methodology
- Results
- Conclusions

Split Hopkinson Pressure Bar

E)

Experimental methodology


- Dynamic
- uc3m Universidad Carlos III de Madrid

L2(QI)

- Split Hopkinson Pressure Bar:
 - Incident: 4.6m Steel bar Ø22mm
 - Transmitted: 1.4m Steel bar Ø22mm
- Pulse shaper:
 - Cupper ring: Ann th: 2mm Th: 0.5mm
- Specimen:
 - CFRP CT: 60*65*4.28 mm³
 - Three laminates

Cross ply

L1 (50% 0°)

Experimental methodology

• Dynamic

uc3m Universidad Carlos III de Madrid

L2(QI)

- Split Hopkinson Pressure Bar:
 - Incident: 4.6m Steel bar Ø22mm
 - Transmitted: 1.4m Steel bar Ø22mm
- Pulse shaper:
 - Cupper ring: Ann th: 2mm Th: 0.5mm
- Specimen:
 - CFRP CT: 60*65*4.28 mm³
 - Three laminates

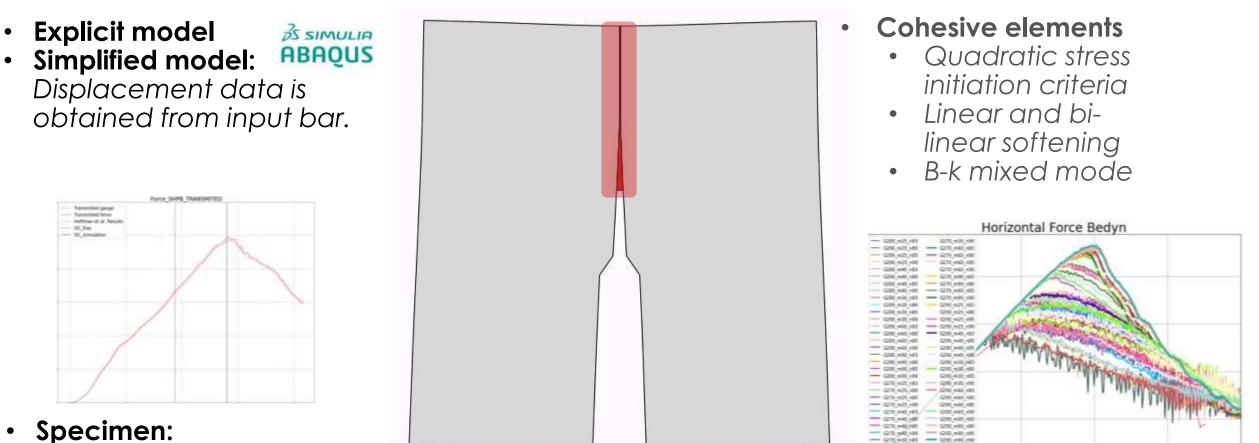
Cross ply

L1 (50% 0°)

High Speed video Camera Phantom TMX 6410 @ 530kfps

- In-plane strains by DIC
- Opening trackers

Quasistatic


- INSIGHT 100kN (0.5mm/min)
- Clip-On COD extensometer
- Optical system traveller (Canon 550D + macro EF) to monitor the crack growth

Numerical methodology

B

- 2D Shell elements
- Elastic properties of the laminate

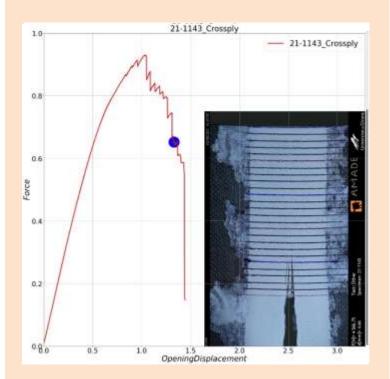
This project has received funding from the Clean Sky 2 Joint Undertaking (JU) under grant agreement No. 886519. The JU receives support from the European Union's Horizon 2020 research and innovation programme and the Clean Sky 2 JU members other than the Union

