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Simple Summary: After treatment, glioblastoma typically recurs. In some patients with recurrent
glioblastoma, bevacizumab improves progression-free survival. The magnetic resonance texture
analysis quantifies the macroscopic tissue heterogeneity that is indirectly linked to the microscopic
tissue properties. In 33 patients with recurrent glioblastoma who were treated with bevacizumab,
we evaluated the predictive value of magnetic resonance texture analysis for survival. Volumes of
contrast-enhancing lesions segmented on postcontrast T1-weighted sequences were co-registered
with apparent diffusion coefficient maps in order to extract 107 radiomic features. We found that
some features derived from texture analysis accurately predicted survival. Identifying pretreatment
imaging biomarkers that predict outcomes following bevacizumab therapy for recurrent glioblastoma
can be beneficial for selecting patients most likely to benefit from this costly treatment. These
promising preliminary results may be a small but significant step toward demonstrating the clinical
relevance of radiomic profiles in the treatment of this disease.

Abstract: Purpose: Glioblastoma often recurs after treatment. Bevacizumab increases progression-
free survival in some patients with recurrent glioblastoma. Identifying pretreatment predictors of
survival can help clinical decision making. Magnetic resonance texture analysis (MRTA) quantifies
macroscopic tissue heterogeneity indirectly linked to microscopic tissue properties. We investigated
the usefulness of MRTA in predicting survival in patients with recurrent glioblastoma treated with
bevacizumab. Methods: We evaluated retrospective longitudinal data from 33 patients (20 men; mean
age 56 ± 13 years) who received bevacizumab on the first recurrence of glioblastoma. Volumes of
contrast-enhancing lesions segmented on postcontrast T1-weighted sequences were co-registered on
apparent diffusion coefficient maps to extract 107 radiomic features. To assess the performance of
textural parameters in predicting progression-free survival and overall survival, we used receiver
operating characteristic curves, univariate and multivariate regression analysis, and Kaplan–Meier
plots. Results: Longer progression-free survival (>6 months) and overall survival (>1 year) were
associated with lower values of major axis length (MAL), a lower maximum 2D diameter row
(m2Ddr), and higher skewness values. Longer progression-free survival was also associated with
higher kurtosis, and longer overall survival with higher elongation values. The model combining
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MAL, m2Ddr, and skewness best predicted progression-free survival at 6 months (AUC 0.886, 100%
sensitivity, 77.8% specificity, 50% PPV, 100% NPV), and the model combining m2Ddr, elongation,
and skewness best predicted overall survival (AUC 0.895, 83.3% sensitivity, 85.2% specificity, 55.6%
PPV, 95.8% NPV). Conclusions: Our preliminary analyses suggest that in patients with recurrent
glioblastoma pretreatment, MRTA helps to predict survival after bevacizumab treatment.

Keywords: glioblastoma; magnetic resonance imaging; biomarkers; diffusion; radiomics; treatment

1. Introduction

Glioblastoma is the most common and most aggressive primary malignant brain tumor
in adults; median survival is 14.5 months, and only 10% of patients survive ≥ 5 years. [1,2].
The current standard of care consists of surgical resection followed by temozolomide in
conjunction with radiotherapy [3], but recurrence after treatment is common. Recurrent
glioblastoma is often treated with bevacizumab; after bevacizumab treatment, median
progression-free survival is 4 months, and median overall survival is 7 months [4,5]. Non-
invasive biomarkers that could predict survival in patients with recurrent glioblastoma
might help clinicians to select candidates for bevacizumab treatment [6,7].

The growth and progression of glioblastoma require angiogenesis. To promote angio-
genesis, glioblastomas secrete various growth factors; among these, vascular endothelial
growth factor (VEGF) promotes cerebrovascular permeability and plays a role in tumor
progression [8,9]. Bevacizumab, a humanized monoclonal VEGF-blocking antibody, im-
proves progression-free survival in recurrent glioblastoma [10–12], although it is ineffective
in extending overall survival in newly diagnosed glioblastoma patients [13–16]. Glioblas-
tomas are highly heterogeneous, and different disease progression rates and degrees of
VEGF expression likely influence the response to bevacizumab.

