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Abstract

This PhD thesis focuses on improving the extraction of neuroimage markers for
the prognosis and outcome prediction of neurological pathologies such as ischemic
stroke, Alzheimer’s disease (AD) and multiple sclerosis (MS). Our work has been
developed on two of the most relevant neuroimage markers for diagnosis and
prediction, brain lesion segmentation and longitudinal atrophy quantification.
Brain lesion segmentation can be directly used in MS and ischemic stroke as a
prognostic marker and can also be useful for other downstream segmentation
tasks. In MS, disease activity produces very characteristic lesions which can
help with diagnosis and prognosis of the pathology. In ischemic stroke, lesion
segmentation can inform the treatment decision workflow by quantifying the
amount of tissue that could be salvaged against the risks of surgical intervention.
We also tackle in this PhD thesis the task of brain tissue segmentation for
longitudinal atrophy quantification, a validated prognostic image marker in MS
and AD. Measurements of longitudinal atrophy can be used to assess the rate of
disease progression and might even help to predict AD onset years in advance. In
MS patients, an accelerated rate of brain atrophy is also observed as a result of
disease activity and is used as a prognostic marker and to evaluate the response
of disease-modifying treatments.

The work in this thesis has been developed in several stages. In stage one, we
approach the task of brain lesion segmentation and propose two patch-based deep
learning methods for ischemic stroke, a 2D approach for computed tomography
(CT) images and a 3D one for magnetic resonance imaging (MRI). Within both
of these approaches, we have proposed training patch sampling techniques along
with class balancing loss functions to mitigate the imbalance between healthy
and lesion classes. We have also explored the use of several post-processing
techniques to rectify the classification confidence of the model and filter lesions
based on its morphology. Additionally, we have proposed a novel technique to
exploit features based on the bilateral symmetry between brain hemispheres. The
proposed approaches have shown state-of-the-art performance on two well-known
publicly available datasets from the 2015 and 2018 editions of the Ischemic Stroke
Lesion Segmentation (ISLES) challenge.

In the subsequent stages of this thesis, we focused on brain tissue segmentation
for cross-sectional and longitudinal volumetric analysis. Although deep learning
techniques have been at the forefront of many recent breakthroughs, current
state-of-the-art methods for brain tissue segmentation have still not found a way
to benefit from them. The main issue preventing their application is that the
typically employed supervised deep learning methods would require accurate
manual measurements of brain volumetry, which are virtually impossible to
perform by human raters. Thus, we propose an unsupervised patch-based deep
learning framework designed for accurate brain tissue segmentation which does
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not rely on manual annotations for training. Instead, we learn from the outputs
of a reference classical segmentation method and use data-driven techniques to
improve upon their results and compensate its shortcomings. This unsupervised
brain tissue segmentation framework is used as the basis for the work performed
in the next stages.

Although the effect of WM lesions typically observed in MS patient images
has been extensively studied in classical brain tissue segmentation methods,
it has still not been evaluated within the more recent deep learning based
approaches. In this regard, we begin by studying and evaluating the error that
is introduced by WM lesions in our deep learning based tissue segmentation
framework. Then, we propose an approach to reduce the error that these lesions
introduce in the measured tissue volumes. Typically, the gold standard technique
to mitigate WM lesion effect is to perform a lesion filling or inpainting in a
previous separate step to prevent the abnormal intensities from interfering with
the tissue segmentation. Instead, we propose a data-driven technique that
performs the inpainting and segmentation tasks in an end-to-end fashion within
our deep learning framework. By jointly optimizing both tasks, we are able to
obtain an inpainting model that is also trained to aid in the segmentation task
and minimizes the WM lesion influence to almost negligible levels.

Finally, based on our previously developed unsupervised brain tissue segmen-
tation framework, we propose a method for longitudinal atrophy quantification.
Within our approach, the network learns from a reference tissue segmentation
method while utilizing data priors to regularize the training and avoid learning
its errors and biases. More specifically, we propose a tissue similarity regulariza-
tion during training which penalizes volume differences between pairs of scans
from the same patient made within a short time interval. The experimental
results show our method has greatly reduced short interval error and improved
sensitivity to differences between healthy and AD patients compared to the
reference method used for training.

In this PhD thesis, we have worked with diverse neuroimage markers and
imaging modalities, which has provided valuable insights on the issues and
challenges for their use in prognostic and predictive tasks.
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Resum

Aquesta tesi doctoral se centra en millorar l’extracció de marcadors de neu-
roimatge per al pronòstic i predicció de l’estat del pacient en patologies neu-
rològiques com l’ictus isquèmic, la malaltia d’Alzheimer o l’esclerosi múltiple
(EM). El nostre treball ha estat desenvolupat en dos dels marcadors de neu-
roimatge més rellevants per al diagnòstic i la predicció; la segmentació de lesions
cerebrals i la quantificació longitudinal d’atròfia. La segmentació de lesions
pot ser utilitzada directament en ictus i en EM com a marcador del pronòstic
i també pot ser útil en posteriors tasques de segmentació. A l’EM, l’activitat
de la malaltia produeix lesions molt característiques que poden informar el
diagnòstic i el pronòstic de la patologia. A l’ictus isquèmic, la segmentació de
la lesió pot assistir en la decisió del tractament mitjançant la quantificació del
teixit que podria salvar-se front als riscos de la intervenció quirúrgica. També
abordem en aquesta tesi doctoral la segmentació del teixit cerebral per a la
quantificació de l’atròfia longitudinal, un marcador d’imatge pronòstic validat a
la EM i la malaltia d’Alzheimer. Les mesures de l’atròfia longitudinal es poden
fer servir per avaluar la velocitat de progressió de la malaltia i fins i tot podrien
ajudar a predir l’inici de la malaltia d’Alzheimer anys abans de mostrar els
primers símptomes. En pacients amb EM, també s’observa una taxa accelerada
d’atròfia cerebral com a resultat de l’activitat de la malaltia i la seva mesura pot
servir com a marcador pronòstic i també per avaluar la resposta als tractaments
modificadors de la malaltia.

El treball d’aquesta tesi s’ha desenvolupat en diverses fases. En la primera
fase, abordem la segmentació de lesions cerebrals i proposem dos mètodes de
deep learning basats en blocs per ictus isquèmic, un mètode 2D per a imatges de
tomografia computaritzada i un 3D per a imatges de ressonància magnètica. En
tots dos mètodes, hem proposat una tècnica de mostreig de blocs d’entrenament
juntament amb funcions de pèrdua dissenyades per balancejar la contribució de
la classe sana i lesionada i mitigar el seu desequilibri. També hem explorat l’ús
de diverses tècniques de postprocessament utilitzant l’estimació de l’incertesa
de classificació i el filtratge morfològic de les lesions. A més, hem proposat
una tècnica per explotar característiques basades en la simetria bilateral entre
els hemisferis cerebrals. Els mètodes proposats han demostrat estar a l’estat
de l’art en termes de rendiment en dos coneguts conjunts de dades accessibles
públicament en les edicions de 2015 i 2018 del repte internacional Ischemic
Stroke Lesion Segmentation (ISLES).

Posteriorment, a les següents etapes de la tesi ens hem centrat en la seg-
mentació de teixit cerebral per a l’anàlisi volumètric transversal i longitudinal.
Tot i que les tècniques de deep learning han estat al capdavant dels avenços
recents, els mètodes actuals per a la segmentació del teixit cerebral encara no
han trobat la manera de beneficiar-se’n. El principal problema que n’impedeix
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l’aplicació és que els mètodes típics de deep learning supervisats requereixen
mesures manuals precises de la volumetria cerebral, que són virtualment impos-
sibles de realitzar per humans. Per tant, en aquesta tesi proposem un sistema de
deep learning no supervisat basat en blocs dissenyat per a una segmentació pre-
cisa del teixit cerebral que no requereix anotacions manuals per a l’entrenament.
En el seu lloc, aprenem dels resultats d’un mètode de segmentació clàssic com a
referència i utilitzem tècniques basades en coneixement a priori de les dades per
millorar-ne els resultats i compensar les seves deficiències. Aquest sistema de
segmentació de teixit cerebral no supervisat s’utilitza com a base per al treball
dut a terme a les pròximes etapes.

Tot i que l’efecte de les lesions de matèria blanca (MB) típicament observades
a les imatges de pacients amb EM s’ha estudiat àmpliament en els mètodes
clàssics de segmentació del teixit cerebral, encara no s’ha avaluat dins dels
mètodes més recents basats en deep learning. En aquest sentit, hem estudiat i
avaluat l’error que introdueixen les lesions de MB al nostre sistema de segmentació
de teixits basat en deep learning no supervisat. Posteriorment, proposem un
mètode per reduir l’error que aquestes lesions introdueixen a les mesures de
volums de teixit. En general, la tècnica estàndard per mitigar l’efecte de la lesió
de MB és fer un repintat o inpainting de la lesió en un pas previ per evitar
que aquestes intensitats anormals interfereixin amb la segmentació del teixit.
En el seu lloc, nosaltres proposem una tècnica basada en dades que realitza
les tasques de repintat i segmentació íntegrament dins del nostre sistema de
deep learning. Optimitzant conjuntament les dues tasques obtenim un model de
repintat optimitzat per a la tasca de segmentació i que minimitza la influència
de la lesió a nivells gairebé insignificants.

Finalment, partint del sistema de segmentació de teixit cerebral no supervisat
desenvolupat prèviament, proposem un mètode per a la quantificació de l’atròfia
longitudinal. En el nostre mètode, la xarxa aprèn d’un mètode de segmentació
de teixit com a referència mentre utilitza coneixement previ sobre les dades
per regularitzar l’entrenament i evitar aprendre així dels seus errors i biaixos.
Més específicament, proposem una regularització basada en la similitud de
teixits durant l’entrenament que penalitza les diferències de volum entre parells
d’imatges del mateix pacient fetes en un curt interval de temps. Els resultats
experimentals mostren que el nostre mètode redueix en gran mesura l’error a
curt termini i millora la sensibilitat a les diferències entre pacients sans i amb
malaltia d’Alzheimer en comparació amb el mètode de referència utilitzat per a
entrenar.

En resum, en aquesta tesi doctoral hem desenvolupat mètodes per a l’extracció
de diversos marcadors neurològics procedents de diferents modalitats d’imatge,
obtenint informació valuosa per al seu ús en tasques de pronòstic i predicció en
malalties neurològiques.
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Resumen

Esta tesis doctoral se centra en mejorar la extracción de marcadores de neu-
roimagen para el pronóstico y la predicción del estado del paciente en patologías
neurológicas como el ictus isquémico, enfermedad de Alzheimer (EA) o la es-
clerosis múltiple (EM). Nuestra investigación se ha desarrollado en dos de los
marcadores de neuroimagen más relevantes para diagnóstico y predicción; la
segmentación de lesiones cerebrales y la cuantificación longitudinal de atrofia.
La segmentación de lesiones puede ser utilizada directamente en ictus y en MS
como un marcador del pronóstico y también puede ser útil en posteriores tareas
de segmentación. En la EM, la actividad de la enfermedad produce lesiones muy
características que pueden informar el diagnóstico y pronóstico de la patología.
En el ictus isquémico, la segmentación de la lesión puede asistir en la decisión
del tratamiento mediante la cuantificación del tejido que podría salvarse frente
a los riesgos de la intervención quirúrgica. También abordamos en esta tesis
doctoral la tarea de la segmentación del tejido cerebral para la cuantificación
de atrofia longitudinal, un marcador de imagen pronóstico validado en la EM
y la EA. Las mediciones de atrofia longitudinal se pueden usar para evaluar la
velocidad de progresión de la EA e incluso podrían ayudar a predecir el inicio de
la enfermedad años antes de mostrar los primeros síntomas. En pacientes con
EM, también se observa una tasa acelerada de atrofia cerebral como resultado
de la actividad de la enfermedad y su medición puede usarse como marcador
pronóstico y para evaluar la respuesta a los tratamientos modificadores de la
enfermedad.

El trabajo de esta tesis se ha desarrollado en varias fases. En la primera fase
abordamos la segmentación de lesiones cerebrales y proponemos dos métodos
de deep learning basados en parches para ictus isquémico, un método 2D para
imágenes de tomografía computarizada y uno 3D para imágenes de resonancia
magnética. En ambos métodos, hemos propuesto una técnica de muestreo de
parches de entrenamiento junto con funciones de pérdida balanceadoras para
mitigar el desequilibrio entre la clase sana y la lesionada. También hemos explo-
rado el uso de varias técnicas de post-procesamiento usando la estimación de la
incerteza de clasificación y el filtrado morfológico de lesiones. Además, hemos
propuesto una técnica para explotar características basadas en la simetría bila-
teral entre los hemisferios cerebrales. Los métodos propuestos han demostrado
un rendimiento al nivel del estado del arte en dos conocidos conjuntos de datos
accesibles públicamente en las ediciones de 2015 y 2018 del reto internacional
Ischemic Stroke Lesion Segmentation (ISLES).

En las siguientes etapas de esta tesis nos hemos centrado en la segmentación
de tejido cerebral para el análisis volumétrico transversal y longitudinal. Aunque
las técnicas de deep learning han estado a la vanguardia de los recientes avances,
los métodos actuales para la segmentación del tejido cerebral aún no han
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encontrado la manera de beneficiarse de ellos. El principal problema que impide
su aplicación es que los típicos métodos de aprendizaje profundo supervisados
requieren mediciones manuales precisas de la volumetría cerebral, que son
virtualmente imposibles de realizar por humanos. Por lo tanto, en esta tesis
proponemos un sistema de deep learning no supervisado basado en parches
diseñado para una segmentación precisa del tejido cerebral que no requiere
anotaciones manuales para el entrenamiento. En su lugar, aprendemos de los
resultados de un método de segmentación clásico como referencia y utilizamos
técnicas basadas en los datos para mejorar sus resultados y compensar sus
deficiencias. Este sistema de segmentación de tejido cerebral no supervisado se
utiliza como base para el trabajo realizado en las próximas etapas.

Aunque el efecto de las lesiones de materia blanca (MB) típicamente obser-
vadas en las imágenes de pacientes con EM se ha estudiado ampliamente en
los métodos clásicos de segmentación del tejido cerebral, aún no se ha evaluado
dentro de los métodos más recientes basados en deep learning. En este sentido,
comenzamos estudiando y evaluando el error que introducen las lesiones de
MB en nuestro sistema de segmentación de tejidos basado en deep learning no
supervisado. Posteriormente, proponemos un método para reducir el error que
estas lesiones introducen en la medición de los volúmenes de tejidos. Por lo
general, la técnica estándar para mitigar el efecto de la lesión de MB es realizar
un repintado o inpainting de la lesión en un paso previo para evitar que estas
intensidades anormales interfieran con la segmentación del tejido. En su lugar,
proponemos una técnica basada en datos que realiza las tareas de repintado
y segmentación íntegramente dentro de nuestro sistema de deep learning. Al
optimizar conjuntamente ambas tareas, obtenemos un modelo de repintado
optimizado para la tarea de segmentación y que minimiza la influencia de la
lesión a niveles casi insignificantes.

Por último, partiendo del sistema de segmentación de tejido cerebral no super-
visado desarrollado previamente, proponemos un método para la cuantificación
de la atrofia longitudinal. En nuestro método, la red aprende de un método
de segmentación de tejido como referencia mientras utiliza conocimiento previo
sobre los datos para regularizar el entrenamiento y evitar aprender también sus
errores y sesgos. Más específicamente, proponemos una regularización basada en
la similitud de tejidos durante el entrenamiento que penaliza las diferencias de
volumen entre pares de imágenes del mismo paciente realizadas en un intervalo
corto de tiempo. Los resultados experimentales muestran que nuestro método
reduce en gran medida el error de corto plazo y mejora la sensibilidad a las
diferencias entre pacientes sanos y con EA en comparación con el método que se
ha usado como referencia para el entrenamiento.

En resumen, en esta tesis doctoral hemos desarrollado métodos para la
extracción de diversos marcadores neurológicos en diferentes modalidades de
imagen, lo que ha proporcionado información valiosa para su uso en tareas de
pronóstico y predicción de enfermedades neurológicas.
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Chapter 1

Introduction

1.1 Research Context

1.1.1 Ischemic stroke
Stroke is a medical condition by which an abnormal blood flow in the brain
causes the death of cerebral tissue. Stroke is the third most common cause
of morbidity worldwide, after myocardial infarction and cancer, and is the
leading cause of acquired disability [1]. Depending on the type of abnormality,
strokes can be divided in ischemic (80%) due to insufficient blood supply, and
hemorrhagic (20%), typically due to a vessel rupture inside the brain generating
toxic hematoma and swelling.

In an ischemic stroke, a blockage in an artery reduces the blood flow to
its irrigated region, which starves the area of nutrients and puts it at risk of
irreversible damage. The infarcted tissue during an episode is divided into three
regions depending on the potential for its recovery, also referred as salvageablity:
core, penumbra and benign oligemia. The core is formed by irreversibly damaged
tissue, and is characterized by a fatally low blood supply. The penumbra
represents tissue at risk but with enough blood supply that can be eventually
salvaged depending on factors such as revascularization, collateral blood supply,
tissue resistance, etc. The benign oligemia is an area whose vascularity has been
altered by the stroke but is not at risk of permanent damage. In the affected
area of the brain, the stroke lesion undergoes dynamic temporal evolution as
depicted in Figure 1.1. Progressively, the lesion core grows as the affected tissue
from the penumbra exhausts its nutrients and undergoes infarction. The stages
of evolution are typically subdivided according to the time passed since stroke
onset into acute during the first 24 hours, sub-acute from day one up to the
second week, and chronic from the second week onward.

Once the symptoms of stroke have been identified, a shorter time to treatment
is strongly correlated with a positive outcome [3]. Acute ischemic stroke therapies
try to stop a stroke while it is happening by quickly dissolving the blood clot
with medication or physical intervention. If the patient arrives at the hospital
within the first 3 to 4.5 hours after the stroke, a tissue plasminogen activator is
administered intravenously. It is a type of anticoagulant that works by dissolving
the clot and improving flow to the part of the brain being deprived of blood.
When promptly administered, it can save lives and reduce the long-term effects of
stroke. Physical removal of a large blood clot, called an endovascular procedure
or a mechanical thrombectomy, is another strongly recommended treatment
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Figure 1.1: Temporal evolution of an ischemic stroke lesion [2].

option with successful reperfusion in up to 80% of receivers [4]. However, this
surgery is not free of risks. A study found the overall complication rate was
about 15.3% including symptomatic intracranial hemorrhage in 8.1% and 6.6%
deaths [5]. In the acute setting, brain imaging plays a key role in assessing if
the volume of penumbra, i.e. tissue that could be salvaged, is large enough to
outweigh the risks of a surgical intervention.

1.1.2 Multiple Sclerosis
Multiple sclerosis (MS) is an immune-mediated inflammatory disease in the
central nervous system affecting more than 2.8M people worldwide [6]. With a
prevalence of 36 per 100.000 inhabitants, MS is the most common neurological
cause of disability for young adults, with an average age of diagnosis ranging
from 30 to 33 years. MS is a demyelinating disease, in which the insulating
covers of nerve cells in the brain and spinal cord are damaged by the immune
system. This damage interferes with the signal transmission between parts of
the nervous system and leads to a range of physical, mental and psychiatric
symptoms. MS is also characterized by the formation of focal lesions in the
central nervous system and inflammation. Among the most common symptoms,
MS patients can both temporarily and progressively experience partial paralysis,
fatigue, cognitive dysfunction, muscle weakness and trouble with sensation or
coordination.

Clinically isolated syndrome (CIS) is a first episode of neurologic symptoms,
lasting for at least 24 hours, caused by inflammation and demyelination in the
central nervous system. This kind of episodes are characteristic of MS but do
not constitute a definitive criteria for diagnosis because people who experience
a CIS may or may not go on to develop MS. When CIS is accompanied by
the characteristic small lesions typical of MS, such as the ones depicted in
Figure 1.2, the person has a high likelihood of a second episode of neurologic
symptoms and definitive diagnosis. MS is typically subdivided in different
types according to the appearance of new symptoms, which can either occur
in isolated attacks (relapsing forms) or progressively build up over time (pro-
gressive forms). Relapsing-remitting MS (RRMS) is the most common disease
course covering over 85% of the cases. It is characterized by clearly defined
attacks of new relapses followed by periods of partial or complete recovery
(remissions). Approximately 12% of MS patients are initially diagnosed with
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Figure 1.2: Examples of small hyperintense lesions characteristic of MS.

primary progressive MS (PPMS), which is characterized by worsening neurologic
function (accumulation of disability) from the onset of symptoms, without early
relapses or remissions. Some patients with RRMS diagnosis might eventually
transition into a form of secondary progressive MS (SPMS). In this stage, there
is a progressive worsening of neurologic function (accumulation of disability)
over time, occasional relapses may occur as well as periods of stability.

In the clinical setting, brain imaging has become an essential tool for manage-
ment of multiple sclerosis patients. After the initial diagnosis, disease monitoring
is regularly performed to MS patients with brain imaging for assessment of new
disease activity, such as the appearance of new lesions or increased brain atrophy
[7]. Moreover, it is also used to assess the effectiveness of disease-modifying
treatments both in routine clinical practice as well as in experimental trials [8].

1.1.3 Alzheimer’s disease
Alzheimer’s disease (AD) is a neurodegenerative pathology characterized by
the loss of neurons and synapses in the cerebral cortex and certain subcortical
regions. As of 2020, there were approximately 50 million people worldwide with
Alzheimer’s disease [9]. It is most commonly diagnosed in people over 65 years of
age but up to 10% of the cases are early-onset affecting those in their 30s to mid-
60s. The main early symptom is difficulty in remembering recent events, with
more symptoms appearing progressively as the disease advances such as language
problems, disorientation, mood swings, behavioral issues, loss of bodily functions
and ultimately death. The disease process if mainly associated to amyloid
plaques, neurofibrillary tangles, loss of brain connectivity and generalized brain
atrophy (see Figure 1.3). Although some environmental and genetic risk factors
have been identified in correlation studies, the cause of Alzheimer’s disease is
poorly understood. Since initial symptoms are often mistaken for normal aging,
a typical diagnosis requires cognitive testing, blood tests and brain imaging. A
growing number of studies report that brain imaging can play an important role
in early detection [10] and predicting the evolution of patients [11].
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(a) Baseline (b) 2 year follow-up

Figure 1.3: Longitudinal scans of an Alzheimer’s disease patient. The reduction in
gray and white matter volume due to the generalized atrophy process is compensated
by an increase in cerebrospinal fluid (CSF), producing an apparent enlargement of

the ventricles and sulci in the cortex.

