

MICROCRACKING OF CFRP COMPOSITES DURING CRYOGENIC THERMAL CYCLING

Huw Edwards

- NCC Daniel Galpin, Marcus Walls-Bruck
- UoB Janice Dulieu-Barton, Byung Chul Kim 31.05.2023

This work was supported by the EPSRC through the Industrial Doctorate Centre in Composites Manufacture [EP/L015102/1] and through the NCC Core Programme

Engineering and Research Council

Hydrogen as an Alternative Fuel

Values in brackets account for tank weight assuming composite hydrogen tanks.

Why Liquid Hydrogen? Minimised mass and size compared to other alternatives

LH2 Tank Schematic

Why Composites? Literature and modelling predict around 50% weight saving for composite inner skin over a Type I Al-Li baseline. (Vickers, 2013)

Engineering and Physical Sciences Research Council

Stresses in Cryogenic Composite Tanks

Thermal Stress

Coefficient of Thermal Expansion (CTE) is a challenge in composite materials as the constituents can have opposing CTE.

- **Carbon Fibres** Negative CTE axially Elongate on cooling.
- **Polymer Matrices** Positive CTE Contract on cooling.
- **Ply Level** interaction between fibres and matrix.
- **Laminate level** interaction between plys at different angles.

Mechanical

- Internal Pressure in the region of 2-10 bar
- Fluid sloshing during 9g crash case

Role of constituents in composite LH2 tank

Fibres experience the majority of the mechanical stress from the pressure loading.

Matrix experience transverse thermally induced stress from the fibres expanding.

Adding more fibres does not improve performance, it increases the transverse matrix stresses!

Industrial Doctorate Centre in Composites Manufacture

Engineering and Physical Sciences Research Council

Micro-Cracking

University of

- Constituents expand and contract relative to each other leading to Internal stresses.
- Polymers become brittle at cryogenic temperatures.
- Material damage occurs through matrix microcracking.

The Microcracking Problem

A fully linked network of microcracks in a tank will enable permeation of hydrogen

Any surface microcracks may cause Pleratures. catastrophic failure if hydrogen becomes trapped during warming

Cryogenic Composite Screening Methods

- **Resistance to cryogenic microcracking** The primary factor for assessing the suitability of composite materials for use in cryogenic tanks.
- **Thermal cycling followed by microcrack inspection** The most common screening method In literature.
- Thermal Cycling Methods Vary in literature.

Cooling fluid

- $LN₂$
- LHe •

Cooling Method Cooling Method

- <mark>Immersion</mark>
- **Vapour cooling** • $\frac{\text{LN}_2}{\text{LHe}}$ • $\frac{\text{LHe}}{\text{Mmersion}}$ • Ambient
• Immersion • Cycle time
• Vapour cooling • Heating

Heating method

- **Elevated**
- Ambient Ambient

Cycle time

- Cooling rate
- Heating rate Heating rate

Areas Investigated

Cycle temperature temperature

- Lower temperature
- Upper temperature •

Coupon geometry Coupon geometry

- Shape
- **Size**

Cooling Methods

Immersion No cooling rate control – thermal shock Lower temperature fixed to that of the cryogenic fluid

LN2 Immersion Vapour Dipping Control of cooling rate and lower temperature

LHe Vapour Dipping

Film Boiling in immersion

Video of film boiling on coupon

Film Boiling

Cooling rate influence by film boiling, reduces heat transfer between fluid and object

Engineering and Physical Sciences Research Council

Double Walled Glass Beaker

• LN2 has faster cooling rate then LHe

Immersion

Cooling Methods

Specimens

University of

- **Plate specimens with two polished edges to inspect for microcracks with optical microscopy**
- **Layup**
	- **16 Ply QI Blocked**
	- $[0_2/45_2/-45_2/90_2]$
- **Sizes**
	- **25 mm x 25 mm**
	- **75 mm x 75 mm**
	- **150 mm x 150 mm**
- **Materials**
	- **Multiple thermoset and thermoplastic materials tested**

Two Materials Presented

Initial

Low Quality material has more porosity / Voids **High Quality material has increased toughening**

Effects of LN2 Immersion – Low Quality Material 25mm

microcracking

For testing purposes, a low quality material was made with stress raisers and defects to generate microcracking.

Significant microcracking occurred when cooled rapidly at 15 K/s to 77K.

3000

Effects of LHe Cycling – Low Quality Material 25mm

In comparison when cooled slowly at 0.5 K/s to 20K reduced microcracking was visible, in some coupons there were no microcracks.

Effects of LN2 Immersion – High Quality Material 25mm

No Cracking in high quality material in any cycling tests up to 20 cycles

Results – Coupon Sizes

25mm - Microcracking visible

75mm – Reduced microcracking potentially due to slower cooling due to increased thermal mass 150mm – Significant microcracking, likely caused by non-uniform cooling

Cooling of 150mm specimens

- Film boiling recedes from edges to centre in a rectangular pattern.
- Indicate in plane cooling faster than through thickness cooling.
- Leads to temperature differential across specimen causing increased stresses.

- Coupons warped after cooling, cracking dominates on one side.
- Could be caused by cooling specimens horizontally.
- Film boiling could be insulating

150mm - non-uniform cooling can cause thermal gradient leading to significant microcracking

Initial Testing Trends

- For the composite materials tested, rate of cooling appears to have more effect on composite microcracking than absolute temperature, however this may vary from material to material.
- Coupon size has an impact on microcracking behavior under rapid cooling, potentially due to increased thermal gradients within the larger coupon.
- Tough materials may not crack under thermal cycling until several hundred cycles. An automated cycling rig has been developed to enable testing of tough materials to higher cycles.
- In addition to thermal cycling, other cryogenic composite characterisation methods are being developed including a "Cryogenic Microcrack Fracture Test" involving combined thermal and mechanical loading. - *To be presented later in the year*

Questions?

Huw.Edwards@bristol.ac.uk

The research described in this presentation was supported by the Engineering and Physical Sciences Industrial Doctorate Centre in Composites Manufacturing (EP/L015102/1) and The National Composites Centre

**Engineering and
Physical Sciences** Research Council