Although multiparametric magnetic resonance imaging (MRI) findings show sig-
nificant agreement in terms of morphologic features [17,18], some of which are strongly
associated with poor survival, the accuracy of these imaging variables in predicting genetic
heterogeneity and survival is still modest. Changes in diffusion-weighted imaging (DWI)
have been proposed as a biomarker to predict the response to anti-angiogenesis drugs
and apoptosis-inducing treatments [19–26]. A few studies have tried to define metrics
for predicting survival and monitoring the response to bevacizumab through histogram
analysis of diffusion data; these analyses are based on calculations of apparent diffusion
coefficient (ADC) values of the contrast-enhancing lesion within the volume of interest
before treatment [20,23–25]. Other studies have used voxel-subtraction techniques on
functional diffusion maps to predict the local effects of chemotherapy and radiotherapy
between two time points [21,26]. Lower values in the pretreatment ADC histogram of
contrast-enhancing lesions are associated with poor outcome after bevacizumab treatment
for recurrent glioblastoma [18,27].

Magnetic resonance texture analysis (MRTA) is an emerging radiomics approach that
aims to quantify macroscopic tissue heterogeneity, often imperceptible to the human eye,
by analyzing various parameters based on the distribution of pixel values that are indi-
rectly linked to microscopic tissue heterogeneity. Parameters based on geometry (e.g.,
kurtosis), intensity characteristics (e.g., histograms of pixel distribution), entropy, and other
texture-related features are thought to reflect underlying cellular heterogeneity and can
be analyzed to help predict survival in patients with recurrent glioblastoma [28]. MRTA
metrics have been associated with glioma grade, molecular status, response to treatment,
and survival [28–30]. Some radiomic profiles have shown their potential to predict methyl-
guanine methyltransferase (MGMT) promoter methylation status and survival in patients
with newly diagnosed glioblastoma [31]. However, it remains to be determined whether
radiomics is useful in predicting survival in patients with recurrent glioblastoma treated
with bevacizumab. This study aims to evaluate the usefulness of MRTA from routinely
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available MRI sequences in predicting progression-free and overall survival in patients
with recurrent glioblastoma treated with bevacizumab.

2. Materials and Methods
2.1. Patients

Retrospective analysis of a prospective database was performed. All patients diag-
nosed with recurrent glioblastoma identified based on clinical and imaging data between
December 2009 and December 2018 who were treated with bevacizumab (10 mg/kg every
2 weeks) on first recurrence were eligible for this study. Recurrence was assessed in a multi-
disciplinary tumor board based on the Response Assessment in Neuro-Oncology (RANO)
criteria on the follow-up imaging studies and the clinical status. Patients without valid
follow-up MRI studies were excluded. All patients had been treated with temozolomide
and radiotherapy following maximal tumor resection. All patients were on corticosteroids
at baseline MRI; corticosteroids were discontinued during bevacizumab therapy. We con-
sidered only patients with solidly enhancing tumors not consistent with radiation necrosis.
Our institution’s ethics committee approved the study protocol, and all patients provided
written informed consent.

2.2. MRI Protocol

Patients underwent MRI on a standard clinical 1.5-T system (Intera, Philips Healthcare,
Best, The Netherlands) with an eight-channel head coil. The protocol included sagittal 3D
T1-weighted imaging, axial fluid-attenuated inversion recovery (FLAIR) imaging, axial
diffusion tensor imaging (DTI), axial susceptibility-weighted imaging (SWI), sagittal 3D
T2-weighted imaging, first-pass echo-planar dynamic susceptibility-weighted contrast-
enhanced (DSC) perfusion imaging with gadobutrol (Gadovist; Bayer Schering Pharma,
Berlin, Germany), and sagittal 3D T1-weighted and axial T1-weighted imaging after contrast
administration. Parameters for sagittal 3D T1-weighted imaging were repetition time (TR)
12 ms, echo time (TE) 4.6 ms, flip angle (FA) 15◦, matrix 256 × 256, section thickness 1 mm,
and field of view (FOV) 240 mm. Parameters for FLAIR were TR 9000 ms, TE 164 ms,
inversion time (TI) 2500 ms, FA 150◦, matrix 256 × 192, section thickness 5 mm, and FOV
240 mm. Parameters for sagittal 3D T2-weighted imaging were TR 3200 ms, TE 402 ms, FA
90◦, matrix 256 × 256, section thickness 1 mm, and FOV 240 mm. Parameters for DTI were
TR 6900 ms, TE 90 ms (b = 0 and 1000 s/mm2), matrix 256 × 256, section thickness 2.4 mm,
FOV 240 mm, and number of directions 30. ADC maps were calculated on a voxel-by-voxel
basis. Parameters for SWI were TR 26 ms, TE 20 ms, FA 15◦, matrix 256 × 192, section
thickness 0.75 mm, and FOV 240 mm. Parameters for axial SE T1-weighted images were
TR 400 ms, TE 2.6 ms, FA 90◦, matrix 448 × 256, section thickness 5 mm, and FOV 240 mm.
For perfusion DSC, multislice T2* single-shot echo-planar images were acquired before,
during, and after rapid administration of a contrast bolus (twenty-one 5 mm sections
without gaps, matrix, 128 × 128, FOV 240 × 240 mm, TR 1550 ms, TE 32 ms, flip angle 90◦).
Each perfusion series consisted of 50 dynamic acquisitions with the temporal resolution
set to 1.8 s during the first pass of a standard dose (0.1 mmol/kg bolus of gadobutrol
administered with a power injector at 5 mL/s, followed by a 20 mL bolus of saline at the
same rate). To reduce the effect of contrast leakage on calculations of the cerebral blood
volume [32], 5 min prior to DSC perfusion acquisitions, a 5 mL bolus of gadobutrol was
administered at a rate of 1 mL/s, followed by a 15 mL saline flush. Sagittal 3D T1-weighted
imaging and axial T1-weighted imaging were performed after contrast administration with
the same parameters previously described.