1.2 Research Background
Within the University of Girona, the Computer Vision and Robotics (ViCOROB)
research group was established in 1996. Stemming from its computer vision
expertise, the group began working in the field of medical image analysis, initially
dealing with segmentation and registration in X-ray breast imaging. In 2009,
the group started collaborating with several medical institutions and physicians
in MS to develop new tools for brain image analysis with a focus on transference
to the clinical practice. In the last years, the group has widened and generalized
its brain imaging research framework which currently focuses on preprocessing,
registration, segmentation of brain lesions, new lesions detection and longitudinal
brain volumetry for atrophy quantification in different brain diseases.

The research performed in this PhD is framed within the following projects:

1. [2016 – 2019] wASSABI: "Automatic brain Structures Segmentation As
potential imaging BIomarkers". Awarded in 2016 by the Ministerio de
ciencia y tecnología. Ref: TIN2015-73563-JIN.

2. [2018 – 2021] EVOLUTION: "Predictive models for multiple sclerosis
using brain magnetic resonance imaging biomarkers". Awarded in 2017 by
Ministerio de ciencia y tecnología. RETOS 2017. Ref: DPI2017-86696-R.

3. [2021 – 2024] Modelling: "Models for Multiple Sclerosis using Deep Learning
on Radiological, Clinical and Laboratory Data". Awarded in 2020 by
Ministerio de ciencia y tecnología. RETOS 2020. Ref: PID2020-114769RB-
I00.
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Along with these projects, there has been a strong relationship with medical
expert teams. Between 2021 and 2022, we collaborated with Dra. Yolanda Silva
from Hospital Dr. Josep Trueta in a hemorrhagic stroke project titled "Medical
image processing with artificial intelligence techniques for the segmentation and
volume quantification of cerebral hematoma and edema in stroke patients". In
the field of MS, collaborations were also carried out with Dr. Lluís Ramió and
Dr. Joan Carles Vilanova from Hospital Dr. Josep Trueta and Dr. Àlex Rovira
from Hospital Vall d’Hebron.

1.3 Objectives
As part of the wASSABI, EVOLUTION and Modelling research frameworks,
the goal of the thesis is described as:

To develop novel deep learning based methods for improving the
quality and robustness of cross-sectional and longitudinal neuroimage
markers for the prognosis and outcome prediction of brain pathologies.

The sub-goals for this thesis revolve around the most relevant brain imaging
markers for prognosis and outcome prediction of the considered pathologies.
Dealing with several image based markers will allow to gain knowledge and
insights about the challenges and particularities of each marker and how they
can be improved and combined for its future use in predictive models. We
propose and detail the following sub-goals:

• to propose deep learning based approaches for improving brain
lesion segmentation in ischemic stroke. In recent years, the prolifera-
tion of medical imaging challenges has sparked an increase in the number
of high-quality publicly accessible brain imaging datasets. At the same
time, there is a surge of deep learning works proposing and evaluating
a huge number of novel techniques in a wide variety of medical imaging
related tasks. The field of brain lesion segmentation covers a huge array
of neurological pathologies and imaging modalities, which has ultimately
ended up in a highly fragmented literature with many preprocessing and
data-driven techniques validated only for certain imaging modalities and
pathologies. While many of these techniques and innovations are very
specifically tuned to the particular physiopathology of the imaged disease,
others are general enough to also benefit other unrelated tasks. As part of
our goal, we will review the literature for recently proposed brain lesion
segmentation methods to identify and apply techniques with the potential
to improve our ischemic stroke lesion segmentation framework. We also aim
at developing and validating novel techniques and approaches to improve
results by leveraging the physiopathology of stroke and the particularities
of typically employed imaging modalities.

• to qualitatively and quantitatively evaluate the effect of WM
lesions within deep learning based brain tissue segmentation
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methods and to develop novel data-driven techniques to reduce its
influence. Brain lesions affecting the white matter of the brain can appear
due to a wide array of causes and are a common occurrence in demyelinating
inflammatory disorders, such as MS, and degenerative disorders, such
as AD. The presence of WM lesions interferes with longitudinal brain
atrophy quantification methods and distort brain volume measurements.
Although the effect of WM lesions on tissue segmentation methods has been
extensively documented in the literature, it has still not been evaluated
within the more recent deep learning based approaches. Hence, our goal
is to evaluate the effect of these lesions within deep learning based brain
tissue segmentation methods and propose novel techniques to reduce their
effect. Our hypothesis is that WM lesions will have a different effect on
deep learning based methods and that their influence can be reduced more
effectively by leveraging of data-driven techniques.

• to develop novel unsupervised deep learning methods for brain
atrophy quantification. Although deep learning techniques have been
at the forefront of many recent breakthroughs in medical image process-
ing, current state-of-the-art techniques for brain atrophy quantification
do not make use of these data-driven techniques and are yet to benefit
from their advancements. The main issue is that most of the cutting
edge techniques are based on supervised deep learning, where a ground
truth annotation made by an expert physicians is used to train the model.
The challenge for brain atrophy quantification methods is that sufficiently
accurate manual ground truth annotations for effective training are virtu-
ally impossible to achieve by human raters. Thus, our goal is to develop
novel unsupervised deep learning techniques that can improve upon the
state-of-the-art methods for brain atrophy quantification without the use
of manual annotations.

Throughout the completion of the considered objectives, we made most of
the source code publicly available to the medical imaging community to improve
the reproducibility of the research carried out in this thesis.

1.4 Document Structure
This thesis is done as the compendium of three Q1 JCR journal publications
and one submission to a Q1 JCR journal, covering chapters 3 to 6. The articles
in this compendium draw the clear thematic unity of presenting deep learning
methods for extraction of brain image markers relevant to the prognosis and
outcome prediction of neurological pathologies. Predictive models typically rely
on the use of several image-based markers, along with a range of clinical and
patient data, to perform prognostic and functional outcome prediction tasks.
The set of articles in this compendium encompass two of the most clinically
relevant imaging markers for prediction tasks, brain lesion segmentation and
brain tissue segmentation for cross-sectional and longitudinal volumetry. The
following parts of the thesis are structured as:
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• Chapter 2. Thesis Context. This chapter presents the theoretical and
technical background in which this thesis is framed. It has been divided
in four main sections consisting on the basis for volumetric brain imaging,
a brief introduction to deep learning and the research background for the
tasks of stroke lesion segmentation and brain atrophy quantification.

• Chapter 3. Acute ischemic stroke lesion core segmentation in CT
perfusion images using fully convolutional neural networks. In
this chapter, we present a 2D patch-based deep learning methodology for
ischemic stroke lesion segmentation in non-contrast CT and CT perfusion
imaging.

• Chapter 4. Acute and sub-acute stroke lesion segmentation
from multimodal MRI. We present a 3D patch-based deep learning
approach for acute and sub-acute ischemic stroke lesion segmentation from
multimodal MRI.

• Chapter 5. Minimizing the effect of white matter lesions on
deep learning based tissue segmentation for brain volumetry. We
present a novel technique for training a deep learning based brain tissue
segmentation method with built-in white matter lesion effect reduction
onto the measured tissue volumes.

• Chapter 6. Improving segmentation-based brain atrophy quan-
tification with unsupervised deep learning using tissue similarity
regularization. In this chapter, we present a novel unsupervised deep
learning pipeline for segmentation-based longitudinal atrophy quantifica-
tion which uses a tissue similarity regularization to achieve state-of-the-art
results.

• Chapter 7. Main results and discussion. We summarize and discuss
the major results of the work realized within this thesis.

• Chapter 8. Conclusions. This chapter presents the main contributions
and discusses future research that might derive from the work realized in
this thesis.
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Chapter 2

Thesis Context

2.1 Volumetric brain imaging
During the last few decades, advances in physics, electronics and computer
science have sparked the proliferation and availability of in vivo non-invasive
volumetric imaging of the human anatomy. In its digital form, the imaged space
is discretized into a grid of small cubes and represented as a three dimensional
structured array of numbers. In contrast to conventional imaging techniques,
such as photography, that typically produce two-dimensional projections from a
single viewpoint, volumetric imaging captures a one to one absolute magnitude
representation of the imaged space without projection of any kind. Each of the
volumetric picture elements, commonly refered to as a voxel, represents a cube
centered on a specific point in space and of known absolute volume, characterized
by the voxel size in each dimension which is measured in mm. Within this 3D
grid, each voxel contains the average signal intensity, which depends on the
imaging modality, within the volume it represents. Depending on the scanning
principle, 3D images may be acquired as a series of stacked two-dimensional
(2D) images each having a specific slice thickness and acquired at regular spatial
intervals according to the slice spacing.

In medical imaging, the three dimensional image array is spatially referenced
by accompanying metadata to standard human anatomical axes as well as to
standardized world coordinates, expressed in mm, as illustrated in Figure 2.1.
The relationship between voxel and world coordinates is typically encoded in an

Figure 2.1: Relation between world (left), anatomical (center) and image (right) co-
ordinate systems. (Source: https://www.slicer.org/wiki/Coordinate_systems)
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(a) Captured sinogram (b) Reconstructed slice

Figure 2.2: Sinogram and tomographical reconstruction of a CT brain scan slice.

affine transformation matrix to a reference origin and orientation that depends
on the convention adopted by the file format. Additional metadata is usually
included to also encode the spatial properties of the voxel dimensions, such as
voxel size or spacing. In brain imaging, typical voxel sizes are in the order of
1 × 1 × 1mm, with higher resolution images in the order of 0.5 × 0.5 × 0.5mm.

2.1.1 Computed Tomography
A computed tomography (CT) scan involves a motorized moving array of X-
ray emitting diodes, and its corresponding detectors, which are used to take
multiple 1D measurements from many different angles and positions and use
computational methods to reconstruct the underlying 3D anatomy. The most
common type of CT scan is refered to as spiral CT, or helical CT, in which an
entire X-ray tube is spun around the central axis of the area being scanned. Due
to the physical constraints of the acquisition, CT scans are typically acquired
as a series of stacked 2D slices. For each 2D slice, multiple x-ray attenuation
measurements are taken from many different angles around the central axis
during each rotation of the scanner. All of the measurements taken are then
merged onto a sinogram, which relates the axial displacement of the diodes and
the radial angles at which the measurements where taken. The sinogram is
then computationally processed using tomographic reconstruction algorithms
which reconstruct cross-sectional tomographic images of the internal anatomy.
An example of a sinogram and the final reconstructed image can be found in
Figure 2.2.

2.1.2 Magnetic Resonance Imaging
Magnetic resonance imaging (MRI) is a non-invasive medical imaging technique
that produces high quality representations of the internal anatomy and phys-
iological process of the body. Its imaging principle is based on the magnetic
resonance of the single proton that forms the hydrogen nuclei and which is
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(a) T1-weighted (b) T2-weighted (c) FLAIR (d) PD

Figure 2.3: Common MRI sequences used for brain imaging.

present in almost all living tissue. To perform an MRI scan, a strong oscillating
magnetic field made with an emitter coil array is used to excite the hydrogen
atoms and align their rotation axis to that of the applied field. This creates
a phase coherence in the precession of all the proton spins. After the initial
alignment, information about the underlying anatomy can be inferred from the
way in which the hydrogen atoms return to its natural spin and which induces
an electric current through the receiver coil. The key factor is that the behavior
of protons is affected by fields from other atoms to which they are bonded,
which makes it possible to separate the responses from hydrogen bonded within
specific compounds in different tissues. Spatial encoding of the MRI signal is
accomplished through the use of magnetic field gradients, which are compounded
onto the base field, having an intensity offset that depends linearly on the spatial
position. Brain MRI requires a very strong magnetic field, typically in the order
of 1.5 to 3.0 Teslas, and which is uniform across the imaged volume within very
small tolerances. In particular circumstances, extraneous contrast agents highly
sensitive to magnetization may be given to highlight specific regions or processes.

After the initial magnetic resonance excitation, the measured magnetization
signal of hydrogen nuclei is attenuated due to two simultaneous relaxation
processes. The magnetization vector slowly relaxes towards its equilibrium
orientation, parallel to the static magnetic field, at a tissue dependent time
constant called the spin-lattice relaxation time (T1). Concurrently, the loss of
coherence in the phases of spin precession attenuates the measured signal with a
tissue-dependent time constant called the transverse relaxation time (T2). Since
each tissue has particular responses of T1 and T2 times, specific highlighting
of tissues or different contrasts between them can be obtained by tuning the
excitation and measurement parameters. In T1 weighted (T1w) images, such as
the one in Figure 2.3a, fat tissue quickly realigns its longitudinal magnetization
and it therefore appears bright. In contrast, water has much slower longitudinal
magnetization realignment and therefore has less transverse signal intensity,
appearing dark. T1w images are typically used for assessing the cerebral cortex,
identifying fatty tissue and observing the brain morphology in general. T2
weighted images (T2w) show different intensities and contrasts between tissues
(see Figure 2.3b), and are useful in brain MRI for detecting edema, inflammation
and revealing white matter lesions. In T2w images, external factors such as
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magnetic field inhomogeneity can alter the T2 relaxation time. This additional
effect is initially captured on T2* weighted imaging, which is what the coil
receiver actually detects during T2w imaging. To mitigate these extraneous
influences, a refocusing pulse on spin-echo sequences is emitted to obtain the
desired T2w image.

Another common MRI modality is Proton density (PD) weighting, depicted
in Figure 2.3d, where intensity is proportional to the number of hydrogen
protons in the area being imaged. PD weighted images are obtained when
the contribution of both T1 and T2 contrast is minimized, and its particularly
useful for imaging of structures adjacent to the ventricles, since it reduces the
confounding signal coming from the cerebrospinal fluid. PD is often aquired
along with T2w images since they can be acquired in a single sequence by using
a dual spin-echo technique.

Fluid-attenuated inversion-recovery (FLAIR) is another MRI modality, which
is a type of heavy T2-weighting modality that selectively nulls the signal coming
from cerebrospinal fluid (see Figure 2.3c). In this sequence, a preliminary pulse
is used to induce a magnetization in the inverse direction in which the upcoming
T2w sequence will be performed. After the initial inverting pulse, tissues relax
into their original magnetization at different longitudinal (T1) relaxation rates.
The T2w sequence is delayed to the point when the longitudinal magnetization
reaches the null point for the fluid, which we wish to suppress. This delay is
called the time to inversion (TI) and it can be varied to suppress other kind of
tissues depending on their T1 relaxation characteristics. Similar to PD, this kind
of sequence improves the contrast of brain structures adjacent to cerebrospinal
fluid.

Another form of MRI is that of diffusion weighted imaging (DWI), which is
based on the measurement of the random Brownian motion of water within a
voxel of tissue. As opposed to the free diffusion of pure water in a container,
the diffusion of the water present in tissue is restricted by the cell membrane
boundaries. To measure the diffusion characteristics in MRI, the attenuation of
the T2* signal is measured proportional to the freedom of movement of water
molecules. Thus, in DWI there is no need for the refocusing pulse used in
T2w images. To perform DWI, an initial T2* weighted image is taken with no
diffusion attenuation which will set the baseline b=0 image. Afterwards, the
diffusion characteristics of tissue are measured in various directions, a minimum
of 3 orthogonal directions. Each of the measurements is done by first applying
a strong gradient in one direction and then applying a symmetrically opposite
one. Depending on the amplitude, duration and intervals of each pulse, a
corresponding b value is associated as illustrated in Figure 2.4. At a physical
level, water molecules will acquire different precession speeds depending on the
magnitude of the gradient at their position. Molecules in the stronger areas of
the gradient will acquire a fast precession speed and a slower one in the other end
of the gradient. Since water molecules with restricted diffusion do not change
location easily, they are exposed to the second gradient with a symmetrically
opposite strength and phase. This creates a rephasing effect where the faster
precessing protons will be slowed down and the slower ones will be sped up.
When this happens, at the end of the pulse, all protons which stayed in the
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(a) b=0 (b) b=100 (c) b=200

(d) b=500 (e) b=1000 (f) b=2000

Figure 2.4: DWI images with increasing b value. Case courtesy of A.Prof Frank
Gaillard, Radiopaedia.org, rID: 33859. As the b value increases denser structures,

such as the central ventricles, with more restricted diffusivity attenuate more.

same voxel will spin in unison and emit strong echo, appearing as bright areas
in the image. On the other hand, freely moving water molecules will jump to
neighboring voxels between the gradient pulses. Hence, the second gradient will
not create this rephasing effect where the precession speeds of all molecules in
the voxel are uniformly compensated. When the echo is measured from freely
moving water, the different precession speeds do not generate a strong echo
and appear as darker intensities. In a nutshell, the further an individual water
molecule diffuses during the sequence, the more different the rephasing gradient
strength will be and thus it will be dephased with respect to the rest of the
molecules in the imaged voxel, reducing the amount of signal returned. In brain
tissue, water within cerebrospinal fluid can diffuse very easily and, therefore,
very little signal remains after rephasing, making the ventricles appear darker.
In contrast, water in gray or white matter cannot diffuse as much since cell
membranes restrict it, hence the protons spin in unison and produce brighter
image intensities.

2.1.3 Perfusion Weighted Imaging
Perfusion Weighted Imaging (PWI) measures the arrival and perfusion char-
acteristics of a contrast agent entering the brain through the vascular system.
It can be performed with either magnetic resonance or computed tomography,
essentially conveying the same information. The concept of perfusion is simple,
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Figure 2.5: Typical perfusion curve of contrast agent in CT-PWI [2].

a bolus of contrast is injected and the target tissue is repeatedly scanned while
the bolus enters and spreads through the vascular system. From the temporal
information on the arrival, absorption and decay of the contrast agent in the
tissue, information about its perfusion characteristics can be summarized in the
form of derived perfusion parameters.

The typical contrast agent absorption curve as well as the interpretation
of the different derived parameters is depicted in Fig. 2.5. Mainly, computed
parameters include Cerebral Blood Flow (CBF), Cerebral Blood Volume (CBV),
Mean Transit Time (MTT) and Time to maximum of deconvolved tissue residue
function (Tmax):

• CBF is proportional to the ascending slope of the curve as the contrast
agent reaches the area, the faster the flow, the more sudden the arrival of
the contrast agent. Areas perfused by collateral vessels have slower and
less robust flow than areas perfused by main arteries.

• CBV is the overall volume of contrast agent present in the area throughout
the imaging process. For the sake of simplicity, CBV can be interpreted as
a rough measure of whether or not blood actually reaches the area, even if
at a slower pace.

• MTT corresponds to the average time, in seconds, that red blood cells
spend within a determinate volume of capillary circulation. It represents
the relation between volume and flow, i.e. an area can have a slower inflow
but overall a greater total volume of blood.

• Tmax is the time to peak of the deconvolved tissue residue function. This
mathematically derived parameter is not as intuitive to understand but
has shown promising results in acute stroke imaging tasks.

Each of these parameters is computed for each voxel from the absorption
curve as described. Finally, the extracted parameters from each voxel are



2.2. Deep learning for dense volumetric segmentation 15
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Figure 2.6: Derived parameter maps from the perfusion weighted imaging temporal
series. An ischemic stroke lesion can be observed on the temporal lobe of the right

hemisphere.

merged into several maps, one per each parameter, as shown in Figure 2.6. The
modalities derived from perfusion weighted imaging usually show a lack of spatial
homogeneity due to the single voxel curve parameter extraction.

2.2 Deep learning for dense volumetric segmen-
tation

Deep learning is a type of machine learning technique in which the parameters
of an arbitrarily huge highly-dimensional parametric function are trained to
approximate a desired mapping between input and output. Deep learning relies
heavily upon the concept of automatic differentiation to make this gradient-based
optimization task computationally tractable. Automatic differentiation exploits
the fact that every deep learning model, no matter how complicated, is composed
of a sequence of elementary arithmetic operations and functions. By representing
the deep learning model as a directed graph of operations, the chain rule can
be repeatedly applied to compute the derivative at each step of the model with
time-constant complexity. The derivative is always performed with respect to
a differentiable loss function, which provides a measure of error between the
current and desired output. In each training iteration, an input is forward-passed
through the model and the loss term is computed between the predicted output
and the known desired ground truth output. Then, a backward-pass is performed
through automatic differentiation, commonly known as backpropagation, which
computes the gradients for each parameter of the model with respect to the
loss function. Finally, an optimizer will scale down the gradient and update the
model parameters towards achieving the desired mapping. Progressively and
through the use of many and varied training samples, the model parameters can
be trained to approximate highly complex non-linear mappings.

In practice, deep learning models are built with modular differentiable layers
implementing simple or composite operations. Although any kind of differentiable
mathematical operation or function can be used within deep learning layers, the
convolution operator has demonstrated excellent generalization performance and
sparked a family of models called convolutional neural networks (CNNs). They
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Figure 2.7: Schematic diagram of a typical CNN architecture [12] detecting the
species of the dog depicted in the bottom left, a Samoyed dog. Convolutional layers
act on all the channels of the input with a small x-y neighborhood (red square), the
resulting activations (red arrows) form the feature maps are in the row above. Max
pooling (green arrow) halves the spatial dimensions and results in smaller feature
maps for subsequent layers. The top most row represents low-dimensional images that

could be employed as features for classification.

are a variation of multilayer perceptrons based on shared-weights architecture
and translation invariance characteristics. Inspired by biological processes, the
connectivity pattern resembles the organization of the animal visual cortex [12].
These models are implemented as a bank of filters or neurons, each characterized
by its kernel weights. An activation map is generated by convolving the input
image in a sliding-window fashion with the learned kernel weights. When
correctly trained, a kernel encodes a particular feature and produces a high
response, or activation, if the feature is present. The output of a convolutional
layer consists on one activation map per kernel. In CNNs, convolutional layers
are stacked in deep configurations along with other types of layers to extract and
process increasingly complex features. The first convolutional layer of a CNN
receives as input the image intensity values and detects low-level simple features
from them, i.e. edges, dots, stripes, corners... The subsequent convolutional
layers will receive these activation maps as inputs, and will extract higher-
level features based on combinations of them, i.e. texture, lines, squares...
For example, a kernel could detect a vertical line as several adjacent vertical
edge activations. Then, a square could be detected as the combination of two
horizontal lines on top of each other and two vertical lines side by side. This
effectively builds a hierarchy of features where many different complex structures
can be detected as combinations of a small number of simpler components, as
illustrated in Fig. 2.7. Consequently, CNNs typically have a small number of
kernels in the first layers and grow progressively with the aim of capturing the
increasing number of feature combinations. CNNs were first introduced in 1989
[13] and only received mainstream attention after the excellent results on the
ImageNet competition in 2012 [14]. The ImageNet dataset featured millions of
images depicting objects from a thousand different classes, where CNNs nearly
halved error rates of the previous best methods.
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Figure 2.8: The 2D U-Net architecture proposed by Ronneberger et al. [16]. Each
blue box corresponds to a multi-channel feature map. The number of channels is
specified on top of the box. The original maps size is provided at the lower left edge

of the box. White boxes represent the feature maps added via skip connections.