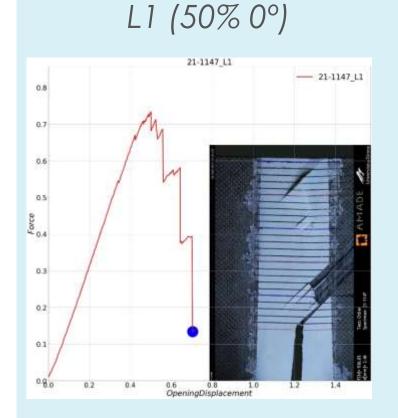
52/5 w35 rill

- 4212 + 30 +8

Outline

- Introduction
- Methodology
- Results
- Conclusions



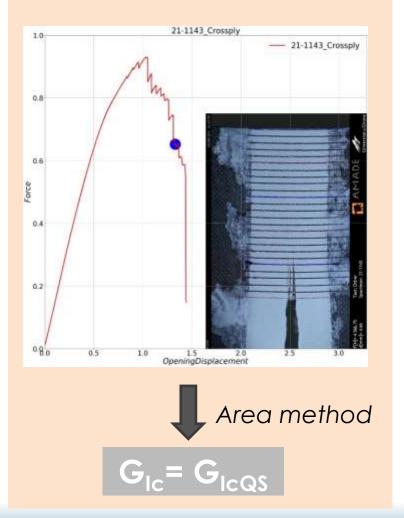


Results Quasistatic test

Cross ply

E))

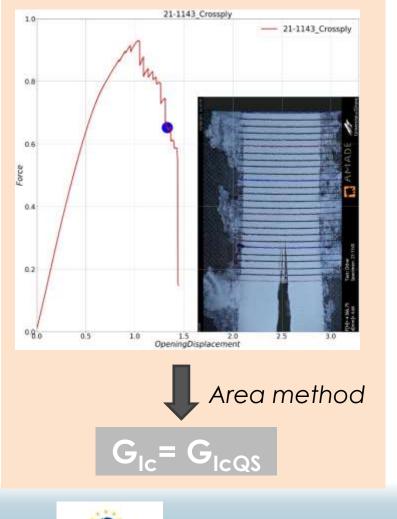
L2 (QI)

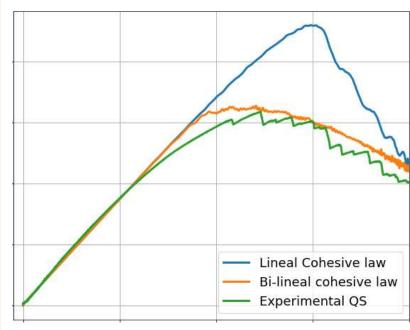


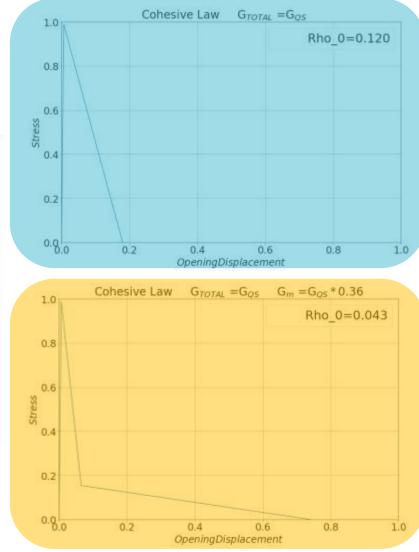
E)