2.3. Image Analysis

Digital imaging and communications in medicine files were transferred to an exter-
nal computing station for processing. A single neuroradiologist (15 years’ experience)
segmented the tumor on gadolinium contrast-enhanced T1-weighted sequences using 3D
Slicer software version 4.10.2 [33] (Figure 1). After segmentation, contrast-enhancing lesion
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volume was mapped to apparent diffusion coefficient maps and quantitative imaging
texture features were extracted. To ensure consistency between volumes of interest (VOIs),
all depicted VOIs for contrast-enhancing lesions were delineated using the same criteria
and were visually validated by the same neuroradiologist. Cystic or necrotic areas were
excluded. The resection cavity from the first surgery was also excluded if no sign of contrast
enhancement was present. If blood residuals were seen along the border of the resection
cavity, the hyperintense pre-contrast T1 volume was subtracted from the post-contrast
T1 volume. Textural features were calculated using the SlicerRadiomics module. A total
of 107 features pertaining to the First-Order, Shape-Based 3D, Gray Level Co-occurrence
Matrix, Gray Level Size Zone Matrix, Gray Level Run Length Matrix, Neighboring Gray
Tone Difference Matrix, and Gray Level Dependence Matrix classes were selected from the
PyRadiomics lists [34,35].
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Figure 1. Tumor segmentation. (A,B) Contrast-enhancing lesions were segmented from T1-weighted
images (green). After segmentation, contrast-enhancing lesion volume was mapped to apparent
diffusion coefficient maps. (C) Quantitative imaging texture features were extracted from volumes of
interest.

2.4. Statistical Analysis

All variables are expressed as means and standard deviations. Progression-free sur-
vival and overall survival were measured from the start of bevacizumab therapy. To
identify features that differed significantly between the groups of patients with and without
progression-free survival at 6 months and overall survival at 1 year, we used Student’s
t-tests or non-parametric tests, as appropriate. To determine independent predictors of
progression-free survival and of overall survival, we used univariate Cox proportional
hazard regression, selecting variables with p-values < 0.05 to generate prognostic models
and calculating hazard ratios with their corresponding 95% confidence intervals. To de-
termine the optimal cutoffs for these variables, we used receiver operating characteristic
curve analysis. To elaborate survival curves, we used the Kaplan–Meier method, including
the variables that differed significantly between patients with and without progression-free
survival for >6 months and between those with and without overall survival > 1 year. To
compensate for the comparison of multiple factors and the small sample size, we applied
the Bonferroni correction. Using the log-rank test to evaluate global differences, we also
combined these variables to achieve the greatest predictive ability. We used R (Version 3.5.3,
The R Foundation, Vienna, Austria) and IBM SPSS (Version 23.0.0.0, IBM Corp., Armonk,
NY, USA) for statistical analyses; significance was set at 0.05.