As 3D and 4D imaging are becoming routine in the clinical practice, and
with physiological and functional imaging increasing, medical imaging data
is increasing in size and complexity. Deep learning techniques are gaining
popularity in many areas of medical image analysis [15]. CNN segmentation
approaches for brain MRI are gaining interest due to their self-learning of features
and generalization ability over large amounts of data. The neuroimaging field
has greatly benefited from the advent of CNNs as the tasks of tissue and
lesion segmentation involve non-linear complex relations. More recently, the
U-Net architecture was first applied to medical imaging by Ronneberger et
al. and achieved first place at the ISBI 2012 cell tracking challenge [16]. It
has since then set the foundation for many subsequent approaches performing
dense segmentation. The U-Net architecture, depicted in Fig. 2.8, consists of a
contracting path (left side) and an expansive path (right side). The contracting
path, also called encoder, follows the typical architecture of a CNN, which consists
on a repeating sequence of convolutional layers and downsampling steps. At each
downsampling level, the spatial size is halved and the number of feature channels
is doubled. At the end of this path, a set of low-dimensional feature maps is
obtained, also called the latent space, which is effectively a low-dimensional
representation of the input which encodes meaningful global features. The
expansive path, also called decoder, is a mirrored version of the encoder which
essentially performs the inverse operation. Starting from the latent space, each
level will upsample the feature maps to double its spatial dimensions and halve
the number of features. Upsampling is usually performed through transpose
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convolutions which use trained interpolation kernels. In each level of the decoder,
the native high-resolution feature maps from the corresponding encoder level
are merged by concatenation to the upsampled low-resolution features. These
are known as skip connections, and is what enables the decoder to incrementally
recover the spatial information lost in the encoder. Two consecutive convolutions
combine the features from the previous and current step, localizing spatially the
encoded features. The resulting architecture has good convergence properties,
allows dense segmentation of the input and provides good localization due to its
use of multi resolution features.

The challenges for deep learning in medical imaging revolve around the
low availability of data combined with the demand for high precision models
within the clinical setting. One of the main challenges is the lack of ground
truth segmentations, which are time consuming to perform and have to be done
by expert physicians. Another issue which contributes to the lack of data is
that of patient privacy and data protection, which increases the complexity
and obstacles for data sharing between clinicians and researchers. Thus, when
training a deep learning model with millions of parameters on not enough
data, there is a risk of performing overfitting. In this scenario, the model can
essentially memorize the little amount of training data within its parameters
without distilling generalizable features and, hence, its performance will be poor
on images outside of the training set.

Deep learning segmentation methods involving brain CT or MRI have more
specific issues and challenges related to image acquisition and the nature of
each segmentation task. One big issue is that of domain generalization, by
which a model suffers from degraded performance on images having different
characteristics than those of the training set, such as changes in image appearance
or population characteristics. Differences in intensity or contrast can be caused
by variations in the acquisition parameters or by the use of different scanner
models or brands with diverse hardware configurations and image processing
pipelines. Another important factor that can influence the domain generalization
of a deep learning model is when the pathological characteristics or distribution
of the training dataset are different than those of the evaluation dataset. For
example, a model trained on stroke patients having mostly large lesions will
not be likely to perform as well on cases with small ones. The ideal scenario
for a deep learning method to obtain an unbiased and precise model is to
have a training dataset with an equal and varied representation of pathological
subtype, longitudinal evolution, lesion location, age, sex, race... In this sense,
any representation imbalance of the training set will be captured as a bias in
the deep learning model towards a better performance on the most represented
cases.

In the field of brain lesion segmentation specifically, one of the largest issues is
that of class imbalance due to brain lesions being typically much smaller than the
rest of healthy brain. A disproportionally imbalanced class representation would
cause the network weights to be trained much more from the misclassification of
healthy tissue than from lesions. In this way, the model is mostly specialized to
correctly segment the healthy tissue and not enough on segmenting the specific
particularities of brain lesions.
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2.3 Ischemic stroke lesion segmentation
When a patient with suspected stroke is admitted in a hospital, the protocol
for diagnosis and treatment decision will typically include a non-contrast CT
(NCCT), CT perfusion (CTP) and CT angiography (CTA). NCCT is fast,
inexpensive and readily available, however, it has limited sensitivity in the acute
setting for direct response, and is mainly used to exclude other pathologies
as well as to inform further course of action. Complementarily, CTP is used
to provide more accurate diagnostic as well as helping in selecting patients
for re-perfusion therapy. CTP allows to identify the combined extent of the
penumbra, the region which is affected by the stroke but can be potentially
salvaged, and the lesion core, composed of irreversibly damaged tissue. Finally,
CTA is an imaging technique by which the exact location of the thrombus within
an intracranial vessel can be obtained, and may guide intra-arterial thrombolysis
or clot retrieval. In ischemic stroke, MRI is more time consuming and less
available than CT but has significantly higher sensitivity and specificity in the
diagnosis of acute ischemic infarction in the first few hours after onset. More
specifically, DWI demonstrates increased signal of the infarct core within minutes
of arterial occlusion. Generally, after 6 hours, high T2 signal will be detected,
which continues to increase over the next day or two. Thus, MRI is usually
reserved for the most challenging and complex cases where CT imaging is not
enough to arrive at a diagnostic or treatment decision.

Segmentation tasks of clinical interest for ischemic stroke are similar in
both CT and MRI based assessments. In CT imaging, the main tasks of
interest revolve around accurately segmenting the stroke lesion core from NCCT
images. In CTP derived maps, an abnormally appearing region which shows
the combined extent of core and penumbra can be quantified or simply visually
assessed. However, differentiating between core and penumbra is of critical
importance to assess the precise extent of the tissue that can still be salvaged
with treatment or surgery. For this, the core must be independently segmented
from the NCCT image also acquired within the initial assessment and which
shows only the lesion core. This is challenging due to the low sensitivity of the
lesion core in NCCT images, where it is typically seen as a subtly hypodense
region, and which is not easily assessed visually even by experienced radiologists.

Within MRI for ischemic stroke, the segmentation tasks of interest also
revolve around core and penumbra differentiation. For this, a concept typically
called PWI/DWI mismatch might hold the key for effective ischemic stroke
assessment in MRI. The assumption is that DWI shows the irreversibly damaged
tissue of the lesion core, the swelling dead cells, while PWI shows all tissue with
abnormal vascularity, which includes both core and penumbra. The mismatch
of abnormalities between PWI and DWI opened the door to the differentiation
between salvageable and non-salvageable tissue (see Fig. 2.9). Several studies [17,
18, 19, 20] explored the prognostic potential of the DWI–PWI mismatch, although
questions surrounding its validation remain. The lack of standard acquisition
parameters, different post-processing algorithms and the broad definition of
the regions to segment make difficult to draw conclusions on its potential for
widespread adoption.
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(a) PWI (b) DWI (c) PWI/DWI mismatch

Figure 2.9: Example of the PWI/DWI mismatch. The penumbra (outlined in
purple), tissue with abnormal vascularity that can still be salvaged, can be clearly
seen in PWI images. The lesion core (outlined in red), irreversibly damaged tissue,

appears clearly in DWI images due to its with restricted diffusivity.

Imaging tasks involving stroke lesions are complex due to its relation with
the vascular system. First, the appearance of stroke lesions varies significantly
over time, not only between, but even within the clinical phases of stroke
development. Second, stroke lesions can appear at any location in the brain and
take on any shape. They may or may not be aligned with the vascular supply
territories and multiple lesions can appear at the same time, e.g. caused by an
embolic shower. Some lesions may have a radius of few millimeters while others
encompass almost a complete hemisphere. Third, lesion structures may not
appear as homogeneous regions; instead, their intensity can vary significantly
within the lesion territory. In addition, automatic stroke lesion segmentation in
the acute setting is complicated by the possible presence of other stroke-similar
pathologies, such as chronic lesions or white matter hyperintensities (WMHs).
Because of the many nuances and issues with stroke imaging, less quality
public datasets exist for stroke than for other neuroimaging tasks. However,
the situation has evolved favorably for stroke imaging in the last few years
with the introduction of the Ischemic Stroke Lesion Segmentation (ISLES)
challenge, which constituted one of the first sources of high quality labelled
public stroke datasets. The ISLES 2015 challenge [21] was introduced as part of
the Medical Image Computing & Computer Assisted Intervention (MICCAI)
international conference to demonstrate the potential for automatic segmentation
and prediction methods in stroke research. The ISLES 2015 challenge focused on
MRI and included the sub-acute ischemic stroke lesion segmentation (SISS) and
the acute stroke outcome/penumbra estimation (SPES) subtasks. The following
two editions of the ISLES challenge in 2016 and 2017 focused on prediction of
chronic lesion outcome and prediction of the degree of disability 90 days after a
stroke incidence (clinical outcome) from sub-acute MRI. The ISLES challenge in
2018 changed course and instead focused on stroke core lesion segmentation from
acute NCCT and CT Perfusion scans with manually outlined core lesions on MRI
DWI scans acquired soon thereafter. By combining CT and MRI imaging, the
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region of DWI abnormality can act as a gold standard for an irreversible brain
infarction segmentation task using only CT imaging as input. More recently, the
ISLES 2022 challenge proposed the task of multimodal MRI stroke core lesion
segmentation from DWI images. In this edition, there was a wider ischemic
stroke disease spectra, involving variable lesion size and burden, more complex
infarct patterns and variable anatomically located lesions in data from multiple
centers.

Before the popularization of deep learning approaches, most of the state-of-
the-art methods were based upon more classical machine learning classifiers such
as fuzzy C-means (FCM) clustering [22] or Random Decision Forests (RDF)
[23, 24, 25]. RDF classifiers have excellent generalization properties, which has
made them popular for difficult tasks with few training samples such as stroke
lesion segmentation. However, they are essentially a cascade of simple classifiers
acting on hand crafted features, and see their potential severely limited by the
quality of the given features, which may vary for different tasks. Moreover,
RDFs are not capable of explicitly using or combining the given features to
find better or composite correlations between them. Deep learning does not
have these limits by design but is still restricted by the architectural design,
the amount of data and the training procedure. Deep learning techniques
took hold of state-of-the-art methods for stroke lesion segmentation quickly
after their mainstream application to medical imaging sparked by the U-Net
architecture of Ronneberger, Fischer, and Brox [16] proposed in 2015. Among
the ISLES 2015 challenge participants, only a single deep learning approach [26]
was among the top three submissions, while in the ISLES 2016 and 2017, all
top three submissions were based on deep learning approaches using the U-Net
architecture.

2.4 Brain atrophy quantification
Brain atrophy assessed on structural MRI has been demonstrated as a valid
marker on post-mortem histology for the neurodegeneration seen in AD patients
[27, 28]. Other studies dealing with MS patients have provided evidence of brain
atrophy as a marker for clinical outcomes and treatment response [29, 30, 31,
32]. Currently, MRI derived measures of atrophy provide a non-invasive way
to quantify the longitudinal evolution of patients. Atrophy measures rely on
the precise quantification of the volume of relevant structures or tissue that
can be seen with good contrast across several images taken years apart. In
general, the tissue of the brain parenchyma is composed of two major tissue types:
gray matter (GM) and white matter (WM). Gray matter is made of mostly
unmyelinated neurons in charge of nerve connections and general processing. In
contrast, white matter is made of mostly myelinated neurons which transmit
nerve signals much faster and act as an information highway between distant
parts of the brain and body. The remaining space in the intracranial cavity is
filled with cerebrospinal fluid (CSF), a clear fluid in which the brain parenchyma
and spinal cord are suspended. CSF exerts pressure on the outside of the brain
and spinal cord and acts as a stabilizer and shock absorber. In addition, small
CSF-filled cavities inside of the brain called ventricles are used to compensate
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Figure 2.10: Example of a brain tissue segmentation.

the outer CSF pressure and maintain the shape of the soft brain tissue. Within
the brain parenchyma, the tissue can be further differentiated into specialized
distinct structures, such as the sub-cortical deep gray matter structures. These
are located beneath the cerebral cortex and involved in complex activities such
as memory, emotion, pleasure and hormone production. It has been shown
that different brain pathologies are associated with characteristic longitudinal
changes on the morphology and volume of specific brain tissues or individual
structures. To obtain precise measurements, a larger difference in brightness
between the considered tissues or structures and a high signal to noise ratio is
desired. In general, T1-weighted MRI is typically used for structural analysis
since it offers a good contrast between the WM, GM and CSF components, as
seen in Figure 2.10.

Although many technological improvements on MRI scanners and processing
software have been made in recent years, atrophy quantification methods are
still affected by different confounding factors related to image acquisition and
processing as well as to different physiological and pathological phenomenons
[33]. These issues include, but are not limited to:

Partial volume effect (PVE). In brain atrophy quantification from MRI,
an assumption is made that each tissue within the parenchyma has a particular
intensity distribution that can be characterized for segmentation. However,
due to the insufficient resolution of the images, several types of tissue can be
captured in the intensity value of a single voxel, as shown in Figure 2.11. In
such cases, the voxel intensity depends not only on the imaging sequence and
tissue properties, but also on the proportions of each tissue type present in the
voxel, which especially affects the segmentation of interfaces between tissues or
structure boundaries. Thus, very precise and robust estimation of the intensity
distribution of each tissue is needed for correctly estimating the tissue mixture
in each voxel. In this sense, measures of volume from MRI should be done
from the estimated partial volume probabilities and never from categorical
segmentations that assign a single class to each voxel. The main challenge
for atrophy quantification methods is to correctly estimate the partial volume
mixture in the presence of noise or other image artifacts that distort the voxel
intensities.
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Figure 2.11: The partial volume effect.

Noise. MRI noise follows a Rician distribution [34] which, unlike additive
Gaussian noise, is signal dependent and makes its removal a difficult task.
MRI noise directly affects the measurement of volumes since it complicates the
estimation of partial volumes, which heavily rely on the intensity of each voxel
to estimate its tissue mixture. Although an extensive amount of methods and
approaches have been proposed for MRI denoising, they are not used in any of
the state-of-the-art brain atrophy quantification techniques.

Bias field. Because of inhomogeneities in the scanner magnetic field, a low
frequency smooth multiplicative signal is observed that makes the same tissue
have varied intensity distributions across different regions of the image. Although
this effect has been reduced in modern scanners, it is still a source of error and
specific preprocessing steps are taken in state-of-the-art tissue segmentation
methods to remove it.

Movement artifacts. Due to the way MRI is acquired in the frequency
domain, a small movement of the subject during acquisition can introduce
intensity artifacts across the entire image in the spatial domain. Similarly to
noise, these artifacts shift the intensity of voxels and interfere with the precise
estimation of partial volume mixtures. Although modern scanners are equipped
with movement correction strategies, these only work for small displacements
and some image artifacts can still be introduced in the acquired images.

Gradient distortion. Changes in position of the head relative to the magnet
isocenter of the scanner can introduce spatial distortions in the image of up to
5mm [35] (see Figure 2.12). The morphological distortions can persist even after
gradient correction depending on the calibration accuracy of the scanner. Thus,
in longitudinal studies, special care should be taken in repositioning the patient
relative to the magnet of the scanner.
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Figure 2.12: Example of an MRI gradient distortion field from the work of Caramanos
et al. [35]. The color scale represents the distance (in millimeters) that a voxel moves
because of gradient distortion between its "real" and its "apparent" location on such

an MRI scan that has not been corrected for the gradient distortion.

Changes in scanner equipment. In clinical practice, several scanner models
of different vendors might coexist within a single site. In chronic neurodegener-
ative pathologies, it is challenging to ensure the same patient is scanned with
the same equipment and acquisition parameters across long time scales. Even
when utilizing the same equipment and acquisition protocols, system upgrades,
such as sequence innovations or hardware improvements, are inevitable and will
have an effect on the image contrast. This change directly affects the intensities
of tissues and interferes with the consistency of partial volume estimation in
longitudinal image processing.

Pathological effects. The appearance of brain lesions within the brain
parenchyma is a common co-occurrence in pathologies where brain atrophy
is also an interesting image marker. For instance, the WM lesions typically
observed in MS patients appear in MRI as abnormally appearing hyperintense
or hypointense regions. The presence of these lesions can interfere with the
characterization of the intensity distribution of normally appearing tissue and
shift the partial volume mixture estimation towards over or underestimating
a certain tissue type. Another pathology induced effect is that of pseudoat-
rophy, in which treatments using disease-modifying drugs and steroids have
been associated with a counterintuitive acceleration of brain volume loss caused
by their anti-inflammatory effect, that reduces apparent tissue volume. This
phenomenon complicates the interpretation of observed changes in brain volume
and atrophy rates when evaluating the effect of a given treatment.
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(a) Segmentation-based (b) Registration-based

Figure 2.13: Main types of brain atrophy quantification methods.

Physiological effects. A series of confounding factors might be introduced
simply by normal physiological changes between acquisitions. For instance, a
shift in measured brain volume has been observed depending on the time of
day at which a patient was scanned [36]. Other studies have found that the
hydration status induces significant ventricular volume changes [37].

Evaluation of brain atrophy quantification methods is not an easy task, mainly
due to the nonexistence of sufficiently accurate manual ground truths for direct
evaluation of their performance [38]. Typically, manual methods of volumetry
made by physicians are confined to line measurements such as bicaudate ratio,
brain width, the midbrain to pons ratio, the lateral width, and the third ventricle
width. These simple measurements are already a time-consuming task for highly
experienced physicians and provide limited information. Thus, automated
computational methods for brain atrophy quantification are limited to indirect
evaluation metrics, such as short interval imaging error or correlation to known
clinical differences between populations. A measure of quantification error can be
obtained by evaluating the atrophy measured between scan-rescan images, two
consecutive MRI acquisitions using the same protocol and without repositioning
of the patient, under the assumption that an ideal atrophy quantification method
should measure zero change between them. However, this metric does not really
consider the changes due to actual atrophy or introduced by repositioning of
the patient between longitudinal scans. For this, the sensitivity of an atrophy
quantification method to longitudinal changes can be assessed by quantifying
the differences between two subject populations known to have different rates of
brain atrophy. The assumption being that better quantification methods would
see larger and more pronounced differences between the longitudinal change
measures of these two populations.

In general, longitudinal brain atrophy quantification methods can be classified
into either segmentation-based or registration-based techniques, as exemplified
in Figure 2.13. In segmentation-based methods, a target structure or tissue is
cross-sectionally segmented in each of the longitudinal scans and atrophy is quan-
tified from differences in the measured volumes. In contrast, registration-based
techniques derive measures of atrophy from the observed spatial deformation
of structures or tissue between two longitudinal scans. Segmentation-based
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methods are typically regarded as less accurate and more variable than its
registration-based counterparts [33] and their use is discouraged for longitudinal
studies. Although several segmentation-based methods for cross-sectional brain
volumetry from T1-w MRI have been proposed in recent literature, only SIENA-
XL [39] has been purposefully built for longitudinal imaging. Registration-based
methods are usually preferred for longitudinal change analysis since they typi-
cally have lower quantification error and better sensitivity to atrophy changes
[33]. SIENA [40] is a well-known and widely used registration-based atrophy
quantification method based on the boundary shift integral (BSI) [41]. Within
SIENA, atrophy is measured between two linearly registered scans from the
surface displacement of the interface between GM and WM, which is obtained
from tissue segmentations of each scan made with FAST [42] . More recently,
measures of atrophy based on Jacobian integration have shown further improve-
ments, such as larger effect sizes and lower quantification error [43]. These
methods measure volume changes through integrating the determinant of the
Jacobian of a non-linear transformation between two longitudinal scans. The
region for integration is typically obtained from a cross-sectional segmentation
of a structure or tissue in one of the scans. It is worth noting that, even within
registration-based methods, some form of cross-sectional segmentation of tissue
or structures is still required.

2.4.1 Effect of WM lesions
As previously discussed, the WM lesions typically seen in MS patients interfere
with brain tissue segmentation methods and bias the measured volumes. WM
lesions appear as an additional intensity distribution that intersects with those of
normally appearing tissue and shift their estimated intensity profile. The presence
of these abnormal intensities alters the classification not only of neighboring
but also of distant brain tissue. The error introduced by WM lesions can vary
depending on its volume and intensity profile [44]. In MS, new lesions can appear
as a result of disease activity and existing ones may grow or change over time,
which means that different levels of error can be obtained for images taken at
different timepoints.

Typically, the effect of WM lesions in brain tissue segmentation is reduced by
performing lesion inpainting as a preliminary step before segmentation. These
techniques fill the voxels within a WM lesion mask, made either manually or
automatically, with intensities resembling the normally appearing WM (NAWM)
of that image, which is characterized in a tissue segmentation made prior to
the inpainting. More recently, methods using deep learning have been proposed
based on the use of Convolutional Neural Networks (CNNs) of Generative
Adversarial Networks (GANs) for lesion inpainting. These data-driven methods
achieve a significantly more realistic and accurate inpainting of the abnormal
intensities than previous state-of-the-art techniques.
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2.5 Datasets
In this section, we introduce the datasets used in this PhD thesis and provide a
brief overview of their aims and image characteristics. Since we have dealt with
several imaging markers and pathologies, the datasets are divided into sections
according to their intended aim or task.

2.5.1 Stroke lesion segmentation datasets
The Ischemic Stroke Lesion Segmentation (ISLES) challenge was started in 2015
with the aim of providing a platform for fair and direct comparison of automated
segmentation methods as well as to increase the number of publicly accessible
datasets to promote and facilitate scientific progress in this area. Automated
methods for ischemic stroke lesion segmentation are of great clinical interest since
they can be used to more objectively inform the diagnosis and treatment decision
workflows as well as to help in the improvement or validation of predictive and
prognostic markers.

ISLES 2015 challenge

The 2015 edition of the ISLES challenge [21] focused on acute and sub-acute
ischemic stroke lesion segmentation tasks using multi-spectral MRI data. The
challenge proposed two sub-tasks dealing with different lesion parts, develop-
mental stages and MRI modalities.

SISS sub-task. The sub-acute ischemic stroke segmentation (SISS) sub-task
covered the segmentation of ischemic stroke lesions from multi-spectral MRI
sequences acquired in the sub-acute stroke development stage. The provided
dataset included 28 training and 36 testing cases acquired in the first week after
onset. For the training images, the provided gold standard, the whole lesion
extent, was manually segmented by an experienced medical doctor. Images were
acquired with either a 1.5T (Siemens Magnetom Avanto) or 3T MRI system
(Siemens Magnetom Trio). For each case, 4 co-registered multimodal images
were provided including anatomical (T1, T2, FLAIR) and diffusion (DWI) MRI.
The images were acquired as 3D volumes of 230 × 230 × 153 dimensions at
1 × 1 × 1 mm voxel spacing.