Results Quasistatic test

Cross ply

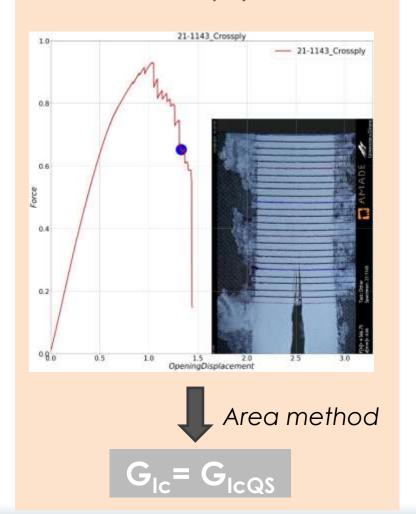






ED

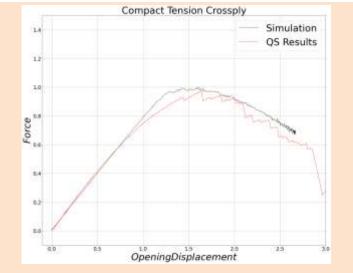
Results Quasistatic test Cross ply

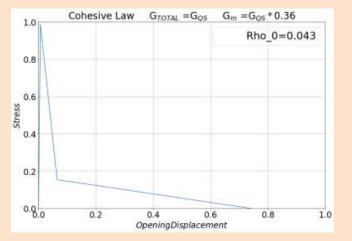


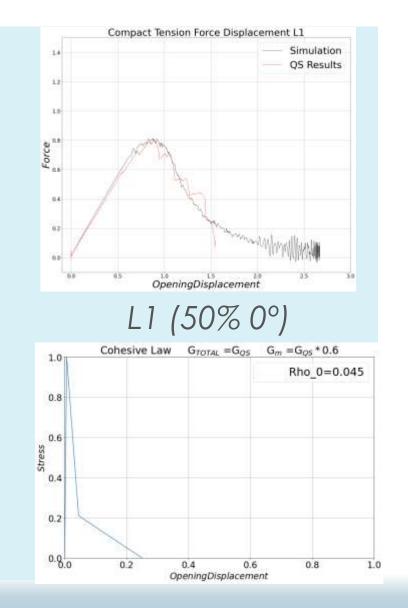
Results Quasistatic test

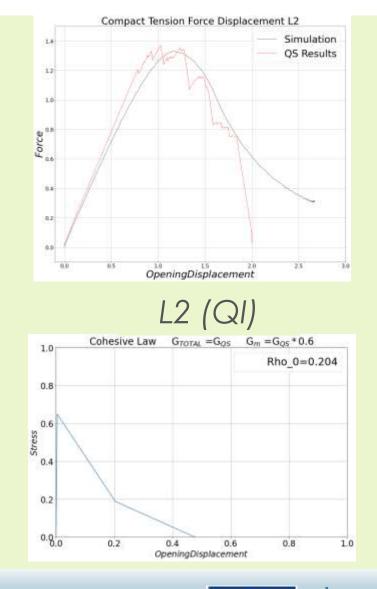
Cross ply

E))

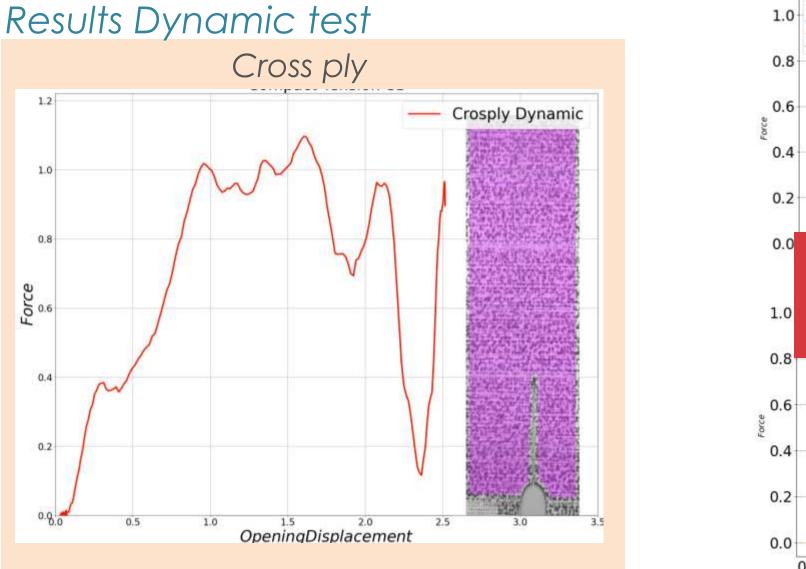


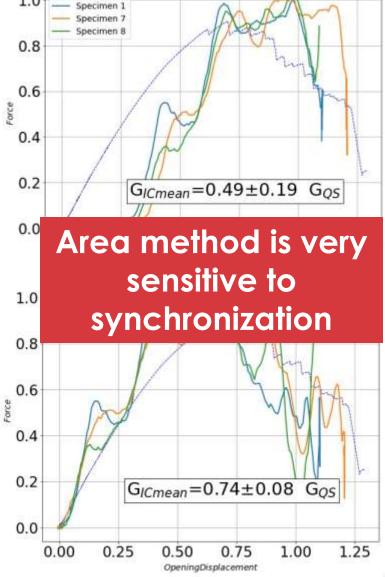


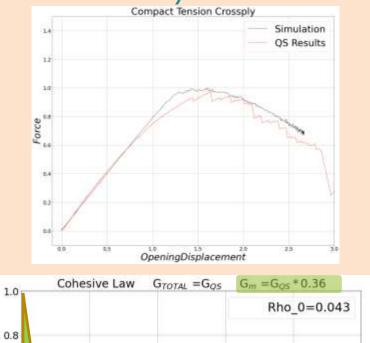

Results Quasistatic test


ED))