3. Results

Patient characteristics. A total of 42 patients met the initial inclusion criteria. Of these,
no patients were lost to follow-up, and nine patients were excluded for motion artifacts.
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Therefore, we retrospectively evaluated 33 patients (20 men; mean age 56 ± 13 years).
The median tumor VOI for contrast-enhancing lesions was 29.36 ± 22.68 mL. The mean
progression-free survival and overall survival were 5.14 ± 5.49 and 9.23 ± 8.36 mL, respec-
tively. Table 1 summarizes the main characteristics of the study cohort.

Table 1. Characteristics of patients with recurrent glioblastoma included in the study (n = 33).

Age (years) (mean, SD) 56; 13

Female (n, %) 13; 39.39%

Contrast-enhancing lesion volume (mL) (mean, SD) 29.36; 22.68

PFS (months) (mean, SD) 5.14; 5.49

≤6 months group 2.89; 1.41

>6 months group 15.23; 5.77

OS (months) (mean, SD) 9.23; 8.36

≤1 year group 5.49; 2.86

>1 year group 23.12; 7.30

3.1. Texture Analysis

Progression-free survival > 6 months was associated with lower major axis length
(MAL), lower maximum 2D diameter row (m2Ddr), higher skewness, and higher kurtosis
(Table 2). Overall survival > 1 year was associated with lower major axis length (MAL),
lower maximum 2D diameter row (m2Ddr), higher skewness, and higher elongation
(Table 3). The model including MAL, m2Ddr, and skewness best predicted progression-free
survival at 6 months (AUC = 0.886, 100% sensitivity, 77.8% specificity, 50% PPV, 100% NPV)
(Table 4). The model including m2Ddr, elongation, and skewness best predicted overall
survival at 1 year (AUC = 0.895, 83.3% sensitivity, 85.2% specificity, 55.6% PPV, 95.8% NPV)
(Table 5).

Table 2. Features associated with progression-free survival beyond 6 months.

Feature Whole Cohort
(n = 33)

PFS ≤ 6 Months
(n = 27)

PFS > 6 Months
(n = 6) p-Value

MAL 63.11 ± 21.11 66.46 ± 21.31 48.01 ± 12.54 0.027

m2Ddr 56.51 ± 17.82 59.07 ± 18.28 45 ± 10.03 0.021

Skewness 0.68 ± 0.46 0.60 ± 0.42 1.06 ± 0.48 0.021

Kurtosis 3.66 ± 1.89 3.36 ± 1.70 4.98 ± 2.30 0.035
PFS, progression-free survival; MAL, major axis length; m2Ddr, maximum 2D diameter row.

Table 3. List of significant features associated with overall survival at 1 year.

Feature Whole Cohort
(n = 33)

OS ≤ 1 Year
(n = 26)

OS > 1 Year
(n = 7) p-Value

MAL 63.11 ± 21.11 66.99 ± 21.55 48.68 ± 11.58 0.021

Elongation 0.66 ± 0.17 0.63 ± 0.18 0.77 ± 0.12 0.027

m2Ddr 56.51 ± 17.82 59.12 ± 18.64 46.83 ± 10.36 0.034

Skewness 0.68 ± 0.46 0.60 ± 0.42 0.98 ± 0.48 0.043
OS, overall survival; MAL, major axis length; m2Ddr, maximum 2D diameter row.
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Table 4. Survival prediction: summary of class performance for progression-free survival *.

Univariate Analysis

Feature AUC Sensitivity Specificity PPV NPV Cut-Off Value

MAL 0.790 0.667 0.704 0.333 0.905 54.643

m2Ddr 0.747 0.833 0.519 0.278 0.933 57.288

Skewness 0.802 0.500 0.926 0.6 0.893 1.046

Kurtosis 0.769 0.667 0.889 0.571 0.923 4.328

Bivariate Analysis

MAL
m2Ddr 0.880 0.833 0.815 0.5 0.957 96.436

86.200

MAL
Skewness 0.880 1.000 0.741 0.462 1.000 96.436

0.653

Trivariate Analysis

MAL
m2Ddr

Skewness
0.886 1.000 0.778 0.5 1.000

(*) Only the best-performing bivariate and trivariate models are presented. AUC, area under the receiver operating
curve; PPV, positive predictive value; NPV, negative predictive value; MAL, major axis length; m2Ddr, maximum
2D diameter row.

Table 5. Survival prediction: summary of class performance for overall survival.