SPES sub-task. The acute stroke penumbra estimation sub-task (SPES) fo-
cused on the segmentation of acute ischemic stroke lesions for outcome prediction.
The provided dataset included 30 training and 20 testing cases acquired within
the first day after onset of symptoms. For the training images, the gold stan-
dard segmentation, the penumbra label, was obtained as the mismatch between
whole lesion extent and the core delineated in perfusion and diffusion images
respectively. Images were acquired with a 3T Phillips systems on two centers.
For each case, 7 co-registered modalities were provided including anatomical
(T1 contrast, T2), diffusion (DWI) and perfusion (CBF, CBV, TTP, Tmax)
MRI. The images were acquired as 3D volumes of 96 × 110 × 71 dimensions at
2 × 2 × 2 mm spacing.



28 Chapter 2. Thesis Context

ISLES 2018 Challenge

The ISLES 2018 challenge [45, 21] focused on the task of acute stroke lesion
core segmentation solely from CT and CT perfusion images, taken within 8 h
of symptom onset. CT derived imaging is actively used in routine clinical
practice to triage stroke patients, because of its speed, availability, and lack of
contraindications. However, additional MRI is typically needed to inform the
treatment decision process since CT imaging does not provide enough sensitivity
to distinguish between the lesion parts. MRI using diffusion and perfusion
imaging is used to clearly distinguish between the irreversibly damaged tissue
("core") and hypoperfused lesion tissue ("penumbra") that could be salvaged by
the treatment. Although the combined extent of core and penumbra can be
clearly observed on CT imaging, it is very challenging to differentiate between
them without an additional MRI. Thus, for the ISLES 2018 challenge, the
provided gold standard segmentation of the lesion core was manually drawn on
additional magnetic resonance DWI trace images taken within 3 h of the initial
CT scan. Since the goal of the challenge is to segment the lesion core from CT
imaging alone, the DWI scans used for generating the ground truth were not
distributed as part of the dataset. The provided dataset included 94 labeled
training images and 62 unlabeled testing images. For each case, a CT scan, a
raw CT perfusion time series (CT-PWI) and four derived perfusion maps (CBF,
CBV, MTT and Tmax) were provided. The images were acquired as slabs with
a variable number of axial slices, ranging from 2 to 22 depending on the patient,
with 5 mm spacing and a resolution of 256 × 256. The raw perfusion time series
include between 40 and 63 volumes, acquired 1–2 s apart, of the same dimensions
as the CT for each patient.

2.5.2 Effect of WM lesions on brain tissue segmentation
Calgary-Campinas Public Brain MR Dataset

The Calgary-Campinas dataset [46] is an open, multi-vendor, multi-field strength
brain 3D MR dataset resulting from a collaborative effort between researchers at
the Vascular Imaging Lab located at the University of Calgary and the Medical
Image Computing Lab located at the University of Campinas (UNICAMP). The
dataset is composed of 359 T1-weighted brain scans from 359 healthy adults
with an average age of 53.5 ± 7.8 years, ranging between 29 to 80 years. Images
were acquired on scanners from three vendors (GE, Philips, and Siemens) at
two different magnetic field strengths of 1.5 T and 3 T, approximately 60 scans
were obtained per vendor. Most scans in this dataset have a voxel size of
1.0 × 1.0 × 1.0 mm except for sixty scans acquired at 0.89 × 0.89 × 0.89 mm and
another sixty acquired at 1.33 × 1.0 × 1.0 mm. The dataset also includes silver
standard brain masks generated through a consensus of several state-of-the-art
automatic skull stripping methods. Manual brain mask segmentations for twelve
randomly selected subjects performed by an expert are also provided.
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MSSEG Challenge

The multiple sclerosis lesions segmentation (MSSEG) challenge [47] was hosted at
the MICCAI 2016 international conference. It provided a multicentric database
for training consisting of 15 multimodal (T1-w, T1-w gadolinium, T2-w, FLAIR
and PD) MR images obtained from MS patients with an average lesion load of
20.8±19.9 ml. Images were acquired on three different scanners at different voxel
sizes: five images from a Philips Ingenia 3T scanner at 0.7 × 0.74 × 0.74 mm, five
images from a Siemens Verio 3T scanner at 1.1×0.5×0.5 mm and the remaining
five images from a Siemens Aera 1.5T scanner at 1.25 × 1.03 × 1.03 mm. The
MR images were rigidly coregistered to the FLAIR scan, which was manually
annotated by 7 independent experts, and a consensus gold standard WM lesion
segmentation approach was built.

ISBI 2015 Longitudinal MS Lesion Segmentation Challenge

The longitudinal MS lesion segmentation challenge [48] was conducted at the
2015 International Symposium on Biomedical Imaging (ISBI) and focused on
evaluation of automatic segmentation methods on data acquired at multiple time
points from MS patients. The training data was composed of 21 multimodal
scans (T1-w, T2-w, FLAIR and PD) from five MS patients, approximately
four timepoints per subject, having an average lesion load of 11.6 ± 10.5 ml.
Images were acquired on a 3T MRI Philips scanner with a voxel size of 0.82 ×
0.82 × 1.17 mm. Manual delineations were made by two experts identifying and
segmenting white matter lesions on the MR images. The MR images from each
subject as well as the expert WM lesion delineations were rigidly coregistered to
the T1-w scan.

WMH Challenge 2017

The white matter hyperintensity (WMH) segmentation challenge [49] aimed
at providing a platform for direct comparison of methods for automatic seg-
mentation of WMH of presumed vascular origin. The provided training set
included 60 sets of brain 3D MR images (3D T1 and 2D multislice FLAIR) from
60 subjects of memory clinics showing cognitive impairment with an average
lesion load of 17.5 ± 17.1 ml. Images were taken with five different 3T MR
scanners from three different vendors (Siemens, Philips and GE) with voxel
sizes of 1.0 × 1.0 × 1.0 mm and 0.94 × 0.94 × 1.0 mm. The FLAIR scans from
each subject were resampled and coregistered to the 3D T1 scan via an affine
transform. The provided gold standard was made with manual annotations of
WMHs made by experts.

2.5.3 Brain atrophy quantification datasets
MIRIAD challenge

The Minimal Interval Resonance Imaging in Alzheimer’s Disease (MIRIAD)
challenge [50] was created to test and compare atrophy measurement techniques
in dementia. The provided dataset consists of a publicly accessible series of
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longitudinal T1 MRI scans of 46 mild–moderate Alzheimer’s subjects and 23
healthy controls with an average age of 69.5 ± 7.1 years old. The longitudinal
scans were taken at intervals of 2, 6, 14, 26, 38 and 52 weeks and 18 and 24 months
from baseline, as well as rescan images at three of the timepoints, for both AD
and controls. The rescan images were taken during three of the scanning sessions
(0, 6 and 38 weeks) without repositioning of the subject. All scans were taken
by the same radiographer on the same 1.5 T Signa MRI scanner (GE Medical
systems, Milwaukee, WI, USA) with a voxel size of 0.9375 × 1.5 × 0.9375 mm
and total image dimensions of 256 × 124 × 256. In our study, we consider both
the rescan image pairs and the baseline to 2-weeks image pairs to have a tissue
similarity prior that can be used for regularization. From the original dataset,
some images were discarded due to poor scan quality or movement artifacts.

ADNI data

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) aims at providing
multisite consistent longitudinal three-dimensional T1-weighted MRI data to
validate biomarkers for use in Alzheimer’s disease clinical treatment trials. The
ADNI was launched in 2003 as a public-private partnership, led by Principal
Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test
whether serial MRI, positron emission tomography (PET), other biological mark-
ers, and clinical and neuropsychological assessment can be combined to measure
the progression of mild cognitive impairment (MCI) and early AD. In this thesis,
we consider a subset of subjects originally included in the “ADNI1: Complete
1Yr 1.5T” standardized data collection and use similarly preprocessed scans with
corrected gradient nonlinearity and B1 and N3 nonuniformity correction. In
total, we use 1063 scans from 105 AD patients and 145 healthy control subjects,
having 250 pairs of baseline and 1 year of follow-up with 541 scan-rescan images
taken at both timepoints. Within this cohort, scans were taken with varied
voxel sizes ranging from 0.94 × 0.94 × 1.2 mm to 1.3 × 1.3 × 1.2 mm. In total, 8
different scanners from 2 manufacturers (GE and Siemens) were used for image
acquisition. In 45 of the 250 subjects, a different scanner model from the same
manufacturer was reported for the 1-year follow-up scan.
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Chapter 3

Acute ischemic stroke lesion core
segmentation in CT perfusion
images using fully convolutional
neural networks

In this chapter, we propose a deep learning method for the Ischemic Stroke
Lesion Segmentation (ISLES) 2018 challenge, which focused on ischemic stroke
lesion core segmentation solely from NCCT and CT perfusion images. Our
2D patch-based deep learning approach incorporates techniques to minimize
the effect of class imbalance, exploit the use of bilateral symmetry features
and post-processing based on uncertainty estimation and lesion morphology.
Better segmentation overlap is obtained by alleviating the class imbalance
with a balanced training patch sampling along with a class balancing loss
function. False positive rate reduction and better borders are obtained by
using bilateral symmetry features between the brain hemispheres which are
incorporated through the use of symmetric modality augmentation. Lesion border
segmentation and volume estimation is improved by performing uncertainty
filtering based on test-time dropout averaging. The method has shown state-
of-the-art performance in a blind testing set evaluation performed through the
official online platform of the ISLES 2018 challenge. The presented approach
has been published in the following paper:

Paper published in Computers in Biology and Medicine (CBM) OPEN
ACCESS
Volume: 115, Published: December 2019
DOI: 10.1016/j.compbiomed.2019.103487
JCR MCB IF 3.434, Q1(8/59)
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A B S T R A C T

The use of Computed Tomography (CT) imaging for patients with stroke symptoms is an essential step for
triaging and diagnosis in many hospitals. However, the subtle expression of ischemia in acute CT images has
made it hard for automated methods to extract potentially quantifiable information. In this work, we present
and evaluate an automated deep learning tool for acute stroke lesion core segmentation from CT and CT
perfusion images. For evaluation, the Ischemic Stroke Lesion Segmentation (ISLES) 2018 challenge dataset is
used that includes 94 cases for training and 62 for testing. The presented method is an improved version of
our workshop challenge approach that was ranked among the workshop challenge finalists. The introduced
contributions include a more regularized network training procedure, symmetric modality augmentation and
uncertainty filtering. Each of these steps is quantitatively evaluated by cross-validation on the training set.
Moreover, our proposal is evaluated against other state-of-the-art methods with a blind testing set evaluation
using the challenge website, which maintains an ongoing leaderboard for fair and direct method comparison.
The tool reaches competitive performance ranking among the top performing methods of the ISLES 2018
testing leaderboard with an average Dice similarity coefficient of 49%. In the clinical setting, this method
can provide an estimate of lesion core size and location without performing time costly magnetic resonance
imaging. The presented tool is made publicly available for the research community.

1. Introduction

Stroke is the third largest cause of death and the biggest source
of acquired disability worldwide [1]. This condition is caused by a
fatally low blood supply in a region of the brain. A shorter time
to treatment since onset is strongly linked to a better outcome [2].
The stroke lesion is initially divided in two areas: the infarct core,
composed of irreversibly damaged tissue, and the penumbra, tissue at
risk that can still be recovered if blood flow is restored. Localization
and quantification of the acute core or penumbra is of great clinical
interest since it can help evaluate the amount of tissue that could be
recovered with different treatments and take better informed decisions.

Non-contrast computed tomography (CT) imaging is fast, inexpen-
sive, ubiquitous and is already used by clinicians as an essential first
step for triage, diagnosis and treatment assessment of acute ischemic
stroke [3]. Additionally, the information in these images has good
prognostic potential, but are difficult to interpret. The infarct core is
seen through subtle texture and intensity changes, also called parenchy-
mal hypoattenuation, often masked by artifacts, noise or other tissue
abnormalities [4]. Additionally, CT perfusion (CTP) can be used to

∗ Correspondence to: Ed. P-IV, Campus Montilivi, University of Girona, 17003 Girona, Spain.
E-mail address: albert.clerigues@udg.edu (A. Clèrigues).

assess the blood perfusion in the brain. To acquire CTP images, first
an intra-venous contrast agent is injected and then repeated scans are
made as it spreads through the brain. While CT shows the lesion core,
CTP more clearly shows all areas with abnormal perfusion including
both core and penumbra. The combination of both is also fast to acquire
and might provide enough reliable information for automatic analysis.

Early work on supervised methods for acute stroke detection and
segmentation using exclusively CT images relied on hand-crafted fea-
tures exploiting texture and intensity [5–8].

Recent developments on Convolutional Neural Networks (CNN) [9]
have given rise to methods with superior results that are present in the
majority of state-of-the-art biomedical segmentation frameworks [10–
13]. This trend can also be seen in the most recent methods for stroke
lesion segmentation from MR images [14–16]. More specifically, U-
shaped architectures based on the U-Net [10] are well suited for dense
semantic segmentation. These kind of architectures have seen a number
of recent improvements such as their extension for 3D volumetric
segmentation [11,17] or the introduction of long and short residual
skip connections [15,18]. Stroke lesion segmentation on CT images
shares many of the same challenges as MR imaging, but still poses an

https://doi.org/10.1016/j.compbiomed.2019.103487
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inherently different learning problem. Despite the promising results of
deep learning applied to brain lesion segmentation, it still presents limi-
tations for real world scenarios that severely limit its applicability. The
most critical issues include typically small size of annotated datasets
to train, domain and task dependent training procedures, highly un-
balanced class extent (i.e. much less lesion tissue than healthy) and
overfitting to the training images.

Deep learning has only been recently applied to CT imaging for
acute stroke with the 2018 edition of the Ischemic Stroke Lesion Seg-
mentation (ISLES) challenge. This challenge started in 2015 to provide
a platform for a fair and direct comparison of automated methods for
stroke imaging. The fourth edition in 2018 provides the first public
acute stroke dataset using CT and CTP images. From the five challenge
finalists, all deep learning based methods, four report the use of CNNs
based on the U-Net architecture [10], one of which corresponds to our
workshop challenge approach [19]. In these works, the issue of class
imbalance was alleviated mainly with the use of cost sensitive loss
functions, either class weighting [20,21] or difficulty weighting [22],
or using patches with balanced sampling strategies [19].

In this work, we present and evaluate an automated deep learning
tool for acute stroke lesion core segmentation from CT and CTP images.
The presented tool is a simpler and improved version of the method
initially submitted to the ISLES 2018 challenge, which already ranked
among the challenge finalists, referred to as the workshop challenge
approach. It achieves state-of-the-art performance while offering an
easy training procedure and fast inference times. For alleviating class
imbalance, both a patch based method with a balanced sampling
strategy and a hybrid class weighted loss function are used. The deep
learning architecture is an asymmetric encoder–decoder using long and
short residual connections as done in recent state-of-the-art networks
for dense segmentation [15,23]. Additionally, symmetric modality aug-
mentation is performed that allows to exploit the brain symmetry
property between hemispheres to find more robust image features.
The introduced improvements with respect to our workshop challenge
submission are quantified by crossvalidation on the ISLES 2018 training
set. The proposed methodology is evaluated against other state-of-the-
art methods with the blind challenge testing set submission, ranking
among the top out of 41 entries. In the treatment decision workflow,
this tool could provide a fast estimate of the lesion core location and
volume without having to perform costly MR imaging. We release this
tool to the community, available at https://github.com/NIC-VICOROB/
stroke-core-ct-segmentation.

2. Materials

2.1. Data

The ISLES 2018 challenge tackled the segmentation of stroke lesion
core from acute CT scans, taken within 8 h of stroke onset. The provided
dataset (Kistler, 2013; Maier, 2017) includes 94 labeled training images
and 62 unlabeled testing images. For each case, a CT scan, a raw CT
perfusion time series (CT-PWI) and four derived perfusion maps (CBF,
CBV, MTT and Tmax) are provided. The images were acquired as slabs
with a variable number of axial slices, ranging from 2 to 22 depending
on the patient, with 5 mm spacing and a resolution of 256 × 256. The
raw perfusion time series include between 40 and 63 volumes, acquired
1–2 s apart, of the same dimensions as the CT for each patient. The
provided gold standard was manually drawn on additional magnetic
resonance DWI trace images not included in the challenge testing set,
where the infarct core is seen more clearly, taken within 3 h of the
initial CT scan.

2.1.1. Pre-processing
From the provided modalities, we only consider the use of CT

and the four derived CT perfusion maps (CBF, CBV, MTT and Tmax),
omitting the raw CT-PWI time series. Image pre-processing is then
applied to the provided images in two steps: Firstly, the CT image is
skull stripped and, secondly, a modality augmentation to exploit the
symmetry of brain hemispheres is performed.

CT Skull stripping. The brain mask for skull stripping is obtained from
the non-zero values of the sum of the four provided perfusion im-
ages, which did not take any value on the skull. Finally, the mask
is multiplied with the CT image, which leaves only the desired brain
tissue.

Symmetric modality augmentation. The use of the symmetry property
showed significant improvements on chronic stroke lesion segmenta-
tion in MR images [24]. Since typically only one hemisphere of the
brain is affected by the stroke, the brain mid-sagittal symmetry can be
exploited to assess differences between both hemispheres and locate the
lesion more accurately. In our case, we take advantage of the symmetry
property by creating a symmetric version of each provided modality. In
this way, a single patch will include information from the same spatial
location of both hemispheres. To generate the symmetric modalities
we first flip the CT images by the mid-sagittal axis. Since the images
are not perfectly centered in the volume and some are slightly rotated,
the opposing hemispheres might not be correctly aligned after the flip.
Hence, we use FSL FLIRT [25] constrained to an axial affine trans-
formation to linearly register both images and roughly align opposing
hemispheres. In this case, a linear registration is sufficient since the
symmetry features are not expected to rely on fine differences but
rather on overall differences of patch intensity, parenchyma and/or
perfusion statistics. Finally, the provided modality volumes are merged
with the symmetrically augmented and used together for segmentation
as an image with ten modality volumes. In this way, a single patch will
additionally include bilateral information of all modalities. Fig. 1 shows
an example case with the provided and augmented modalities.

3. Method

The proposed approach is a 2D patch based deep learning approach
for segmentation of the acute stroke lesion core from CT perfusion
images. Since the lesion core class represents around 5% of the brain
tissue in the training set, class imbalance is an issue that needs to
be dealt with. If no deliberate action is taken, the training set would
include fewer examples of lesion than healthy tissue, which would
bias the learning and worsen segmentation performance. Additionally,
overfitting to the training set is likely, considering the small quantity
of data, which would cause bad performance for other images. To
minimize this effect, the training is regularized by using: (a) data
augmentation with elastic deformation fields, (b) dropout layers that
introduce noisy updates during training and (c) early stopping that
interrupts training when no more generalizable knowledge can be
learned. Finally, a combination of classification uncertainty estimation
and use of highly overlapping patches further reduces outliers and
segmentation artifacts.

3.1. Class imbalance

The most common techniques to alleviate this issue for deep learn-
ing methods are three: cost sensitive loss functions, which assign dif-
ferent cost to misclassification of examples from different classes [26];
the use of patches with deliberate sampling, typically aiming to over-
represent the minority class, or multi-phase training, where a part of the
network is retrained with a different class distribution. In this work, we
propose the use of both a balanced patch sampling and a cost sensitive
loss function to alleviate the imbalance.

The employed sampling strategy is an extension of a recent proposal
for brain lesions in general [12]. The strategy has been extended to
take into account the anatomy and pathophysiology of acute stroke. In
practice, a target number of patches is set for each patient. Then, half
of the patches are extracted centered on lesion voxels and the other half
on healthy ones. These are sampled in regular spatial steps to ensure
all parts of the volume are uniformly represented. For the lesion class
sampled voxels have a random offset applied in the x and y axis before



Computers in Biology and Medicine 115 (2019) 103487

3

A. Clèrigues et al.

Fig. 1. Top row: Provided CT and derived CT perfusion maps. Bottom row: Resulting symmetrically augmented modalities.

patch extraction, as done by Guerrero et al. [15]. This offset is sampled
from a random uniform distribution and is limited to half of the patch
size to ensure the originally sampled voxel is inside the finally extracted
patch. This increases the representation of areas adjacent to the core
label, the penumbra region, while providing a degree of translational
data augmentation. The patches will be extracted centered on these
voxels. For patients with smaller lesions, several patch extractions from
the same lesion voxel and data augmentation are applied, using the
elastic deformation described in [27] with parameters 𝛼 = 2.5 and 𝛾
= 0.12, to reach the target number of patches per patient. In this way,
only if the number of lesion voxels is smaller than the target number,
they will be repeated and augmented using elastic deformation. On
average, the augmented patches amount to 5% of the training set. The
use of this patch sampling strategy raised the lesion voxel fraction in
the training set from 5% to 12%.

Additionally, we use a cost sensitive loss function that is the sum
of the Generalized Dice Loss (GDL) [28] and the crossentropy loss
to further minimize the effects of class imbalance. While the crossen-
tropy loss is minimized with correct confident predictions, the GDL is
minimized by maximizing the relative overlap between prediction and
ground truth. In practice, jointly minimizing both terms provides the
crossentropy convergence properties with the balancing class weighting
of the GDL.

However, despite the use of both techniques, the overlap segmen-
tation is decreased when bigger patch sizes are considered due to
worsened imbalance, since larger patch sizes will tend to include a
bigger ratio of healthy to lesion voxels. After empirical testing with
several patch sizes ranging from 16 × 16 to 96 × 96, we choose a
patch size of 64 × 64 that offers the best compromise between a large
receptive field and worsened class imbalance.

3.2. Deep learning architecture

The employed network, depicted in Fig. 2, is a 2D asymmetric resid-
ual encoder–decoder that produces whole patch predictions. It is based
on recent state-of-the-art networks for chronic stroke [15] and related
biomedical tasks [11]. The network has five resolution steps with 8 base
filters, which are doubled in each step, resulting in a latent space with
128 feature maps of 4 × 4 resolution. It has long and short residual con-
nections to ease gradient flow, which improves convergence properties
and allows for better accuracy [29]. The asymmetry comes from the
reduced number of parameters found in the decoder branch. It has been

shown that the role of the decoder is not as critical and its complexity
can be reduced without damaging the performance [23]. In this way,
the residual blocks have two convolutional layers in the encoder and
one in the decoder, resulting in 75% and 25% of the parameters in each
respectively. Additionally, it includes prediction dropout layers that
will be used for estimating the uncertainty in classification to minimize
outliers.

3.3. Pipeline overview

In this section we will briefly describe the different parts of the
training and testing pipeline to train the network and use it to segment
the desired images.