Cross ply







Crossply QS

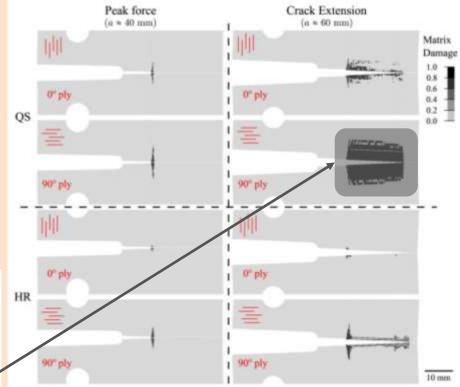
Results Dynamic test Cross ply

0.6

0.8

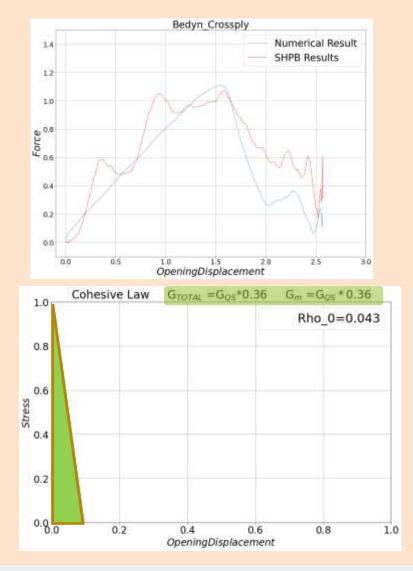
1.0

B)


0.6

0.4

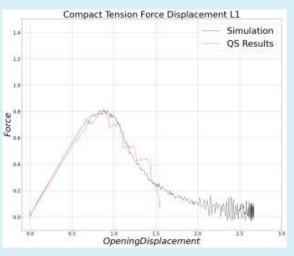
0.2


0.8

Stress

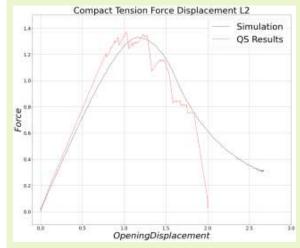
Numerical modelling of quasi-static and dynamic compact tension tests for obtaining the translaminar fracture toughness of CFRP

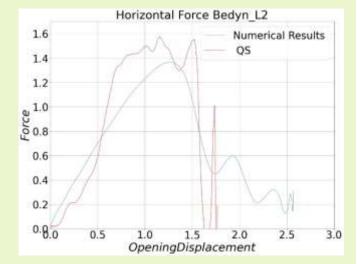
Drew E. Sommer 🝳 🖂 , Daniel Thomson 🝳 🖂 , Justus Hoffmann, Nik Petrinic

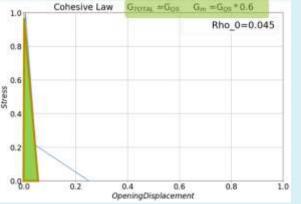

0.4

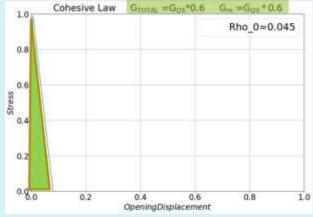
OpeningDisplacement

0.2

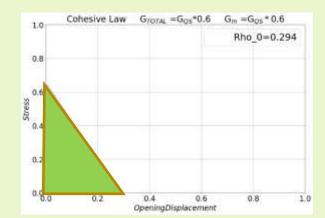

Results Dynamic test L1 (50% 0°)




BD))



L2 (QI)



Outline

- Introduction
- Methodology
- Results
- Conclusions

Conclusions

 Experimental tests and numerical analysis of CT specimen under dynamics loadings has been done.

Cross ply	L1 (50% 0°)	L2 (QI)
-----------	-------------	---------

- Combined numerical and experimental methodology shows a good agreement in quasistatic conditions.
- Proposed methodology is valid to obtain cohesive law for different stacking sequences.
- Area method is very sensitive to synchronization.
- Proposed methodology is valid to obtain cohesive law at high rate taking into account uncertainties due to specimen wave propagation.
- Laminate fracture toughness is reduced at high rate due to the reduction on damage area around the crack

EVALUATING THE INTRALAMINAR TENSILE FRACTURE BEHAVIOR OF COMPOSITE MATERIALS UNDER HIGH RATE LOADING THROUGH ACOMBINED EXPERIMENTAL AND NUMERICAL METHODOLOGY

A. Cimadevilla

A. Vaz-Romero

J. Pernas-Sánchez

J. A. Artero-Guerrero

E. V. González P. Maimí E. De Blanpre V. Jacques (Universidad Carlos III Madrid) (Universidad Carlos III Madrid) (Universidad Carlos III Madrid) (Universidad Carlos III Madrid) (Universitat de Girona) (Universitat de Girona) (Dassault Aviation) (Dassault Aviation)

11th International Conference on Composite Testing and Model Identification (COMPTEST 2023)

Girona - 31st May 2023