Univariate Analysis

AUC Sensibility Specificity PPV NPV Cut-Off Value

MAL 0.788 0.714 0.731 0.417 0.905 54.629

m2Ddr 0.712 0.714 0.5 0.278 0.867 57.495

Skewness 0.742 0.429 0.923 0.6 0.857 1.042

Elongation 0.728 0.571 0.769 0.4 0.87 0.795

Bivariate Analysis

MAL
Skewness 0.880 1.000 0.741 0.462 1 96.436

0.653

Trivariate Analysis

m2Ddr
Elongation
Skewness

0.895 0.833 0.852 0.556 0.958

Only the best-performing bivariate and trivariate models are presented. AUC, area under the receiver operating
curve; PPV, positive predictive value; NPV, negative predictive value; MAL, major axis length; m2Ddr, maximum
2D diameter row.

3.2. Survival Analysis

The Kaplan–Meier plot for progression-free survival shows a statistically significant
difference between the group of patients with kurtosis above the cutoff and those with
kurtosis below the cutoff (log-rank test, p = 0.037; Figure 2). The plot for overall survival
shows a trend toward significance for the difference between the groups of patients with
m2Ddr above and below the cutoff (log-rank test, p = 0.090; Figure 3).
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4. Discussion

In patients with recurrent glioblastoma, bevacizumab is associated with increased
progression-free survival but not with increased overall survival; thus, its cost-effectiveness
in this scenario remains uncertain. Identifying pretreatment imaging biomarkers to predict
outcomes after bevacizumab therapy for recurrent glioblastoma can be useful for selecting
the patients most likely to benefit from this expensive treatment.

To identify imaging parameters associated with the efficacy of bevacizumab, we
performed MRTA on DWI from volumes segmented on gadolinium contrast-enhanced
T1-weighted sequences in patients with recurrent glioblastoma prior to treatment with
bevacizumab. We found that several features’ indexes derived from MRTA accurately
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predicted survival. Univariate Cox proportional hazards regression found that the best
predictors of progression-free survival at 6 months were MAL, m2Ddr, and skewness, and
the best predictors of overall survival at one year were m2Ddr, elongation, and skewness.
However, in the Kaplan–Meier plots, the only feature that was associated with a significant
difference in progression-free survival was kurtosis.

There is growing evidence for the usefulness of MRTA in predicting survival in patients
with newly diagnosed glioblastoma [36–39]. In one recent study, Priya et al. [40] extracted
texture features derived from contrast-enhanced T1-weighted images, analyzing the necrotic
and contrast-enhancing portions of the tumor after excluding edema. They found that a neu-
ral network classifier model combining age and histogram-based first-order textures could
differentiate between patients with short (<12 months) and long (>24 months) survival with
70% accuracy. Choi et al. [41] recently found that a model combining radiomic features de-
rived from peritumoral T2 hyperintensity, including texture features, and clinical parameters
improved survival prediction in patients with newly diagnosed glioblastoma. In another
study, Ingrisch et al. [42] applied radiomic analysis to predict overall survival from the
contrast-enhanced lesion segmented on T1-weighted images in a sample of 66 patients with
newly diagnosed glioblastoma. Texture parameters were among the most important vari-
ables in this model, enabling the authors to differentiate the two patient groups with longer
and shorter survival. In line with these studies, Upadhaya et al. [43] also demonstrated that
postcontrast imaging texture features provided prognostic value.

Moreover, an increasing number of studies show that radiomics also provides useful
information in recurrent glioblastoma. Grossman et al. [44] performed a radiomic analysis
of patients with recurrent glioblastoma treated with bevacizumab, extracting 65 quantitative
imaging features from T1 and FLAIR sequences acquired before treatment and 6 weeks
after starting treatment. They found that radiomic features helped to predict progression-
free survival and overall survival, and textural-imaging heterogeneity was an especially
important prognostic factor, independent of volumetric features, age, sex, and Karnofsky
performance status. Vils et al. [45] analyzed contrast-enhancing lesion and peritumoral
volumes in a cohort of patients with recurrent glioblastoma, extracting 180 radiomic
features. Their model predicted O6-methylguanine DNA methyltransferase promoter
methylation status, but was unable to predict progression-free or overall survival. On the
other hand, Huang et al. reported the usefulness of 18fluoromisonidazole (18F-FMISO) PET
to evaluate the hypoxia volume in patients with recurrent GBM refractory to bevacizumab,
and hypoxia was inversely correlated with OS and PFS [46].