Training. In the training phase, the randomly initialized network
weights are trained with patch training and validation sets built from
the provided images. A total of 376,000 patches, 4000 from each case,
of size 64 × 64 are extracted using the sampling strategy described in
Section 3.1 to create the training set. The sum of the Generalized Dice
and Crossentropy loss is used as the objective function. During training,
the weights are updated with the Adadelta optimizer [30], which
requires no manual tuning of learning rate. After several empirical tests,
we use a batch size of 64 patches during training since it provides
a good compromise between sensitivity and overfitting. The batch
size determines the number patches whose gradients will be averaged
before a network weight update during training. A bigger batch size
averages the gradients of more patches, which improves the overall
accuracy while giving less weight to errors in individual samples. To
further minimize overfitting, early stopping with a patience of ten
epochs is performed when the sum of error rate and L1 loss on the
validation set reaches a global minimum. We set the low number of
ten patience epochs to avoid excessive overfitting to the validation set,
given the small size of the dataset. Although further training might still
improve the validation metrics it could be at the cost of overfitting
to the validation images and worsening the performance with testing
images. In practice, the networks are trained for a maximum of 100
epochs or until the early stopping condition has been met, storing
the network weights with the best validation metrics. The number of
training epochs ranges from 20 to 40 for the reported experiments.
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Fig. 2. Diagram of the employed deep learning architecture, an asymmetrical residual encoder–decoder CNN. Gray rectangles represent feature maps with the number of features
indicated either on top or bottom. For the convolutional layers, [Sx,Sy@Kx×Ky] indicates the strides and kernel size in each axis respectively. Red arrows mark the location where
dropout is applied at prediction time for average uncertainty filtering.

Testing. In the testing phase we predict the class probability distribu-
tion for each voxel of a given image with the trained network. Firstly,
patches are extracted from the whole image at regular spatial intervals
to make sure all parts of the volume are represented. Furthermore, a
degree of overlap is considered to improve spatial label coherence and
minimize boundary artifacts. Each extracted patch is forward passed
through the network and its predicted probabilities accumulated into a
common space, preserving its spatial location. Finally, the average of
accumulated probabilities in each voxel is made. Additionally, uncer-
tainty filtering by averaging is applied to each patch forwarded through
the network. It has been shown that a patch predicted while using
dropout can be considered a Monte Carlo sample from the unknown
classification probability distribution [31]. In our case, for each patch,
3 forward passes are performed with a voxel-wise prediction dropout
rate of 10%. As suggested by [32], dropout in prediction is only
performed in the deepest resolution steps as seen in Fig. 2. Finally, the
probability distribution is computed as the voxel-wise average of the
three noisy predictions.

Post-processing. In the post-processing phase, a binary segmentation is
produced from the predicted probability maps. It is performed in two
steps, first the probabilities are binarized according to a threshold 𝑇
and then a connected component filtering removes lesions smaller than
𝑆𝑚𝑖𝑛 voxels. The parameters T and Smin that optimize the DSC and HD
of the tool are found through grid search for each evaluation. More
specifically, we test 9 different thresholds T, from 0.1 to 0.9 in 0.1 steps,
and 6 minimum lesion sizes (Smin) ranging from 10 to 500 voxels. Each
combination of these parameters is then used to binarize the predicted
probability maps and compute segmentation metrics. We select the T
and Smin that jointly optimize the DSC and HD metrics, the ones used
to rank the ISLES 2018 challenge workshop participants.

3.4. Implementation details

The proposed method has been implemented with Python, using the
Torch scientific computing framework [33]. All experiments have been
run on a GNU/Linux machine running Ubuntu 18.04 with 64 GB of

RAM memory and an Intel® Core™ i7-7800X CPU. The network training
and testing has been done with an NVIDIA TITAN X GPU (NVIDIA corp,
United States) with 12 GB G5X memory.

4. Evaluation and results

The proposed methodology is evaluated with a crossvalidation ex-
periment showing the improvements against our initial workshop chal-
lenge approach and with an external blind evaluation against state-
of-the-art methods using the testing set. The evaluation metrics for
both experiments include the Dice similarity coefficient (DSC) [34] and
Hausdorff distance (HD), the ones considered to rank the workshop
challenge participants. Additionally, we also consider other metrics
more relevant to the clinical setting such as positive predictive value
(PPV), sensitivity and coefficient of determination (COD), also called
R2, between the predicted and true core volume. Finally, we con-
sider the dependent t-test for paired samples to assess the statistical
significance of differences between the evaluation results.

4.1. Crossvalidation experiment

The purpose of this experiment is to quantitatively assess the im-
provements introduced to the proposed method with respect to our
workshop challenge approach (the baseline). Mainly, the improvements
come from a more regularized network training procedure, symmetric
modality augmentation and uncertainty filtering. Additionally, a single
network is used in contrast with the two networks in cascade configura-
tion of the baseline. Thanks to the added improvements we can avoid
the use of the second model, which simplifies the training procedure
and reduces inference times. The current more regularized training
procedure uses the sum of GDL and crossentropy as loss function and
the sum of L1 loss and error rate for early stopping. However, for the
baseline approach [19] the networks were trained using crossentropy
as loss function and a probabilistic Dice loss [28] for early stopping.
Additionally, we are able to use bigger 64 × 64 patches without a
decrease in segmentation performance as it happened with the baseline,
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Fig. 3. Loss and accuracy plots for a single cross-validation fold.

where using 64 × 64 patches resulted in 4% lower DSC than using
48 × 48. The bigger patch size of 64 × 64 offers a bigger receptive
field from which to learn features.

The experiment consisted of four evaluations, first the baseline and
then three with the incremental improvements that comprise the pro-
posed method. Each evaluation is performed in 5 crossvalidation folds
across the 94 labeled images of the ISLES 2018 dataset, having 75 train-
ing and 19 validation images for each fold. Since some scans correspond
to different regions of the same patient, we ensure that all the same
patient scans are within the same set. In each fold, a single network
is trained with the training patches and then the validation volumes
are predicted, resulting in a probability map for each case. After all
five folds have finished there will be one predicted probability map for
each of the 94 training images. Finally, the probability maps are post-
processed using T and Smin, found through grid search, that achieve
the best segmentation metrics across all folds of the crossvalidation.

Fig. 3 shows loss and accuracy plots for a single cross-validation
fold, since the other folds were of similar nature. Additionally, it shows
the early stopping metric value, the L1 loss plus error rate, and the
segmentation DSC of the validation images. The figure shows how
the loss function evaluated on the validation set increases, instead of
decreasing, while the validation accuracy improves. For this reason,
we do not use the validation loss and instead use the sum of L1 loss
and Error rate as a monitored metric on the patch validation set for
early stopping, since it is more correlated with segmentation DSC of
the validation images. In this case, the early stopping metric reaches
a global minimum in epoch 20 where the segmentation DSC begins to
stabilize. Although further training might still improve the validation
metrics it might be at the cost of overfitting to it and worsening the
performance with testing images.

Table 1 shows the evaluation metrics obtained from the baseline
and incremental improvements. Compared with the baseline, the reg-
ularized training procedure with a single model significantly improves
the DSC and sensitivity (p < 0.02). When augmented modalities are
additionally considered, the PPV significantly improves although the
sensitivity is reduced (p < 0.05). Moreover, when uncertainty filtering
is considered the HD is significantly reduced at the expense of a lower
sensitivity (p < 0.03). In general, all introduced improvements raise the
COD, meaning that the estimated volume is closer to the gold standard.
In summary, the proposed tool provides significantly better DSC, HD
and PPV (p < 0.05) than the baseline with a marginal higher sensitivity.

Fig. 4 shows qualitative evaluations of the incremental improve-
ments for three representative cases. As compared with the baseline,
the regularized training achieves better sensitivity and specificity in
all cases, reducing the amount of false positives and negatives. The
addition of symmetric modalities overall improves lesion localization
but can reduce the sensitivity for some samples. For instance, the use
of symmetric modalities increases the false positives in the middle row
case. Finally, the bottom row is a good example of the effect of uncer-
tainty filtering in the majority of cases, improving lesion localization
and estimated volume. However, in some cases it may also introduce
additional outliers as seen in the top row case, where false positives
appear in the upper part of the lesion.

4.2. ISLES 2018 testing evaluation

For segmentation of the 62 unlabeled testing images from the ISLES
2018 dataset, we used all five networks, one from each fold, that were
trained for the crossvalidation evaluation with all improvements. An
averaging approach is used where each patch is passed through the five
trained models and the five predictions are averaged together to pro-
duce a single patch prediction. In this way, bootstrap aggregation [35]
is performed, where each network is trained with a different subset
of training data. Finally, the resulting class probability maps of the
testing images are binarized using the previously computed optimal
parameters 𝑇 = 0.2 and 𝑆𝑚𝑖𝑛 = 200 from the crossvalidation experiment.
Table 2 shows ongoing benchmark leaderboard of the ISLES 2018
testing set sorted by average DSC, where the proposed methodology
ranks among the top entries out of 41 participants.

5. Discussion

The results of the ISLES 2018 testing set evaluation show that the
proposed methodology achieves state-of-the-art performance ranking
2nd in the ongoing benchmark leaderboard among 41 submissions. The
approach by Song et al. [20] manages to achieve a 2% higher DSC
by additionally using the 40 or more volumes that comprise each raw
perfusion time series (CT-PWI) to further extract features for segmenta-
tion. The use of the raw perfusion time series would involve an increase
in memory requirements and processing time, additionally making the
training procedure more complex. In our case, we still use some of the
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Fig. 4. Lesion core segmentation masks of the baseline and incremental improvements. True positives are denoted in green, false positives in red and false negatives in blue. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Evaluation metrics of the crossvalidation experiment in the ISLES 2018 training set. The baseline results correspond to our workshop
challenge approach while Single refers to the current approach using a single network. The evaluated improvements are three: the
regularized training (RT), symmetric modality augmentation (SM) and the uncertainty filtering (UF).
Method 𝑇 𝑆𝑚𝑖𝑛 DSC (%) PPV (%) Sens. (%) HD R2

Baseline .4 200 49.0 ± 23.6 46.9 ± 29.5 57.2 ± 26.7 29.5 ± 18.9 .67
Single +RT .1 300 53.5 ± 24.6 51.8 ± 28.9 66.0 ± 25.5 29.8 ± 23.9 .74
Single +RT +SM .2 200 54.8 ± 24.8 58.3 ± 29.8 63.7 ± 25.3 26.6 ± 19.9 .78
Single +RT +SM +UF .2 200 54.7 ± 24.2 57.8 ± 29.1 60.9 ± 25.0 23.5 ± 15.8 .82

Table 2
Top 10 entries of the ongoing benchmark leaderboard, last accessed 25/06/2019, of
ISLES 2018 testing set as ranked by average DSC. The entry of the presented tool is
highlighted in bold. *Values divided by 1,000,000.

Rank User DSC PPV Sensitivity HD*

1 songt1 [20] 0.51 ± 0.31 0.55 ± 0.36 0.55 ± 0.34 19.4 ± 39.5
2 clera2 (ours) 𝟎.𝟒𝟗 ± 𝟎.𝟑𝟏 𝟎.𝟓𝟏 ± 𝟎.𝟑𝟔 𝟎.𝟓𝟕 ± 𝟎.𝟑𝟓 𝟏𝟏.𝟑 ± 𝟑𝟏.𝟔
3 pengl1 [21] 0.49 ± 0.31 0.56 ± 0.37 0.53 ± 0.33 19.4 ± 39.5
4 zhans10 0.49 ± 0.32 0.53 ± 0.35 0.54 ± 0.35 17.7 ± 38.2
5 cheny11 [36] 0.48 ± 0.32 0.59 ± 0.38 0.46 ± 0.33 9.7 ± 29.6
6 lilic2 0.48 ± 0.32 0.48 ± 0.34 0.6 ± 0.36 17.7 ± 38.2
7 liliy8 0.48 ± 0.31 0.5 ± 0.36 0.55 ± 0.34 19.4 ± 39.5
8 liliy2 0.47 ± 0.32 0.53 ± 0.36 0.47 ± 0.32 16.1 ± 36.8
9 xiaoh3 [22] 0.47 ± 0.31 0.56 ± 0.37 0.49 ± 0.33 19.4 ± 39.5
10 zhuoj2 0.47 ± 0.32 0.51 ± 0.36 0.54 ± 0.36 11.3 ± 31.6

information obtained from the absorption curve parametrization of the
raw perfusion time series in the 4 perfusion parameter maps (CBF, CBV,
MTT and Tmax). Despite the potential performance improvement of
also processing the raw time series as shown by Song et al. [20], we
avoid it in favor of reducing the training complexity and provide faster
inference times.

The crossvalidation experiment shows the big influence that class
imbalance and training regularization can have on segmentation per-
formance. For instance, the class weighting properties of the focal loss
allow the use of bigger 64 × 64 patches without worsened imbalance
and provides a DSC improvement of 4.5% over the baseline. However,
this patch size is too small to fit both brain hemispheres simultaneously
and makes implausible exploiting symmetrical features. The use of
symmetric modality augmentation allows learning of these features

without having to use bigger patches that would worsen class imbal-
ance. Despite the overall improvement from augmented modalities,
some cases are actually worsened, as seen in the middle row of Fig. 4
with a lower PPV that increases false positives. Finally, we noted that
the use of uncertainty filtering significantly reduced outliers but also
harmed segmentation performance with bigger dropout rates. We found
that averaging the output of several passes with a low dropout rate of
10% in prediction was enough to reduce outliers without significantly
harming the overlap performance. Despite the marginally worsened
DSC, PPV and sensitivity that uncertainty filtering provides, we believe
the significantly reduced HD and better estimation of the core volume
are more desirable properties in the clinical setting. Additionally, since
each patch will require the average of three noisy predictions, this
effectively triples the network inference time. However, even when
considering the pre-processing step, segmentation of the largest images
typically takes under two minutes in our system.

6. Conclusions

In this work, we presented and evaluated an automated method
for acute stroke lesion core segmentation from CT and CTP images.
The presented tool achieves state-of-the-art performance while using a
simple training procedure with a single network. The training requires
minimal tuning of parameters thanks to the Adadelta optimizer and a
robust class imbalance handling using balanced patch sampling and a
class weighting loss function. We improve segmentation performance
with a novel way of using the symmetry property of brain hemispheres
in patch based methods. We also explore the use of prediction dropout
layers to reduce outliers and improve lesion core volume estimation, a
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predictor of clinical severity and outcome in ischemic stroke [37]. This
tool can provide with an estimate of core location and volume without
acquiring time costly MR images. In the clinical setting, this estimate
can be used to guide treatment decisions or help assess the need for
further MR imaging. A trainable implementation of the presented tool
is freely released for the research community.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

Albert Clèrigues holds an FPI grant from the Ministerio de Cien-
cia, Innovación y Universidades with reference number PRE2018-
083507. This work has been partially supported by Retos de Investi-
gación TIN2015-73563-JIN and DPI2017-86696-R from the Ministerio
de Ciencia, Innovación y Universidades. The authors gratefully ac-
knowledge the support of the NVIDIA Corporation with their donation
of the TITAN X GPU used in this research.

References

[1] C.L. Sudlow, C.P. Warlow, Comparable studies of the incidence of stroke and
its pathological types: Results from an international collaboration. International
stroke incidence collaboration., Stroke 28 (3) (1997) 491–499.

[2] Sunil A. Sheth, Reza Jahan, Jan Gralla, Vitor M. Pereira, Raul G. Nogueira,
Elad I. Levy, Osama O. Zaidat, Jeffrey L. Saver, Time to endovascular reperfusion
and degree of disability in acute stroke, Ann. Neurol. 78 (4) (2015) 584–593,
http://dx.doi.org/10.1002/ana.24474.

[3] Michael H. Lev, Jeffrey Farkas, Joseph J. Gemmete, Syeda T. Hossain, George J.
Hunter, Walter J. Koroshetz, R. Gilberto Gonzalez, Acute stroke: Improved
nonenhanced CT detection—Benefits of soft-copy interpretation by using variable
window width and center level settings, Radiology 213 (1) (1999) 150–155,
http://dx.doi.org/10.1148/radiology.213.1.r99oc10150.

[4] Rafał Józwiak, Artur Przelaskowski, Grzegorz Ostrek, Conceptual improvements
in computer-aided diagnosis of acute stroke, J. Med. Inf. Technol. 17 (2011).

[5] Andrius Ušinskas, Romualdas Dobrovolskis, Bernd F. Tomandl, Ischemic stroke
segmentation on CT images using joint features, Informatica 15 (2) (2004)
283–290.

[6] M. Chawla, S. Sharma, J. Sivaswamy, L.T. Kishore, A method for automatic
detection and classification of stroke from brain CT images, in: 2009 Annual
International Conference of the IEEE Engineering in Medicine and Biology
Society, 2009, pp. 3581–3584, http://dx.doi.org/10.1109/IEMBS.2009.5335289.

[7] Fuk-hay Tang, Douglas K.S. Ng, Daniel H.K. Chow, An image feature approach for
computer-aided detection of ischemic stroke, Comput. Biol. Med. 41 (7) (2011)
529–536, http://dx.doi.org/10.1016/J.COMPBIOMED.2011.05.001.

[8] N. Hema Rajini, R. Bhavani, Computer aided detection of ischemic stroke using
segmentation and texture features, Measurement 46 (6) (2013) 1865–1874,
http://dx.doi.org/10.1016/J.MEASUREMENT.2013.01.010.

[9] Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, L.D.
Jackel, Backpropagation applied to handwritten zip code recognition, Neural
Comput. 1 (4) (1989) 541–551, http://dx.doi.org/10.1162/neco.1989.1.4.541.

[10] Olaf Ronneberger, Philipp Fischer, Thomas Brox, U-Net: Convolutional networks
for biomedical image segmentation, in: International Conference on Medical
Image Computing and Computer-Assisted Intervention, Springer, 2015, pp.
234–241, arXiv:1505.04597.

[11] Özgün Çiçek, Ahmed Abdulkadir, Soeren S. Lienkamp, Thomas Brox, Olaf
Ronneberger, 3D U-Net: Learning dense volumetric segmentation from sparse
annotation, in: International Conference on Medical Image Computing and
Computer-Assisted Intervention, Springer, Cham, 2016, pp. 424–432, http://dx.
doi.org/10.1007/978-3-319-46723-8_49.

[12] Konstantinos Kamnitsas, Christian Ledig, Virginia F.J. Newcombe, Joanna P.
Simpson, Andrew D. Kane, David K. Menon, Daniel Rueckert, Ben Glocker,
Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion
segmentation, Med. Image Anal. 36 (2017) 61–78, http://dx.doi.org/10.1016/J.
MEDIA.2016.10.004.

[13] Jose Dolz, Christian Desrosiers, Ismail Ben Ayed, 3D fully convolutional networks
for subcortical segmentation in MRI: A large-scale study, NeuroImage 170 (2017)
456–470, http://dx.doi.org/10.1016/J.NEUROIMAGE.2017.04.039.

[14] Liang Chen, Paul Bentley, Daniel Rueckert, Fully automatic acute ischemic lesion
segmentation in DWI using convolutional neural networks, NeuroImage: Clin. 15
(2017) 633–643, http://dx.doi.org/10.1016/J.NICL.2017.06.016.

[15] R. Guerrero, C. Qin, O. Oktay, C. Bowles, L. Chen, R. Joules, R. Wolz, M.C.
Valdés-Hernández, D.A. Dickie, J. Wardlaw, D. Rueckert, White matter hyper-
intensity and stroke lesion segmentation and differentiation using convolutional
neural networks, NeuroImage: Clin. 17 (2018) 918–934, http://dx.doi.org/10.
1016/J.NICL.2017.12.022.

[16] Rongzhao Zhang, Lei Zhao, Wutao Lou, Jill M. Abrigo, Vincent C.T. Mok,
Winnie C.W. Chu, Defeng Wang, Lin Shi, Automatic segmentation of acute
ischemic stroke from DWI using 3-D fully convolutional densenets, IEEE Trans.
Med. Imaging 37 (9) (2018) 2149–2160, http://dx.doi.org/10.1109/TMI.2018.
2821244.

[17] Fausto Milletari, Nassir Navab, Seyed-Ahmad Ahmadi, V-Net: Fully convolutional
neural networks for volumetric medical image segmentation, 2016, arXiv:1606.
04797.

[18] Ke Zhang, Miao Sun, Tony X. Han, Xingfang Yuan, Liru Guo, Tao Liu, Residual
networks of residual networks: Multilevel residual networks, 2016, arXiv:1608.
02908. http://dx.doi.org/10.1109/TCSVT.2017.2654543.

[19] Albert Clèrigues, Sergi Valverde, Jose Bernal, Kaisar Kushibar, Mariano Cabezas,
Arnau Oliver, Xavier Lladó, Ensemble of convolutional neural networks for acute
stroke anatomy differentiation, in: International MICCAI Brainlesion Workshop,
2018.

[20] Tao Song, 3D Multi-scale U-Net with atrous convolution for ischemic stroke
lesion segmentation, in: International MICCAI Brainlesion Workshop, 2018.

[21] Pengbo Liu, Stroke lesion segmentation with 2D convolutional neutral network
and novel loss function in: International MICCAI Brainlesion Workshop, 2018.

[22] Xiaojun Hu, Weilin Huang, Sheng Guo, Matthew R. Scott, StrokeNet: 3D Local
refinement network for ischemic stroke lesion segmentation, in: International
MICCAI Brainlesion Workshop, 2018.

[23] Adam Paszke, Abhishek Chaurasia, Sangpil Kim, Eugenio Culurciello, Enet: A
deep neural network architecture for real-time semantic segmentation, 2016,
arXiv preprint arXiv:1606.02147. arXiv:1606.02147.

[24] Yanran Wang, Aggelos K. Katsaggelos, Xue Wang, Todd B. Parrish, A deep
symmetry convnet for stroke lesion segmentation, in: 2016 IEEE International
Conference on Image Processing (ICIP), IEEE, 2016, pp. 111–115, http://dx.doi.
org/10.1109/ICIP.2016.7532329.

[25] Mark Jenkinson, Peter Bannister, Michael Brady, Stephen Smith, Improved
optimization for the robust and accurate linear registration and motion correction
of brain images, NeuroImage 17 (2) (2002) 825–841.

[26] Charles Elkan, The foundations of cost-sensitive learning, in: International Joint
Conference on Artificial Intelligence, 2001, pp. 973–978.

[27] P.Y. Simard, D. Steinkraus, J.C. Platt, Best practices for convolutional neural net-
works applied to visual document analysis, in: Seventh International Conference
on Document Analysis and Recognition, 2003. Proceedings, vol. 1, IEEE Comput.
Soc, pp. 958–963. http://dx.doi.org/10.1109/ICDAR.2003.1227801.

[28] Carole H. Sudre, Wenqi Li, Tom Vercauteren, Sébastien Sebastien Ourselin,
M. Jorge Cardoso, M. Jorge Cardoso, Generalised dice overlap as a deep learning
loss function for highly unbalanced segmentations, Lecture Notes in Comput.
Sci. 10553 LNCS (2017) 240–248, http://dx.doi.org/10.1007/978-3-319-67558-
9_28, arXiv:1707.03237.

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep residual learning for
image recognition, in: 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR, IEEE, 2016, pp. 770–778, http://dx.doi.org/10.1109/CVPR.
2016.90.

