11TH INTERNATIONAL CONFERENCE ON COMPOSITE TESTING AND MODEL IDENTIFICATION, GIRONA, SPAIN MAY 31 – JUNE 2

CRACK DENSITY GROWTH OF HIGH TEMPERATURE CROSS-PLY LAMINATES SUBJECTED TO ELEVATED TEMPERATURES

Vivek Richards Pakkam Gabriel (<u>vivek.pakkam@ltu.se</u>), Patrik Fernberg, Janis Varna Group of Polymer Composite Materials, Materials Science Division, Department of Engineering Sciences and Mathematics.

Contents

High Temperature Polymer Composites

UD carbon fabric + High temperature polymer [0/90₂]s, [0/90/0/90¹/₂]s

Plate	Layup	90-layer thickness mm	Vf %
1	[0/902]s	0.80	46
2	[0/902]s	0.73	52
3	[0/902]s	0.64	58
4	[0/90/0/90 ¹ /2]s	0.16	57

- Long term thermal exposure, and thermal cycling
- Moisture ingression
- Quasi-static tensile load
- Tension-tension fatigue load

Test methodology and damage

temperature polymer

Quasi-static tensile test at room temperature and elevated temperature

Crack density → Stiffness reduction

LULEÅ UNIVERSITY OF TECHNOLOGY

•

CompTest 2023

Quasi-static Test Plan

Plate 2: [0/902]s; 90-layer thickness = 0.73mm; Vf = 52%

As-built specimens

Quasi-static test at RT

Quasi-static test at 150°C

Heat treated specimens Iso-thermally aged at 150°C for 500 hours and 1000 hours

- Quasi-static test at RT
 - Quasi-static test at 150°C

As-built Specimens Static Tested at Room and Elevated Temperature

Plate 2: [0/902]s; 90-layer thickness = 0.73mm; Vf = 52%

Statistical modelling

Different fiber clusters (with stress concentrations) in different positions; different failure stress in different positions Initiation of cracks at edges

Weibull distribution

Quasi-static tensile loading: $P_f = 1 - exp\left(-\left(\frac{\sigma_T}{\sigma_0}\right)^m\right)$

Shape parameter mScale parameter σ_0

Assumptions:

 σ_0 depends on temperature and conditioning, $\sigma_0 = f(stress, temperature, time, ...)$

At reference temperature and condition (at room temperature and as-built condition), Scale parameter is σ_0 ; otherwise scale parameter *is* $\sigma_0^* = \sigma_0 * k_1 * k_2$; $k_1 = f(test temperature)$, $k_2 = f(heat treatment)$

When as-built specimens quasi-static tested at an arbitrary temperature, $k_2=1$, and

From empirical fitting,

 $k_1 = 1 - c * \Delta T; c = 0.002$

 $\Delta T = T_{test} - T_{Ref_T}$ (difference between test and reference temperature)

CompTest 2023

Statistical modelling

Different fiber clusters (with stress concentrations) in different positions; different failure stress in different positions Initiation of cracks at edges

Weibull distribution

Quasi-static tensile loading: $P_f = 1 - exp\left(-\left(\frac{\sigma_T}{\sigma_0}\right)^m\right)$

Assumptions:

 σ_0 depends on temperature and conditioning, $\sigma_0 = f(stress, temperature, time, ...)$

At reference temperature and condition (at room temperature and as-built condition), Scale parameter is σ_0 ; otherwise scale parameter *is* $\sigma_0^* = \sigma_0 * k_1 * k_2$; $k_1 = f$ (*test temperature*), $k_2 = f$ (*heat treatment*)

When as-built specimens quasi-static tested at an arbitrary temperature, $k_2=1$, and

From empirical fitting,

 $k_1 = 1 - c * \Delta T; c = 0.002$

 $\Delta T = T_{test} - T_{Ref_T}$ (difference between test and reference temperature)

Shape parameter m = 3.3Scale parameter $\sigma_0 = 142 MPa$

CompTest 2023

Heat Treatment at Elevated Temperatures

Plate 2: [0/90₂]s; 90-layer thickness = 0.73mm; Vf=52%

Before static tensile tesing

Isothermal heat treatment at 150°C for 500 hours and 1000 hours

- 500 hours includes 7 thermal cycles
- 1000 hours includes
 10 thermal cycles

- Thermal cycling effect
- Long term thermal exposure
- Rapid cool down
- Hygroscopic shrinkage

As-built

Heat Treated Specimens Static Tested at Room **Temperature and Elevated Temperature**

Plate 2: [0/902]s; 90-layer thickness = 0.73mm; Vf=52%

LULE

OF TECHNOLOGY

CompTest 2023

UNIVERS

Heat Treated Specimens Static Tested at Room Temperature

Plate 4: [0/90/0/900.5]s; 90-layer thickness=0.16mm; Vf=57%

Statistical modelling

Different fiber clusters (with stress concentrations) in different positions; different failure stress in different positions Initiation of cracks at edges

Weibull distribution

Quasi-static tensile loading: $P_f = 1 - exp\left(-\left(\frac{\sigma_T}{\sigma_0}\right)^m\right)$

Assumptions:

 σ_0 depends on temperature and conditioning, $\sigma_0 = f(stress, temperature, time, ...)$

At reference temperature and condition (at room temperature and as-built condition), Scale parameter is σ_0 ; otherwise scale parameter is $\sigma_0^* = \sigma_0 * k_1 * k_2$; $k_1 = f(test temperature)$, $k_2 = f(heat treatment)$

When heat treated specimens quasi-static tested at an arbitrary temperature,

From empirical fitting,

 $k_1 = 1 - c * \Delta T; c = 0.002$

 $\Delta T = T_{test} - T_{Ref_T}$ (difference between test and reference temperature) $k_2 = 0.89$; for 500 hours at 150°C $k_2 = 0.82$; for 1000 hours at 150°C

UNIVERS

OF TECHNOLOGY

Prediction – Plate 2

Plate 2: [0/902]s; 90-layer thickness = 0.73mm; Vf=52%

Prediction – Plate 4

Plate 4: [0/90/0/900.5]s; 90-layer thickness=0.16mm; Vf=57%

CompTest 2023

LULEÅ

OF TECHNOLOGY

k_2 degradation

 $k_2 = f(material, temperature, time, ageing ambience ...)$

Assumption: When iso-thermal ageing (at 150°C) with air, for the tested material system, k_2 degradation can be described in terms of ageing time.

Remains to be studied in the future

Conclusion

- Transverse cracking resistance has decreased in laminate when quasi-static tested at elevated temperature.
- Thermal cycling influenced crack density growth however negligible effect was found in transverse cracking resistance when quasi-static tested.
- Isothermal ageing significantly affected the transverse cracking resistance when quasi-static tested.
- Weibull failure stress model with k_1 and k_2 in scale parameter predicted crack density growth in all tested specimens with good agreement.

CompTest 2023

Thanks and Acknowledgement

Funded By NFFP – National Aeronautical Program 7

Thanks to my,

Main supervisor: Prof. Patrik Fernberg, Co-supervisors: Assoc. Prof. Mohamed Loukil, Scientific advisor: Prof. Janis Varna, Master thesis student: Alessia Cardin

GKN AEROSPACE

LUNA Project – *Life and durability prediction of aero-engine composites*