The usefulness of diffusion MRI phenotypes in predicting survival in recurrent
glioblastoma treated with bevacizumab remains to be determined. Ellingston et al. [47]
found an association between lower pretreatment ADC values and lower progression-free
survival and overall survival in patients with recurrent glioblastoma treated with beva-
cizumab. Analyzing data from a randomized, controlled phase III trial comparing the
efficacy of bevacizumab with and without VB-111, the same group [48] found that baseline
tumor volume and data derived from ADC histogram analysis were predictive biomarkers
of overall survival. As in our study, the histograms were generated from ADC values
extracted from contrast-enhancing regions in T1-weighted images. For recurrent glioblas-
toma with a large tumor burden, diffusion MR phenotypes can predict overall survival in
patients treated with bevacizumab or surgical resection [49]. Finally, a recent systematic
review and meta-analysis evaluating the predictive value of the mean ADC value of the
lower Gaussian curve (ADCL) derived from bi-Gaussian curve-fitting histogram analysis in
patients with recurrent glioblastoma found that low ADCL was associated with decreased
progression-free survival and overall survival after bevacizumab treatment [28].

We did not analyze the relationship between ADC values and survival together with
data from histologic or gene expression studies [50]. Thus, it is impossible to know the
extent to which low ADC values in the recurrent glioblastomas that respond poorly to
bevacizumab are related to hypoxia or hypercellularity. We used the texture characteristics
skewness and kurtosis to measure the distribution of ADC values around the mean. The
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values of these parameters reflect the shape of a histogram: skewness measures the sym-
metry of the distribution, and kurtosis measures the weight of its tails, thus depending on
the frequency with which outliers occur. In a normal distribution, skewness equals zero
and kurtosis equals three. Skewness will be positive if more data are concentrated on the
left of the histogram and negative if more data are concentrated on the right. Values of
kurtosis greater than 3 indicate that the sample has a greater proportion of patients in the
tails compared to a normal distribution [51].

Skewness and kurtosis are indicators of tumor heterogeneity and can provide valuable
information for differential tumor diagnosis [52]. In Figure 4, we provide a hypothetical
biological explanation for our main results. The black line represents a hypothetical
normal distribution curve (skewness = 0 and kurtosis = 3) where patients would be equally
distributed according to their ADC values in contrast-enhancing lesions. The blue line
represents the distribution of patients with longer progression-free survival (>6 months)
according to their ADC values in contrast-enhancing lesions, and the red line represents the
distribution of the patients with shorter progression-free survival (≤6 months) according
to the same parameter. The box below the graph depicts the relationship between ADC and
cellularity, showing how low ADC values in a region of interest could represent high tumor
cellularity, and higher ADC values could represent areas of low tumor cellularity. The
curve for patients with longer progression-free survival corresponds to fewer areas of low
ADC values in enhancing tumors (skewness 1.5) (in the box delimited by the broken red
line) and more areas of enhancing tumors with ADC values that are not as low (in the box
delimited by the broken green line). In other words, patients with longer progression-free
survival (blue curve) would have fewer high-cellularity areas and more low-cellularity
areas in the tumor than patients with shorter progression-free survival (red curve).
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Some limitations of our study merit comment. Our small sample limits the general-
izability of our findings; additional research in larger cohorts and external validation are
necessary to confirm the usefulness of our model. Another limitation of our study is the
lack of data from histologic or gene expression studies and its relationship with patient
survival. Various aspects of the biology of glioblastoma progression and treatment-induced
alterations affect survival, and this complexity can be hard to capture in models. The
molecular profile of glioblastomas at initial detection is different from that of recurrent
glioblastomas, indicating a change in tumor biology [53]. Moreover, after primary treat-
ment, varying amounts of scar tissue, resection cavities, and the extent of resection may
also affect the imaging appearance of a recurrent tumor; moreover, the tumor volume at
recurrence is often very small, resulting in fewer tumor data for calculations compared to
the initial diagnosis.

Most quantitative radiomics research has focused on newly diagnosed glioblas-
tomas, and very few studies have used radiomic approaches to study recurrent glioblas-
tomas [31,54–56]. Our study aimed to propose models to predict survival after beva-
cizumab for recurrent glioblastoma. These promising preliminary results may be a small
but significant step toward demonstrating the clinical relevance of radiomic profiles in this
disease.

5. Conclusions

In conclusion, for enhancing lesions segmented on post-contrast T1-weighted se-
quences and mapped to ADC maps, the textural features of diffusion kurtosis may help to
predict progression-free survival in patients with recurrent glioblastoma before initiating
treatment with bevacizumab.
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