[30] Matthew D. Zeiler, ADADELTA: An adaptive learning rate method, 2012, arXiv
preprint arXiv:1212.5701, abs/1212.5. http://doi.acm.org.ezproxy.lib.ucf.edu/
10.1145/1830483.1830503.

[31] Yarin Gal, Zoubin Ghahramani, Dropout as a Bayesian approximation: Represent-
ing model uncertainty in deep learning, in: International Conference on Machine
Learning, 2015, pp. 1050–1059. arXiv:1506.02142.

[32] Tanya Nair, Doina Precup, Douglas L. Arnold, Tal Arbel, Exploring uncer-
tainty measures in deep networks for multiple sclerosis lesion detection and
segmentation, in: International Conference on Medical Image Computing and
Computer-Assisted Intervention, 2018, pp. 655–663. http://dx.doi.org/10.1007/
978-3-030-00928-1_74.

[33] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, Adam Lerer,
Automatic differentiation in pytorch, in: Neural Information Processing Systems,
2017.

[34] Lee R. Dice, Measures of the amount of ecologic association between species,
Ecology 26 (3) (1945) 297–302, http://dx.doi.org/10.2307/1932409.

[35] Leo Breiman, Bagging predictors, Mach. Learn. 24 (2) (1996) 123–140, http:
//dx.doi.org/10.1007/BF00058655.

[36] Yu Chen, Yuexiang Li, Yefeng Zheng, Ensembles of modalities fused model
for ischemic stroke lesion segmentation, in: International MICCAI Brainlesion
Workshop, 2018.

[37] Karl-Olof Löuvbld, Alison E. Baird, Gottfried Schlaug, Andrew Benfield, Bettina
Siewert, Barbara Voetsch, Ann Connor, Cara Burzynski, Robert R. Edelman,
Steven Warach, Ischemic lesion volumes in acute stroke by diffusion-weighted
magnetic resonance imaging correlate with clinical outcome, Ann. Neurol. 42
(2) (1997) 164–170, http://dx.doi.org/10.1002/ana.410420206.



39

Chapter 4

Acute and sub-acute stroke lesion
segmentation from multimodal
MRI

In this chapter, we propose a deep learning based approach for both the sub-
acute ischemic stroke lesion segmentation (SISS) and the acute stroke penumbra
estimation (SPES) sub-tasks of the Ischemic Stroke Lesion Segmentation (ISLES)
2015 challenge. Our 3D patch-based deep learning approach achieves state-of-
the-art results by utilizing techniques for class imbalance handling, bilateral
feature extraction and morphology based post-processing. To mitigate the class
imbalance, we use a balanced training patch sampling along with a difficulty
weighted loss function. The use of augmented symmetric modalities allows the
network to exploit features based on the symmetry of brain hemispheres despite
the use of small patches. The proposed approach demonstrated state-of-the-art
performance by achieving first position at the ongoing blind testing set evaluation
leaderboards of both tasks, SISS and SPES, from the ISLES 2015 challenge.
The presented methodology has been published in the following paper:
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a b s t r a c t 

Background and objective. Acute stroke lesion segmentation tasks are of great clinical interest as they 

can help doctors make better informed time-critical treatment decisions. Magnetic resonance imaging 

(MRI) is time demanding but can provide images that are considered the gold standard for diagnosis. 

Automated stroke lesion segmentation can provide with an estimate of the location and volume of the 

lesioned tissue, which can help in the clinical practice to better assess and evaluate the risks of each 

treatment. 

Methods. We propose a deep learning methodology for acute and sub-acute stroke lesion segmentation 

using multimodal MR imaging. We pre-process the data to facilitate learning features based on the sym- 

metry of brain hemispheres. The issue of class imbalance is tackled using small patches with a balanced 

training patch sampling strategy and a dynamically weighted loss function. Moreover, a combination of 

whole patch predictions, using a U-Net based CNN architecture, and high degree of overlapping patches 

reduces the need for additional post-processing. 

Results. The proposed method is evaluated using two public datasets from the 2015 Ischemic Stroke Le- 

sion Segmentation challenge (ISLES 2015). These involve the tasks of sub-acute stroke lesion segmentation 

(SISS) and acute stroke penumbra estimation (SPES) from multiple diffusion, perfusion and anatomical 

MRI modalities. The performance is compared against state-of-the-art methods with a blind online testing 

set evaluation on each of the challenges. At the time of submitting this manuscript, our approach is the 

first method in the online rankings for the SISS (DSC = 0.59 ± 0.31) and SPES sub-tasks (DSC = 0.84 ± 0.10). 

When compared with the rest of submitted strategies, we achieve top rank performance with a lower 

Hausdorff distance. 

Conclusions. Better segmentation results are obtained by leveraging the anatomy and pathophysiology 

of acute stroke lesions and using a combined approach to minimize the effects of class imbalance. The 

same training procedure is used for both tasks, showing the proposed methodology can generalize well 

enough to deal with different unrelated tasks and imaging modalities without hyper-parameter tuning. 

In order to promote the reproducibility of our results, a public version of the proposed method has been 

released to the scientific community. 

© 2020 Elsevier B.V. All rights reserved. 

1. Introduction 

Stroke is a medical condition by which an abnormal blood flow 

in the brain causes the death of cerebral tissue. Stroke is the third 

cause of morbidity worldwide, after myocardial infarction and can- 

cer, and the most prevalent cause of acquired disability [1] . The 

affected tissue in the acute phase can be divided into three con- 

centric regions depending on the potential for recovery, also re- 

ferred as salvageability: core, penumbra and benign oligemia [2] . 

The core, located at the center, is formed by irreversibly dam- 

∗ Corresponding author. 

E-mail address: albert.clerigues@udg.edu (A. Clèrigues). 

aged tissue from a fatally low blood supply. The penumbra, lo- 

cated around the core, represents tissue at risk but that can still 

be recovered if blood flow is quickly restored. Finally, the benign 

oligemia is the outer most ring whose vascularity has been al- 

tered but is not at risk of damage. Once the symptoms of stroke 

have been identified, a shorter time to treatment is highly corre- 

lated with a positive outcome [3] . Mechanical thrombectomy is a 

strongly recommended option for eligible patients [4] . However, 

this surgery is not free of risks. An overall complication rate of 

15.3% was observed in a year long study [5] . In the treatment de- 

cision context, an estimate of the salvageable tissue can aid physi- 

cians take more informed treatment decisions. 

https://doi.org/10.1016/j.cmpb.2020.105521 

0169-2607/© 2020 Elsevier B.V. All rights reserved. 
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The Ischemic Stroke Lesion Segmentation (ISLES) challenge 

started in 2015 to provide a platform for fair and direct comparison 

of automated methods. It included two sub-tasks, the sub-acute 

ischemic stroke lesion segmentation (SISS) and the acute stroke 

penumbra estimation (SPES). The following ISLES 2016 and 2017 

editions changed its focus from lesion segmentation to chronic le- 

sion outcome prediction from MRI. In the 2015 ISLES workshop re- 

sults, the top three methods in the SPES sub-task all used Ran- 

dom Decision Forests (RDFs) [6] using hand-crafted features [7–

9] . RDFs were typically used in methods for stroke lesion seg- 

mentation due to their excellent generalization properties, which 

make them well suited for difficult tasks with few training samples 

[10] . Recent advances on convolutional neural networks (CNNs) 

[11] have achieved superior results and are currently replacing 

RDFs in most state-of-the-art methods. In contrast with RDFs, 

CNNs enable the joint learning of optimal features and classifica- 

tion criteria at training time for the specific task. However, these 

kind of networks are still restricted by the architectural design, 

the amount and quality of available data and the training proce- 

dure. Recently, advances in regularization techniques and data im- 

balance handling allow for increased CNN generalization perfor- 

mance in brain lesion segmentation that rivals that of RDFs. The 

best method in the SISS sub-task of the 2015 ISLES workshop em- 

ployed a deep learning strategy consisting of a dual path encoder 

network with a conditional random field (CRF) post-processing 

[12] . More recently, Zhang et al [13] achieved similar results in 

the ISLES 2015 testing set by using a similar CNN trained with a 

deep supervision technique and a multi-scale loss function. Sim- 

ilarly, the work of Karthik et al. [14] further improved results in 

ISLES 2015 reaching a DSC of 0.70 on the SISS training set, but 

does not perform an evaluation on the publicly available blind 

test set. Despite the good results of these kind of networks, the 

U-Net architecture [15] , an encoder-decoder network, is replac- 

ing other state-of-the-art architectures for stroke lesion segmen- 

tation. This is clearly seen in the submissions for the ISLES 2017 

challenge, where 10 out of the 14 participating methods, includ- 

ing the top three, used CNNs based on the U-Net architecture 

[16] . Recent approaches for stroke lesion segmentation from MR 

imaging also used these kind of networks. The work by Olivier 

et al. [17] used a U-Net based network with a two phase train- 

ing first using whole brain images and then in the second phase 

also adding small patches of wrongly segmented regions from the 

first phase. More recently, Xue et al. [18] used a multi-path 2.5D 

dual U-Net using brain symmetry modality augmentation with a 

late fusion strategy on the ATLAS dataset of chronic stroke patients 

[19] . 

In this work, we present a deep learning approach for acute 

and sub-acute stroke lesion segmentation from multimodal MRI 

images. We use a 3D asymmetric encoder-decoder network based 

on the U-Net architecture with global and local residual connec- 

tions. Within our approach, the class imbalance issue is allevi- 

ated with the use of small patches with balanced training patch 

sampling strategies and a dynamically weighted loss function. Ad- 

ditionally, we pre-process the provided images to facilitate using 

the symmetry property of brain hemispheres. In contrast to the 

work of Xue et al. [18] the symmetry features in our approach are 

fused earlier, before the network input, allowing the encoder to ex- 

tract joint features between the original and symmetric modalities. 

The methodology is evaluated by cross-validation with the train- 

ing images and with a blind online testing set evaluation against 

other state-of-the-art methods. The proposed approach demon- 

strates state of the art performance by ranking first in the testing 

leaderboard of both challenges [20] without any dataset specific 

tuning. 

2. Data 

For evaluation of the proposed methodology we use the public 

datasets provided for the two sub-tasks of the 2015 ISLES challenge 

[21] . They both encompass stroke lesion segmentation tasks from 

MRI imaging but using different imaging modalities and acquisi- 

tion time since onset. 

2.1. SISS dataset 

For the sub-acute ischemic stroke segmentation (SISS) sub-task, 

a dataset was provided with 28 training and 36 testing cases ac- 

quired in the first week after onset [21] . The stroke MRI was per- 

formed on either a 1.5T (Siemens Magnetom Avanto) or 3T MRI 

system (Siemens Magnetom Trio). For each case, 4 co-registered 

multimodal images were provided including anatomical (T1, T2, 

FLAIR) and diffusion (DWI) MRI. The images were acquired as 3D 

volumes of 230 × 230 × 153 dimensions at 1 × 1 × 1 mm spacing. 

All four MRI modalities were used for evaluation of the proposed 

approach. For the training images, the provided gold standard, the 

whole lesion extent, was manually segmented by an experienced 

medical doctor. 

2.2. SPES dataset 

The acute stroke penumbra estimation sub-task (SPES) included 

30 training and 20 testing cases acquired in the first day after on- 

set with 3T Phillips systems on two centers [21] . For each case, 

7 co-registered modalities were provided including anatomical (T1 

contrast, T2), diffusion (DWI) and perfusion (CBF, CBV, TTP, Tmax) 

MRI. The images were acquired as 3D volumes of 96 × 110 × 71 

dimensions at 2 × 2 × 2 mm spacing. All seven MRI modalities 

were used for evaluation of the proposed approach. For the train- 

ing images, the gold standard segmentation, the penumbra label, 

was obtained as the mismatch between whole lesion extent and 

the core delineated in perfusion and diffusion images respectively. 

3. Methodology 

We propose a 3D patch based deep learning method using an 

asymmetrical residual CNN based on the U-Net architecture [15] . 

Within our approach, the class imbalance issue is addressed with 

a combination of techniques including the use of small patches 

(24 × 24 × 16) and a weighted loss function. We also regularize 

the training procedure with dropout [22] , data augmentation and 

early stopping. For image segmentation, the use of whole patch 

predictions with a high degree of overlap minimizes the need for 

additional post-processing. In the following, we briefly describe the 

main components and implementation details of our methodology. 

3.1. Data pre-processing 

The given images are first pre-processed with a symmetric 

modality augmentation to allow learning of features based on the 

symmetry of brain hemispheres despite the small receptive field 

of the used patches. Explicit symmetry information was already 

shown to improve results for chronic stroke lesion segmentation 

[23] . In our case, instead of using one patch per hemisphere in a 

multi-path network we use a single joint patch with a single-path 

network. In practice, we augment the provided modality images 

with symmetric versions that swap the left and right hemispheres. 

We first flip one of the images along the mid-sagittal axis and then 

we apply FSL FLIRT [24] to perform a linear registration between 

the original and flipped image. Finally, the rest of modalities are 
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Fig. 1. Provided and symmetrically augmented modalities from case 2 of the SISS training images. 

Fig. 2. Employed U-Net based architecture using 3D convolutions, 4 resolution steps and 32 base filters. The architecture consists of an asymmetrical encoder-decoder 

network using long and short residual connections. For the convolutional layers, K x × K y × K z @[S x ,S y ,S z ] indicates the kernel and stride dimensions in each axis. The 

number of channels is indicated above or under each feature map. In the input and output feature maps, I and N denote the number of image modalities and segmentation 

classes respectively. 

registered using the same transformation. Fig. 1 shows an exam- 

ple of the resulting symmetrically augmented modalities. These are 

then appended to the provided ones, effectively doubling the num- 

ber of images for each patient. In this way, a single extracted patch 

will also include intensity information from the opposite hemi- 

sphere. 

3.2. CNN architecture 

The used architecture, illustrated in Fig. 2 , is a 3D asymmetrical 

encoder-decoder network based on the U-Net [15] architecture and 

its 3D extension, the 3D U-Net [25] . Additionally, we also use short 

and long residual connections as used by the 2D uResNet architec- 

ture [26] for chronic stroke in MRI. The asymmetry comes from the 

number of parameters found in the encoder and decoder branches, 

with 75% and 25% of the parameters respectively. We use resid- 

ual blocks with two convolutional layers in the encoder and with 

a single convolutional for the decoder. It has been shown that the 

decoder’s role is not as critical for segmentation, mainly upsam- 

pling the work of the encoder and fine-tuning the details [27] . Ad- 

ditionally, instead of the more typical rectified linear unit (ReLU) 

[28] we use in our residual blocks a parametric version, the PReLU 

non-linearity [29] , as suggested by Paszke et al [27] . We perform 

downsampling in each resolution step by concatenating the result 

of a max pooling operation and strided convolution as proposed 

by Szegedy et al [30] . This strategy avoids representational bottle- 

necks while keeping the number of parameters contained. Finally, 

upsampling in the decoder branch is performed with the use of 

transposed convolutions. 

3.3. Class imbalance handling 

The class imbalance issue is caused by the typically smaller ex- 

tent of the lesion class as compared with the rest of healthy tissue 

class. If no deliberate action is taken, the training set will be com- 

posed mostly from examples of healthy tissue and few from the 

lesion. This would induce a biased learning that would harm the 

segmentation performance. To alleviate this issue, we use a com- 
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Fig. 3. Diagram of the used training patch sampling strategy for acute stroke related tasks that considers the anatomy and pathophysiology of stroke lesions. The extracted 

patches are of size 24 × 24 × 16 and include all input modalities. 

bination of small patches with a balanced training patch sampling 

and a difficulty weighted loss function. The employed loss func- 

tion, the Focal loss [31] , is a dynamically weighted extension of 

the crossentropy loss defined as: 

FL (p t ) = −αt (1 − p t ) 
γ log (p t ) (1) 

where p t and αt are the predicted probability and weight for class 

t respectively. This function is dynamically weighted inversely pro- 

portional to the prediction confidence, so the network learns less 

from confident classifications and more from misclassified exam- 

ples. In this way, class imbalance is alleviated as the network stops 

learning from the larger amount of healthy examples while still 

learning from the less common lesioned tissue. We use the Focal 

loss default parameters as suggested by Lin et al [31] , with scal- 

ing factor γ = 2 and class weights α0 = 0 . 25 and α1 = 0 . 75 for the 

healthy and lesion classes respectively. 

The use of patches allows using a training sampling strategy 

that can undersample the healthy class and oversample the lesion 

for a more balanced class representation. The employed strategy 

is an extension of two recently proposed ones for brain lesions 

[32] and chronic stroke [26] . In practice, a goal number of patches 

to extract is set per patient, as we aim to have a balanced patch 

representation of each case. Then, 50% of the training patches are 

extracted centered on voxels corresponding to healthy tissue and 

the other 50% on lesion. These are sampled at regular spatial steps 

to ensure that all parts of the brain are equally represented. The 

voxels sampled from the lesion class have a random offset added 

to increase representation of the region surrounding the lesion, the 

benign oligemia. As suggested by Guerrero et al [26] , the offset 

is limited to half of the patch size to ensure the originally sam- 

pled voxel remains in the final extracted patch. For patients with 

smaller lesions, a combination of several patch extractions from 

the same lesion voxel and data augmentation is done to ensure the 

number is reached. The same sampled voxel will actually produce 

different patches since lesion voxels have a random offset applied. 

Finally, patches are extracted centered on these voxels. Addition- 

ally, for the lesion sampled patches, data augmentation is applied 

with five anatomically feasible operations including sagittal reflec- 

tions and 90 ◦, 180 ◦ and 270 ◦ axial rotations. A diagram summariz- 

ing the described strategy is depicted in Fig. 3 . 

Despite the balancing effects of the Focal loss and training 

patch sampling, the segmentation performance is still reduced 

when bigger patch sizes are considered. Since there are much 

fewer lesion voxels than healthy ones, bigger patches tend to in- 

clude more healthy class voxels and further worsen class imbal- 

ance in the training set. The employed patch size of 24 × 24 × 16, 

determined empirically, offers the best compromise between re- 

ceptive field and worsened imbalance for the considered datasets. 

3.4. Network training 

For training the randomly initialized network weights, we first 

extract patches to build the training and validation sets. As stated 

in Section 3.3 , we use patches of size 24 × 24 × 16 sampled with a 

balanced patch sampling strategy. During training, we use the Fo- 

cal loss [31] along with the Adadelta optimizer [33] , to avoid costly 

grid search of a learning rate, with a batch size of 16 patches. This 

optimizer requires no manual tuning of parameters and appears 

robust to noisy gradient information, different model architecture 

choices, various data modalities and selection of hyper-parameters. 

Moreover, to prevent overfitting we use the early stopping tech- 

nique by monitoring the performance on a validation set at the 

end of each epoch. In this way, the training is interrupted when 

the monitored metric reaches a local minimum, which means no 

more generalizable knowledge is being learned from the training 

images. The sum of the L1 loss and error rate on the validation set 

is used as the monitored metric with a patience of 8 epochs. 

3.5. Segmentation and post-processing 

Once the network weights have been trained, to segment a new 

volume patches are first extracted from every part of the image 

and forward passed through the network. These are sampled uni- 

formly with a regular extraction step of 4 × 4 × 1 so that all 

parts of the brain are predicted. The resulting patch probabilities 

are then combined in a common space preserving their original 

spatial location to produce the whole volume probability map. In 

our case, the combination is performed per voxel by averaging the 

class probabilities of the various patches. Furthermore, some de- 

gree of overlap between the extracted patches is used since the 

extraction step is smaller than the patch size. Therefore, the same 

voxel is Doncs si no voleu sentir els meus laments, i us voleu posar 

taps, en trobareu a la nesspresso del pequatre.labeled seen in dif- 

ferent neighborhoods and the resulting class probabilities are aver- 

aged. This technique reduces the need for post-processing steps as 

it provides coherently spatial labels without block artifacts. 

Finally, the probability maps are binarized by thresholding the 

lesion class probabilities and then performing a connected compo- 

nent filtering by lesion volume. The variable threshold T h can com- 

pensate over/under confident networks while the minimum lesion 

size S min , measured in number of voxels, takes advantage of lesion 

priors to minimize false positives. In practice, the probability maps 

are binarized using the same threshold and minimum lesion size 

for each evaluation. These are found through grid search after all 

networks have been trained to offer the best compromise between 

the desired evaluation metrics. 

3.6. Implementation details 

The proposed method has been implemented with Python, us- 

ing the Torch scientific computing framework [34] . All experiments 
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Table 1 

Cross-validation experiment evaluation metrics on the SISS and SPES sub-tasks. The post-processing parameters 

T h and S min are found through grid search to maximize the score defined in Eq. (1) . Significant differences of the 

reported metrics to the Baseline and Balanced approaches are marked with � and � respectively. 

Approach T h S min DSC PPV Sensitivity HD 

SISS sub-task 

Baseline 0.4 50 0.64 ± 0.22 0.69 ± 0.27 0.68 ± 0.21 43.7 ± 32.6 

Balanced 0.4 200 0.67 ± 0.21 0.73 ± 0.22 0.69 ± 0.23 � 30.9 ± 28.9 

Proposed 0.5 200 � � 0.71 ± 0.19 � 0.78 ± 0.20 0.67 ± 0.22 � 29.5 ± 29.5 

SPES sub-task 

Baseline 0.6 500 0.80 ± 0.17 0.82 ± 0.21 0.82 ± 0.19 11.1 ± 6.9 

Balanced 0.4 500 0.82 ± 0.15 0.84 ± 0.14 � 0.85 ± 0.17 12.4 ± 7.6 

Proposed 0.5 200 � 0.82 ± 0.16 0.85 ± 0.13 � 0.85 ± 0.17 � 11.2 ± 7.3 

have been run on a GNU/Linux machine running Ubuntu 18.04 

with 64GB of RAM memory and an Intel Â® Core TM i7-7800X CPU. 

The network training and testing has been done with an NVIDIA 

TITAN X GPU (NVIDIA corp, United States) with 12GB G5X mem- 

ory. 

4. Evaluation and results 

We perform a quantitative and qualitative evaluation with both 

a cross-validation experiment and a blind external evaluation us- 

ing the challenge web platform. The metrics used in the quantita- 

tive evaluations will be the ones provided by the online platform. 

These include the Dice similarity coefficient (DSC) [35] , sensitivity, 

positive predictive value (PPV) and Hausdorff distance (HD). The 

DSC measures the relative overlap of the segmentation with the 

ground truth and is used as a measure of segmentation perfor- 

mance. The sensitivity and PPV measure different properties rel- 

ative to the lesion class segmentation. On the one hand, the sen- 

sitivity is the fraction of gold standard lesion that has been cor- 

rectly labeled as such in the resulting segmentation. On the other 

hand, the PPV measures the fraction of all predicted lesion labels 

that are correct. In this way, a segmentation that correctly labeled 

a small fraction of the lesion with few false positives would have a 

high PPV but low sensitivity. Finally, the Hausdorff distance can be 

intuitively seen as a measure of the largest border error between 

the segmentation and ground truth. To assess the statistical sig- 

nificance of differences between the crossvalidation results on the 

training set we consider the t -test for paired samples. 

4.1. Cross-validation experiment with training images 

The purpose of the cross-validation experiment is to quantita- 

tively asses the main introduced improvements of the proposed 

methodology against a Baseline approach without them. For the 

Baseline approach, we use the proposed methodology without the 

class imbalance handling nor the data pre-processing step. Instead 

we use the crossentropy loss and training patch sampling as de- 

scribed in [32] , using 24 × 24 × 16 patches without any addi- 

tion of a random offset. We then evaluate the effects of a Bal- 

anced approach that only uses the class imbalance handling de- 

scribed in Section 3.3 , without performing symmetric modality 

augmentation. Finally, the Proposed approach also adds the data 

pre-processing step to implement the complete proposed method- 

ology. 

Each evaluation is performed in 4 folds, adjusting the number 

of cases per fold accordingly, with the same training procedure for 

both the SISS and SPES datasets. To build the patch training set for 

each fold, 10 0 0 0 patches per case are extracted from the train- 

ing images summing approximately 260 0 0 0 patches in total. Once 

the networks from each fold have been trained and the probability 

maps generated for all training images, the post-processing param- 

eters T h and S min are found through grid search to optimize the 

desired metrics across all folds. We consider the range of thresh- 

olds T h from 0.1 to 0.9 and minimum lesion size S min from 10 to 

10 0 0 voxels. More specifically, we choose the parameter combina- 

tion that jointly maximizes the average DSC and HD, the two met- 

rics used to determine the 2015 ISLES workshop results. In prac- 

tice, a combined score is computed as: 

Score = 

DSC ∗
(

1 − HD 

HD max 

)

DSC + 

(
1 − HD 

HD max 

) (2) 

where HD max , set to 200 voxels, is used to normalize the HD met- 

ric to the range between 0 and 1. 

4.1.1. SISS sub-task results 

The evaluation metrics of the cross-validation experiment using 

the SISS dataset can be found in the upper part of Table 1 . With re- 

spect to the Baseline, the Balanced approach significantly improves 

the Hausdorff distance ( p < 0.01) with marginal improvements in 

other metrics. When the symmetrically augmented modalities are 

further considered, the Proposed approach achieves significantly 

better DSC, PPV and HD ( p < 0.02) as compared with the Base- 

line. However, despite the improvement in evaluation metrics, the 

Proposed approach needs a more restrictive minimum lesion size 

of 200 voxels to maximize the score as compared with the Base- 

line, which only filtered lesions smaller than 50 voxels. Addition- 

ally, Fig. 4 suggests that the performance of the network on the 

SISS dataset is independent of lesion size or count. It also shows a 

case where the lesion was completely missed due to its small size 

and unusual location at the cerebelum. 

Representative examples of the qualitative results from the pro- 

posed method can be found in Fig. 5 . Cases 9 and 15 represent 

the overall results of the proposed methodology, correctly detect- 

ing the lesions in most cases with an outline that approximates the 

provided gold standard. Among the observed limitations are inac- 

curate borders and over/under segmentation of certain regions. For 

instance, cases 13 and 17 are two of the worst results on the SISS 

dataset where false positive lesions are detected due to the exis- 

tence of other chronic lesions with a similar appearance. 

4.1.2. SPES sub-task results 

The evaluation metrics of the cross-validation experiment us- 

ing the SPES dataset can be found in the bottom part of Table 1 . 

The class imbalance handling used in the Balanced approach sig- 

nificantly improves the sensitivity ( p < 0.01) while providing 

marginal increase on the rest except the Hausdorff distance. When 

both improvements are simultaneously considered in the Proposed 

approach, it achieves a significantly better DSC and sensitivity 

( p < 0.01) than the Baseline. Additionally, the augmented modal- 

ities reduce the minimum lesion size S min from 500 to a less re- 

strictive 200 voxels. Additionally, Fig. 6 shows the performance on 
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Fig. 4. SISS cross-validation results by lesion volume and count. 

Fig. 5. Images and output masks of representative cases with good and bad performance (top to bottom, cases 9, 13, 15 and 17) from the training images of ISLES 2015 SISS 

dataset. From left to right, the displayed MR modalities are T1, T2, FLAIR, DWI and output segmentation. On all displayed segmentation results, true positives are denoted in 

green, false positives in red and false negatives in blue. 

the SPES dataset with respect to the lesion size and count showing 

no apparent correlation between them. 

Fig. 7 shows qualitative results of four representative segmenta- 

tion examples from the proposed method. In general, the majority 

of the lesion is correctly segmented with minor border and small 

hole inaccuracies as seen in cases 2 and 11. Other less typical er- 

rors include under or oversegmentation of the lesion, as seen in 

case 15 where false positives are found on the upper part of the 

lesion. In the example of case 18, the lesion is clearly underseg- 

mented probably due to a confounding unusual appearance of the 

TTP modality. 

4.2. Blind challenge evaluation 

To compare the proposed methodology against other state-of- 

the-art methods for acute stroke we submit our final approach for 

blind external evaluation in the ISLES 2015 challenge framework. 

The web platform used to hold the 2015 ISLES workshop [20] re- 

mains open for later submission and maintains an ongoing chal- 

lenge leaderboard where the average testing set results are publicly 

displayed. Since the gold standard is hidden for the testing images, 

a fair and direct method comparison is possible. For evaluation in 

the challenge framework of ISLES 2015, we use the four networks 
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Fig. 6. SPES cross-validation results by lesion volume and count. 

Fig. 7. Images and output masks of representative cases with good and bad performance (top to bottom, cases 2, 11, 15 and 18) from the training images of ISLES 2015 SPES 

dataset. From left to right, the displayed MR modalities are T1c, T2, DWI, CBF, CBV, TMax, TTP and output segmentation. On all displayed segmentation results, true positives 

are denoted in green, false positives in red and false negatives in blue. 

trained for the Proposed approach during the cross-validation ex- 

periment, one from each fold, and average their outputs to produce 

a single testing patch prediction. The testing images are then seg- 

mented as described in Section 3.5 using the T h and S min set in the 

cross-validation experiment. In this way, the challenge results are 

produced with the same networks trained in the cross-validation 

experiment. 

4.2.1. Challenge results 

Tables 2 and 3 shows the top five entries as ranked by DSC of 

the ongoing testing leaderboard results for the SISS and SPES sub- 

tasks respectively. The proposed methodology achieves state-of- 

the-art performance in both sub-tasks, ranking first out of 74 en- 

tries in the SISS leaderboard and first out of 41 entries in the SPES 

leaderboard. As compared with the next best entries, we achieve 

similar or higher DSC with a 12% and 28% lower Haussdorf dis- 

tance in the SISS and SPES sub-tasks respectively. Additionally, in 

the SPES dataset we also obtain an 8% higher sensitivity. 

5. Discussion 

We have performed both qualitative and quantitative evalua- 

tions of the proposed methodology in two different tasks with- 

out any dataset specific tuning of training hyper-parameters. The 

methodology has been shown to perform equally well for the acute 

or sub-acute stages and with different combinations of MRI modal- 

ities. The results are improved with respect to the Baseline thanks 

to the combined approach to alleviate data imbalance and also 

through the explicit learning of features based on the brain sym- 

metry. Additionally, the method is fast in inference, taking under 3 

min to pre-process and predict a new image. 

The proposed methodology demonstrates state-of-the-art per- 

formance ranking 1st by average DSC while having a smaller HD as 
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Table 2 

Top 5 out of 74 entries of the ongoing SISS testing leaderboard [20] as ranked by average DSC. 

Rank User DSC PPV Sensitivity HD 

1 clera2 (ours) 0.59 ± 0.31 0.65 ± 0.35 0.60 ± 0.30 34.7 ± 28.9 

2 kamnk1 [12] 0.59 ± 0.31 0.68 ± 0.33 0.60 ± 0.27 39.6 ± 30.7 

3 zhanr6 [13] 0.58 ± 0.31 0.60 ± 0.33 0.68 ± 0.24 38.9 ± 35.3 

4 lianl1 0.57 ± 0.29 0.58 ± 0.30 0.64 ± 0.29 43.0 ± 30.5 

5 saliz1 0.57 ± 0.31 0.54 ± 0.31 0.67 ± 0.29 41.1 ± 36.7 

Table 3 

Top 5 entries out of 41 of the ongoing SPES testing leaderboard [20] as ranked by average DSC. 

Rank User DSC PPV Sensitivity HD 

1 clera2 (ours) 0.84 ± 0.10 0.82 ± 0.15 0.89 ± 0.06 20.7 ± 13.9 

2 mckir1 [8] 0.82 ± 0.08 0.83 ± 0.10 0.82 ± 0.14 29.0 ± 16.3 

3 cheng5 0.81 ± 0.11 0.81 ± 0.12 0.81 ± 0.14 22.7 ± 12.6 

4 maieo1 [7] 0.81 ± 0.09 0.84 ± 0.08 0.80 ± 0.14 23.6 ± 13.0 

5 ghosp1 0.80 ± 0.11 0.80 ± 0.15 0.83 ± 0.11 57.1 ± 25.4 

compared with the next best method in both challenges. Moreover, 

we are the first U-Net based approach in the online testing leader- 

board to outperform the best 2015 ISLES workshop entries. In the 

SISS sub-task, we obtain a similar DSC but with lower HD than 

the next best method. In contrast with the approach by Kamnitsas 

et al [12] , we can avoid the use of the additional post-processing 

step with conditional random fields that needs several image de- 

pendent configurable parameters. In our case, the use of a U-Net 

based architecture that provides whole patch predictions allows 

performing highly overlapped segmentations without a large in- 

crease of inference time or introducing additional configurable pa- 

rameters. In the SPES sub-task, we obtain a higher sensitivity with 

a lower HD as compared with the next best method by McKinley 

et al [8] that used a random decision forest classifier with several 

hand-crafted features over 3 × 3 × 3 and 5 × 5 × 5 neighborhoods 

including local texture features, mean intensity, skewness, etc. By 

using a deep learning based method, the feature representation is 

learned at training time without having to rely on manually testing 

and finding the most appropriate ones for each specific task. Ad- 

ditionally, deep learning based methods can be integrated as part 

of a bigger diagnostic and prognostic processing pipelines where 

lesion or penumbra segmentation could be used as prior informa- 

tion. They can also benefit from related techniques such as con- 

tinued training with newer images, fine tuning to improve perfor- 

mance as part of a composite pipeline, transfer learning to learn a 

similar unrelated task with few training examples [36] or perform- 

ing domain adaptation between sites [37] . 

Despite the good relative performance, the qualitative results 

show that the proposed methodology is still limited by inaccurate 

borders, missing lesion parts and other confounding factors. Fur- 

thermore, while the found minimum lesion size maximize the de- 

sired metrics along all training images they might still filter out 

some small lesions at testing time. 

6. Conclusions 

In this work, we have presented a methodology that achieves 

state-of-the-art performance in two different stroke lesion seg- 

mentation tasks. To the best of our knowledge, the proposed 

methodology is the first to obtain competitive results in both the 

ISLES 2015 SISS and SPES sub-tasks with the same approach. We 

have achieved these results by doing both regularization of the 

training procedure and providing additional meaningful informa- 

tion for lesion segmentation. Useful features using the brain sym- 

metry could not be learned as the employed patch size is too small 

to include both hemispheres. The proposed symmetric modality 

augmentation facilitates using the similarity between hemispheres 

to improve lesion localization without using larger patches that 

would worsen class imbalance. Moreover, we have shown the big 

influence class imbalance can have in reducing distant outliers and 

false positives that provide a lower Hausdorff distance at testing 

time. By using a combined approach we achieve a less biased seg- 

mentation with a better balance between sensitivity and speci- 

ficity. 

In the clinical setting, treatment decisions for ischemic stroke 

patients need to be fast, as the ischemic brain ages the equivalent 

of 3.6 years each hour without treatment [38] , and well justified 

given the risk of complications involved in surgical interventions. 

Accurate segmentation of the lesion and/or penumbra from MR 

images can provide a fast quantitative estimate of the extent and 

location of the penumbra region, tissue that can be recovered if 

flow is restored. This estimate could be used to assess if the treat- 

ment risks outweigh the potential benefits and allow for faster and 

better informed decisions. Furthermore, these kind of lesion seg- 

mentation methods can be used to carry out correlation studies 

between lesion location and chronic disability status which would 

make this estimate even more informative in the treatment deci- 

sion context. The proposed methodology is made publicly available 

for the scientific community [39] . 
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Chapter 5

Minimizing the effect of white
matter lesions on deep learning
based tissue segmentation for
brain volumetry

In this chapter, we study the effect of WM lesions within our deep learning based
framework for tissue segmentation and propose a data generation and training
technique which learns from a reference method while embedding WM lesion
effect reduction within the model itself. Typically, to avoid the effect of WM
lesions from influencing classical brain tissue segmentation methods, the lesion
is first segmented and then inpainted with normally appearing white matter
intensities. Most works in the literature first evaluate the inpainting quality with
appearance based metrics and then proceed to evaluate if the volumes measured
by state-of-the-art tissue segmentation methods are less affected thanks to the
inpainting. In our approach, we jointly optimize the tasks of lesion inpainting
and tissue segmentation end-to-end within our deep learning system, which yields
an inpainting model which is also optimized for the downstream segmentation
task. This effectively couples both tasks and allows to obtain much lower errors
on the measured tissue volumes.
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A B S T R A C T   

Automated methods for segmentation-based brain volumetry may be confounded by the presence of white matter 
(WM) lesions, which introduce abnormal intensities that can alter the classification of not only neighboring but 
also distant brain tissue. These lesions are common in pathologies where brain volumetry is also an important 
prognostic marker, such as in multiple sclerosis (MS), and thus reducing their effects is critical for improving 
volumetric accuracy and reliability. In this work, we analyze the effect of WM lesions on deep learning based 
brain tissue segmentation methods for brain volumetry and introduce techniques to reduce the error these lesions 
produce on the measured volumes. We propose a 3D patch-based deep learning framework for brain tissue 
segmentation which is trained on the outputs of a reference classical method. To deal more robustly with 
pathological cases having WM lesions, we use a combination of small patches and a percentile-based input 
normalization. To minimize the effect of WM lesions, we also propose a multi-task double U-Net architecture 
performing end-to-end inpainting and segmentation, along with a training data generation procedure. In the 
evaluation, we first analyze the error introduced by artificial WM lesions on our framework as well as in the 
reference segmentation method without the use of lesion inpainting techniques. To the best of our knowledge, 
this is the first analysis of WM lesion effect on a deep learning based tissue segmentation approach for brain 
volumetry. The proposed framework shows a significantly smaller and more localized error introduced by WM 
lesions than the reference segmentation method, that displays much larger global differences. We also evaluated 
the proposed lesion effect minimization technique by comparing the measured volumes before and after intro-
ducing artificial WM lesions to healthy images. The proposed approach performing end-to-end inpainting and 
segmentation effectively reduces the error introduced by small and large WM lesions in the resulting volumetry, 
obtaining absolute volume differences of 0.01 ± 0.03% for GM and 0.02 ± 0.04% for WM. Increasing the ac-
curacy and reliability of automated brain volumetry methods will reduce the sample size needed to establish 
meaningful correlations in clinical studies and allow its use in individualized assessments as a diagnostic and 
prognostic marker for neurodegenerative pathologies.   

1. Introduction 

Global and regional volumetry of the brain parenchyma is a prom-
ising biomarker that can improve prognosis for multiple sclerosis (MS) 
patients (Bendfeldt et al., 2009; Lansley et al., 2013; Pérez-Miralles 
et al., 2013). Brain volume loss has been shown to be a predictor of 
disease progression and disability status in MS patients (Di Filippo et al., 
2010; Ghione et al., 2020). Moreover, the rate of brain volume loss is 
also used to evaluate the effectiveness of disease-modifying treatments 
in clinical studies as well as for individualized treatment response 

assessment (Sotirchos et al., 2020; Cortese et al., 2022). Magnetic 
resonance (MR) imaging offers a noninvasive way to perform indirect 
volume measurements on the brain parenchyma and its distinct cere-
brospinal fluid (CSF), gray matter (GM) and white matter (WM) com-
ponents. In non-uniformity corrected T1-w MR images, these tissues are 
characterized by normally distributed intensity profiles with different 
means and variances. However, a characteristic of brain scans from MS 
patients is the presence of WM lesions appearing as a fourth intensity 
distribution that intersects with the brain tissue intensities to be 
measured. The presence of WM lesions can bias the characterization of 
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normal-appearing tissue intensities and interfere with brain tissue 
quantification methods (González-Villà et al., 2017). The error that WM 
lesions introduce is highly dependent on their aspect and size (Battaglini 
et al., 2012), which change over time, introducing varying levels of error 
in images taken at different timepoints. These lesions can especially 
affect the estimation of partial volumes found in the interfaces between 
brain tissues and have been observed to produce a boundary shifting 
effect (Magon et al., 2014). Reducing the error introduced by WM le-
sions in brain tissue segmentation is critical for improving the reliability 
and accuracy of cross-sectional and longitudinal brain volumetry 
methods. 

Techniques that minimize the effect of WM lesions in brain tissue 
segmentation usually involve lesion inpainting as a preliminary step 
before segmentation. These techniques fill the lesioned voxels with in-
tensities resembling the normal-appearing WM (NAWM) of that image. 
Chard et al. (2010) proposed the use of a Gaussian mixture model to 
characterize and sample the intensity distribution of NAWM in the 
whole image to fill lesioned voxels while also emulating scanner noise 
and nonuniformity. Battaglini et al. (2012) and Magon et al. (2014) both 
proposed similar local inpainting methods for preliminary brain tissue 
segmentation to then fill the lesion voxels with intensities similar to 
those of the NAWM adjacent to the lesioned voxels. Similarly, Valverde 
et al. (2014) also used preliminary tissue segmentation to characterize 
and sample the NAWM intensity distribution but did so on a 
slice-by-slice basis. Prados et al. (2016) proposed a non-local mean 
patch-based inpainting method that can work with longitudinal data and 
for any MR modality. More recently, data-driven methods using deep 
learning have been proposed based on the use of convolutional neural 
networks (CNNs) for lesion inpainting. Armanious et al. (2019) used a 
2D conditional generative adversarial network (cGAN) to synthesize 
realistic looking intensities for a square patch removed from the input 
slice. Xiong et al. (2020) used 2D U-Net with a nonlesion attention 
module to inpaint lesioned voxels, while Zhang et al. (2020) proposed 
the use of 2D U-Net with edge priors as additional input to improve the 
inpainting quality. Manjón et al. (2020) proposed a 3D blind inpainting 
method that automatically inpaints any abnormal-looking voxels 
without requiring prior lesion segmentation, unlike the methods 
described previously that require a preliminary WM lesion mask. Tang 
et al. (2021) proposed an inpainting approach for MS lesions using dy-
namic learnable gate masks to improve the morphological and textural 
consistency of inpainted regions and reduce their effect on subsequent 
brain tissue segmentation. Most works cited above have been shown to 
improve the results for brain tissue segmentation methods by reducing 
segmentation differences between healthy and artificially lesioned 
image pairs. However, to the best of our knowledge, the recent deep 
learning-based brain tissue segmentation approaches (Rajchl et al., 
2018; Guha Roy et al., 2019; Henschel et al., 2020) have not evaluated 
the effect of WM lesions. 

In this work, we propose a 3D patch-based deep learning tissue 
segmentation framework for brain volumetry which learns from the 
outputs of a reference classical brain tissue segmentation method. In our 
approach, we improve the robustness on pathological cases having WM 
lesions by using small patches and a percentile-based input normaliza-
tion. To further minimize the effect of WM lesions, we also propose the 
use of a multi-task double U-Net architecture performing end-to-end 
inpainting and segmentation. To train the proposed method as well as 
to evaluate the WM lesion effect, we use pairs of lesioned and non-
lesioned versions of the same brain image. Since these pairs of images 
cannot be naturally obtained, artificial lesions are introduced into a set 
of scans from healthy subjects to obtain both versions of the same image. 
Our goal is to learn a segmentation model that can minimize the effect of 
WM lesions on the rest of the normal-appearing tissue in the image. 
During training, we use the artificially lesioned brain images as input 
and target the brain tissue probabilities of their originally healthy 
counterpart image as output. In this way, the system is trained to 
minimize the impact of WM lesion voxels on the segmentation of 

neighboring healthy tissue. In the proposed method, a preliminary WM 
lesion mask is used to occlude the lesioned voxels of the input patch by 
masking it with zeros. Then, a double chained U-Net architecture is 
used, where the first network inpaints the occluded lesion voxels and the 
second performs brain tissue segmentation from the inpainted patch. 
Both networks are trained end-to-end so that the inpainter network is 
also trained to aid in the segmentation task. 

We evaluate the effect of WM lesions on our deep learning frame-
work as well as on FAST (Zhang et al., 2001), the brain tissue segmen-
tation method used to generate the training targets, which is 
implemented in the FSL package of analysis tools for structural MR brain 
imaging data. In the evaluation, we quantify the tissue volume differ-
ences between healthy and artificially lesioned versions of the same 
image for each of the considered tissue segmentation methods. Without 
performing lesion inpainting, our deep learning framework already 
shows significantly smaller and more localized volume differences due 
to the presence of WM lesions than the reference method. We then 
evaluate the extent to which the lesion effect minimization techniques 
reduce the error introduced on the measured tissue volumes. The FSL 
package also provides a WM lesion inpainting method (Battaglini et al., 
2012), which is typically used along with FAST (Zhang et al., 2001). The 
FSL pipeline doing WM lesion inpainting and brain tissue segmentation 
is used as a baseline to compare against our deep learning approach. 
Additionally, we also compare against the case where we first inpaint 
the WM lesions with the FSL method and then perform the brain tissue 
segmentation with our deep learning approach. The proposed method 
doing end-to-end inpainting and tissue segmentation is faster and ob-
tains significantly lower volume differences, especially when consid-
ering larger WM lesions. Even when the FSL_inpainting method is used 
to preprocess the image, our deep learning based tissue segmentation 
model still achieves significantly lower error and better performance on 
large WM lesions than the FSL pipeline. Thanks to the use of data-driven 
techniques, we are able to learn from a reference method while mini-
mizing the WM lesion effect on the measured tissue volumes to almost 
negligible levels. The development framework is available to the 
research community at https://github.com/NIC-VICOROB/LITS. 

2. Materials 

Two different kinds of image datasets are used to train and evaluate 
the proposed method, healthy brain scans and lesioned brain scans with 
manually delineated WM lesion masks comprising small and large le-
sions from patients with multiple sclerosis (MS) and other pathologies. 
These brain images are used to generate artificially lesioned and healthy 
image pairs for training and evaluation. The location and morphology of 
artificial WM lesions introduced in the T1-w healthy images are taken 
from the WM lesion masks of lesioned brain scans, while their appear-
ance is simulated by sampling intensities between the means of GM and 
WM tissue, similar to the work of Battaglini et al. (2012). 

2.1. Healthy brain dataset 

Calgary-Campinas Public Brain MR Dataset (Souza et al., 2018). This 
dataset is composed of 359 T1-weighted brain scans from 359 healthy 
adults with an average age of 53.5 ± 7.8 years, ranging between 29 and 
80 years. Images were acquired on scanners from three vendors (GE, 
Philips, and Siemens) at two different magnetic field strengths of 1.5 T 
and 3 T, approximately 60 scans were obtained per vendor. Most scans 
in this dataset have a voxel size of 1.0 × 1.0 × 1.0 mm3 except for sixty 
scans acquired at 0.89 × 0.89 × 0.89 mm3 and another sixty acquired at 
1.33 × 1.0 × 1.0 mm3. The dataset also includes silver standard brain 
masks generated through a consensus of several state-of-the-art auto-
matic skull stripping methods. 
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2.2. Lesioned brain datasets 

MSSEG Challenge (Commowick et al., 2018). The MSSEG Challenge 
hosted at the MICCAI 2016 international conference provided a multi-
centric database for training consisting of 15 multimodal (T1-w, T1-w 
gadolinium, T2-w, FLAIR and PD) MR images obtained from MS pa-
tients with an average lesion load of 20.8 ± 19.9 ml. Images were ac-
quired on three different scanners at different voxel sizes: five images 
from a Philips Ingenia 3 T scanner at 0.7 × 0.74 × 0.74 mm3, five images 
from a Siemens Verio 3 T scanner at 1.1 × 0.5 × 0.5 mm3 and the 
remaining five images from a Siemens Aera 1.5 T scanner at 1.25 × 1.03 
× 1.03 mm3. The MR images were rigidly coregistered to the FLAIR scan, 
which was manually annotated by 7 independent experts, and a 
consensus gold standard WM lesion segmentation approach was built. 

ISBI 2015 Longitudinal MS Lesion Segmentation Challenge (Carass et al., 
2017). This challenge provided a multimodal (T1-w, T2-w, FLAIR and 
PD) training dataset with 21 longitudinal scans from five MS patients 
with an average lesion load of 11.6 ± 10.5 ml. Images were acquired on 
a 3 T MRI Philips scanner with a voxel size of 0.82 × 0.82 × 1.17 mm3. 
Manual delineations were made by two experts identifying and seg-
menting white matter lesions on the MR images. The MR images from 
each subject as well as the expert WM lesion delineations were rigidly 
coregistered to the T1-w scan. 

WMH Challenge 2017 (Kuijf et al., 2019). The training set provided 
60 sets of brain MR images (3D T1 and 2D multislice FLAIR) from 60 
subjects of two memory clinics showing cognitive impairment of pre-
sumed vascular origin with an average lesion load of 17.5 ± 17.1 ml. 
Images were taken with five different 3 T MR scanners from three 
different vendors (Siemens, Philips and GE) with voxel sizes of 1.0 × 1.0 
× 1.0 mm3 and 0.94 × 0.94 × 1.0 mm3. The FLAIR scans from each 
subject were resampled and coregistered to the 3D T1 scan via an affine 
transform. The provided gold standard was made with manual annota-
tions of white matter hyperintensities (WMHs) made by experts in 
accordance with the STandards for ReportIng Vascular changes on 
nEuroimaging (STRIVE) criteria (Wardlaw et al., 2013). 

2.3. Preprocessing 

In the image preprocessing stage, we generate the healthy and 
lesioned image pairs that are used for training and evaluation. The 
location and morphology of artificial WM lesions are obtained from WM 
lesion masks of the three lesioned brain datasets that are registered to 
the healthy dataset scans. In practice, all the available WM lesion masks 
from lesioned datasets are registered to each of the T1-w healthy images, 
allowing the generation of several artificially lesioned scans from a 
single healthy scan. The registered WM masks are then used to generate 
artificial lesions in the healthy T1-w brain scans with the intensities 
located within the GM/WM interface. The preprocessing steps are 
explained in detail in the following sections. 

2.3.1. Skull-stripping 
The healthy scans belonging to the Calgary–Campinas dataset im-

ages need to be skull-stripped before segmenting with FAST to consider 
only the intensities corresponding to the intracraneal cavity. For this, we 
use the provided silver brain masks, which are applied to generate the 
skull-stripped images. For the lesioned brain datasets, two of them 
(MICCAI 2016 MS lesion segmentation challenge and ISBI 2015 Longi-
tudinal MS Lesion Segmentation Challenge) were already skull-stripped, 
while the WMH Challenge 2017 dataset is processed using ROBEX 
(Iglesias et al., 2011) on the T1-w images. 

2.3.2. Lesion mask registration 
In this step, all the available lesioned scans are linearly registered to 

each of the healthy images, obtaining several artificial WM lesion mask 
instances in the space of each healthy scan. This process is performed 
independently for the training and evaluation image sets. To avoid 

performing a large number of registrations, we first register all the 
healthy and lesioned images to a common space and then combine these 
transforms to obtain the desired transforms. Linear affine registration is 
performed with the skull-stripped T1-w images from both healthy and 
pathological datasets to the MNI ICBM 152 nonlinear 6th Generation 
Symmetric Average Brain template using FSL FLIRT (Jenkinson and 
Smith, 2001; Jenkinson et al., 2002) with default parameters. This re-
sults in a linear transform matrix T(I,MNI) for each image I, which can 
also be inverted to obtain T(MNI,I). Then, for any pair of healthy H and 
lesioned L images, we can compute T(L,H) using the previously 
computed transforms to the MNI as follows: 

T(L,H) = T(L,MNI) ∘ T(MNI,H) (1) 

T(L,H) is computed for each lesioned and healthy control image pair 
and then applied to the binary WM lesion mask using nearest neighbor 
interpolation. Finally, we ensure that the registered lesions are intro-
duced only to the WM of healthy images. For this, we use FAST (Zhang 
et al., 2001) to obtain a binary WM mask for each healthy image and 
keep only the voxels from registered lesion masks that are also classified 
as WM in the healthy image. 

2.3.3. Artificial WM lesions 
The registered WM lesion masks are then used to generate several 

artificially lesioned images from each healthy image. The artificial 
lesion intensities are filled as in the work of Battaglini et al (Battaglini 
et al., 2012)., which presented and evaluated the lesion inpainting 
method we use as a baseline. In their approach, a preliminary FAST 
(Zhang et al., 2001) tissue segmentation is used to estimate the mean 
intensities of GM and WM and is then used to generate the intensity 
distribution for artificial lesions. These are then filled with intensities 
between the normally appearing GM and WM, with a mean equal to the 
average of the GM and WM means and a standard deviation equal to a 
fourth of the interval between the GM and WM means (Battaglini et al., 
2012). 

During training and inference of the proposed methodology, the 
artificial lesion intensities are effectively ignored as they are occluded by 
filling them with zeros. Hence, the intensities of artificial lesions are 
only useful for evaluating the WM lesion effect of tissue segmentation 
methods when no inpainting is used. 

3. Methods 

The proposed deep learning brain tissue segmentation framework 
consists of a 3D patch-based approach which learns from the outputs of 
FAST (Zhang et al., 2001), an automatic brain tissue segmentation 
method implemented in the FSL package. The backbone of our frame-
work consists of a 3D network, depicted in Fig. 1, which is derived from 
the U-Net architecture (Ronneberger et al., 2015) and uses residual 
convolution blocks and skip connections. The convolutional layers use 3 
× 3 × 3 kernels and are always preceded, except for the input and output 
nodes, by a batch normalization (BN) layer (Ioffe and Szegedy, 2015) 
and a parametric rectified linear unit (PReLu) activation (Nair and 
Hinton, 2010). The parameter distribution of the model is asymmetrical 
with respect to the residual blocks of the encoder using two convolu-
tional layers, while a single layer is used in the decoder. The network has 
4 resolution levels where the feature maps are downsampled by 2 × 2 ×
2 in each level of the encoder and upsampled by the same factor in the 
decoder. Downsampling is performed by concatenating the result of a 
max pooling operation and strided convolution as proposed by Szegedy 
et al (Szegedy et al., 2016)., while upsampling is performed with a 
transposed convolution that learns the upsampling operator for each 
feature map. 

Within our patch-based deep learning framework, the introduction 
of a WM lesion in a healthy brain scan produces segmentation differ-
ences at both global and local levels. Global differences appear when the 
modification of a small part of the input has an effect on the output 
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segmentation of the whole image. On the other hand, local differences 
are those where only the altered region and its neighborhood are 
affected. The main source of global segmentation differences in the 
proposed method is caused by input normalization which is applied to 
the T1-w scan. Input normalization is a technique used to homogenize 
the range and statistics of neural network inputs so that the variation is 
reduced and the model can be more finely tuned to the expected input 
values. Since our aim is to correctly segment the healthy tissue regard-
less of any intensity changes caused by the development and evolution 
of WM lesions, we want an input normalization procedure that is 
invariant to these appearance changes. Due to the combinatorial nature 
of neural networks, small perturbations in the input values can cause 
large output differences; thus, a small shift in the normalization pa-
rameters could have a measurable effect on the segmented tissue vol-
umes. To minimize this, we propose the use of a minmax input 
normalization operation for T1-w MR images that maps intensities be-
tween the 0.05% and 99.95% percentiles to the [− 1,1] interval and then 
clamps to that same interval to clip any outliers within the desired range. 
This kind of normalization has much less variability between the healthy 
and artificially lesioned images than other tested techniques, such as z 
score normalization (zero mean and unit standard deviation) or in-
tensity rescaling to the 0–1 range. Local segmentation differences due to 
the appearance of WM lesions are introduced not only to the lesioned 
voxels and their neighborhood but also to the whole patch where a 
lesioned voxel appears. Within the proposed patch-based approach, the 
introduction of artificial lesions in part of a patch will affect the output 
probabilities of the whole patch. During inference, the input image is 
sliced into patches to be segmented and then recombined for whole 
image segmentation. A larger patch size means that a larger proportion 
of patches contain lesioned voxels which introduce segmentation dif-
ferences further from the lesioned voxels. Consequently, patch size is an 
important parameter for mitigating the local effect of WM lesions in 
patch-based brain tissue segmentation. To select the patch size, we 
empirically tested 5 isotropic patch sizes between 8 × 8 × 8 and 
40 × 40 × 40. The best compromise between tissue segmentation per-
formance and reducing the aforementioned differences is achieved by 
using a patch size of 16 × 16 × 16. 

To minimize the WM lesion effect within the proposed deep learning 
segmentation framework, we propose a multi-task double U-Net 

architecture, depicted in Fig. 2, where the first network performs 
inpainting and the second network segments the brain tissues. The aim is 
to obtain a segmentation model that can minimize the effect that a WM 
lesion has on its healthy neighborhood so that it can be correctly 
segmented despite the adjacent abnormal intensities. The proposed 
method takes a skull-stripped brain scan along with its binary WM lesion 
segmentation and outputs a probability distribution of brain tissue (CSF, 
GM and WM) for each input voxel. The lesioned area is occluded with 
zero-valued voxels before input to the network. First, the inpainter 
network inpaints any occluded lesion voxels in the input patch and tries 
to reconstruct the originally healthy intensities. The inpainted patch is 
then masked before tissue segmentation, keeping only the inpainted 
voxels from the first network and taking the original intensities for the 
rest of nonlesioned voxels. Finally, the second U-Net performs brain 
tissue segmentation from the inpainted masked patch and outputs a 
brain tissue probability distribution for each input voxel. During 
training, we input artificially lesioned images and target the tissue 
segmentation of the originally healthy image as output both networks 
are trained simultaneously in an end-to-end manner to allow the seg-
mentation loss gradients from the second model to also backpropagate 
through the inpainter. This regularizes the inpainter toward inpainting 
in a way that should also help the tissue segmenter to more accurately 
approximate the healthy tissue probabilities. In this way, the goal of the 
inpainter is not to faithfully and accurately approximate the healthy T1 
intensities, but rather, we want the tissue segmentation model to better 
approximate the healthy tissue probabilities regardless of any occluded 
zero-valued regions. 

In the double chained U-Net configuration, the input of the first U- 
Net is a T1-w patch with WM lesions occluded and the binary WM lesion 
mask. The output of the inpainter is activated by a hyperbolic tangent 
function (tanh) to map the range of output intensities within the same 
[− 1,1] interval of input normalization. The input of the second network, 
the segmenter U-Net, is an inpainted T1-w patch and its output is acti-
vated using the Softmax function to obtain a tissue probability distri-
bution for each input voxel. 

3.1. Training 

The double U-Net system is trained end-to-end using both the healthy 

Fig. 1. Diagram of the U-Net derived model used as the backbone of our deep learning brain tissue segmentation framework. The network consists of a 3D U-Net 
model using residual convolution blocks and skip connections. The parameter distribution is asymmetrical, with the residual blocks of the encoder using two 
convolutional blocks while a single block is used in the decoder. In the convolutional layers (Conv), Kx Ky Kz@[Sx,Sy,Sz] indicates the kernel and stride dimensions in 
each axis. The gray boxes represent the feature maps with the number of channels indicated above or under it. The numbers of input and output feature maps are 
denoted I and O, respectively. 
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and artificially lesioned images as inputs, targeting the healthy image 
tissue probabilities as output in both cases. For the artificially lesioned 
images, the parameters for input normalization are computed only from 
the nonlesioned brain voxels. To train the proposed patch-based 
method, we first generate patch training and validation sets. From the 
training image set, we use 90% of the subjects to build the training patch 
set and the remaining 10% for the validation patch set. In total, we 
extract 1 million patches, 900,000 for training and 100,000 for valida-
tion. These patches are extracted centered on a set of voxels sampled 
using a deliberate strategy to balance the representation of segmentation 
classes as well as the representation of patches with and without lesions 
half of the patches are extracted evenly from the healthy images without 
artificial lesions. For each image, the patch centers are sampled using a 
preliminary FAST (Zhang et al., 2001) tissue segmentation as a guide to 
obtain 10% centered on the background class and 30% each from the 
CSF, GM and WM classes. The other half are taken evenly from all the 
available artificially lesioned images, centered on occluded artificially 
lesioned voxels. A random 3D offset of up to half the patch size is applied 
to the healthy and lesion sampled centers to increase the representation 
of boundaries. The model is then trained end-to-end using the Adadelta 
optimizer (Zeiler, 2012) with a learning rate of 0.2 and a batch size of 32 
patches. To prevent overfitting, early stopping is performed when the 
loss on the validation set does not improve for 8 consecutive epochs. The 
loss function used for training and validation is composed of a recon-
struction loss, used to train the inpainter, and a segmentation loss that is 
used to train both the tissue segmenter and inpainter networks. The 
reconstruction loss uses the mean squared error (MSE) between the 
original healthy patch and the patch reconstructed by the inpainter. For 
the segmentation loss, we use a version of the crossentropy loss using 
probabilistic targets, the probabilistic crossentropy (PCE) loss. Given an 
output voxel classification y over C classes and a target probability 
distribution t, the PCE loss is defined as follows: 

PCE(y, t) =
∑C

i=1
− yi⋅ti⋅ln

(
∑C

j=1
exp
(
yj
)
)

(2) 

By using probabilities as targets instead of categorical labels, we 
encourage output segmentation that approximates the partial volume 
probabilities between tissues instead of trying to maximize the proba-
bility of the most likely tissue class. Finally, the loss function L is defined 
as follows: 

L( ÎL , ŜL , IH , SH) = MSE(ÎL , IH)+PCE(ŜL , SH) (3) 

where ÎL is the patch reconstructed by the inpainter, ŜL is the tissue 
probability predicted from the inpainted masked patch and IH and SH are 
the originally healthy image intensities and brain tissue probabilities, 
respectively. 

3.2. Inference 

Once the network weights are trained, inference is performed from 
the T1-w MR image and its WM lesion mask by extracting overlapping 
patches sampled uniformly with a step size of 5 × 5 × 5 and the same 
patch size of 16 × 16 × 16 used during training. Performing inference 
on highly overlapping patches helps reduce block boundary artifacts and 
improve the spatial coherence of the output probabilities. These patches 
are then passed through the trained network, obtaining a probability 
distribution of brain tissue type for each voxel in each input patch. The 
probability distributions of overlapping patches are then combined 
through averaging into a common output segmentation space. Finally, 
the output is normalized to ensure that the tissue probability distribu-
tions of each voxel add up to one. 

3.3. Implementation details 

The proposed method is implemented with Python, using the Torch 
scientific computing framework (Paszke et al., 2017). All experiments 
are done on a GNU/Linux machine running Ubuntu 18.04 with 128 GB 
of RAM memory and an Intel® Core ™ i7–7800X CPU. Network training 
and inference are performed with an NVIDIA 1080 Ti GPU (NVIDIA 
Corp., United States) with 12 GB of G5X memory. Within our method, 
each U-Net model has approximately 7.03 million trainable parameters, 
which add up to a total of 14.06 million in the multi-task double U-Net 
configuration. In our system, the total training time of the proposed 
method is 22.25 h with an average inference time of 55 s per image in all 
tests performed. The development framework is available to the 
research community at https://github.com/NIC-VICOROB/LITS. 

4. Evaluation and results 

In this section, we evaluate the segmentation performance of the 
proposed methodology as well as the influence of WM lesions with and 
without lesion effect minimization. First, the healthy and pathological 
datasets are randomly split into a training and validation image set to 
train the proposed methodology and a testing set exclusively used for 
evaluation of the reported experimental results. From the Calgar-
y–Campinas dataset, 45 scans are used for testing, 15 from each scanner, 
and the remaining 312 are used for training. The 15 WM lesion masks of 
the MSSEG Challenge dataset are split into 12 for training and 3 for 
testing. From the ISBI 2015 Longitudinal MS Lesion Segmentation 
Challenge dataset, 13 WM lesion masks are taken from 3 subjects for 
training and 8 masks are taken from the other 2 subjects for testing. 
Finally, we split the WMH Challenge 2017 dataset into 54 masks for 
training and 6 for testing. In total, the training set contains 312 healthy 
brain scans, each with 79 registered WM lesion masks, which amounts to 
24,648 healthy and artificially lesioned training image pairs. The testing 

Fig. 2. Overview of the proposed patch-based double chained 3D U-Net architecture performing end-to-end inpainting and brain tissue segmentation. The binary 
WM lesion mask is used to occlude the lesion from the input patch with zero-valued voxels and is also input to the inpainter. Inpainted masking takes the inpainter 
output only for lesioned voxels and uses the original intensities for the rest of nonlesioned voxels. The tissue segmenter receives the inpainted masked patch and 
outputs a probability distribution among the background, CSF, GM and WM classes. 
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set is composed of 45 healthy brain scans, each with 17 registered WM 
lesion masks, making a total of 720 healthy and artificially lesioned 
testing image pairs. In this way, we ensure that none of the healthy T1-w 
images or registered lesion masks used during training are used for the 
evaluation. 

To quantitatively evaluate the segmentation differences between 
healthy and artificially lesioned images, we use the absolute volume 
difference metric defined in Eq. (4), which is computed separately for 
the volumes of segmented GM and WM tissues. 

Abs. volume difference (%) = 100⋅
⃒
⃒Vlesioned − Vhealthy

⃒
⃒

Vhealthy
(4) 

Within the proposed methodology, we also evaluate the differences 
that WM lesions introduce at local and global scales. In the proposed 
patch-based method, the introduction of artificially lesioned voxels has a 
local effect by altering the output probabilities of the whole patch in 
which they appear. At the global level, the artificially lesioned voxels 
can alter the input normalization parameters and shift the input values 
for the whole image, which leads to global output segmentation differ-
ences. To evaluate these two effects separately, we also compute the 
evaluation metrics in two regions of interest (ROIs) related to the lesion 
neighborhood and patch size. To study the WM lesion effect at a local 
scale, we define the within lesion neighborhood ROI as all the voxels that 
might appear along the artificial WM lesion in an input patch. More 
specifically, we include all normally appearing tissue within a patch side 
length, 16 voxels, of an artificially lesioned voxel in any of the three 
dimensions. To study the global WM lesion effect, we define the outside 
lesion neighborhood ROI that encompasses all normally appearing voxels 
at a distance of a patch side length, 16 voxels, or more from an artifi-
cially lesioned voxel in all three dimensions. 

To assess the statistical significance of differences between the seg-
mentation differences of the baseline and proposed approaches we 
consider the paired t-test for related samples. 

4.1. Tissue segmentation 

We evaluate the learned tissue segmentation model of the proposed 
approach by comparing it to FAST (Zhang et al., 2001), the reference 
method used during training. For this, we segment the 45 testing set 
images of the healthy dataset without artificially added lesions and 
compute the Dice similarity coefficient (DSC) with respect to the refer-
ence segmentations for the same images. The proposed approach obtains 
a DSC of 94.6 ± 2.5% in whole brain tissue (CSF + GM + WM) seg-
mentation and a DSC of 99.0 ± 0.1% in parenchyma (GM + WM) seg-
mentation. When individual tissues are considered, the DSCs are 94.6 

± 3.4% and 96.9 ± 1.6% for the GM and WM classes respectively. These 
results are in line with those of similar deep learning methods also using 
FAST segmentations as training targets (Rajchl et al., 2018). 

Fig. 3 shows qualitative results of segmentation from FAST and the 
proposed approach as well as the differences between them, which are 
mainly located within tissue interfaces and in the brain mask edges the 
large segmentation differences located in the outer brain border appear 
because FAST assumes every nonzero voxel within the given brain mask 
has to be segmented as one of the tissues, which in this case is CSF. In 
contrast, the proposed approach does not make this assumption and 
mostly classifies voxels in the outer brain border as background instead 
of CSF. Although the interfaces between tissues with a strong partial 
volume effect are also a source of segmentation differences, Fig. 3d 
shows that the changes in classified tissues are due to quite small 
probability shifts that bias the most likely tissue class one way or the 
other. The probability differences are larger in the interfaces between 
WM and CSF, such as the ventricle border and, especially, in its lower 
left part. In these regions, the partial volumes between GM and CSF take 
an intensity value similar to that of the GM class and are mostly classi-
fied by FAST as GM, while the proposed deep learning approach tends to 
classify them as mostly WM. 

4.2. Lesion effect 

We evaluate the effect of WM lesions on tissue segmentation when no 
WM lesion effect minimization techniques are used. For this, we segment 
the healthy and artificially lesioned testing image pairs and compute the 
volume differences between each pair for GM and WM tissues. In this 
experiment, the inpainting network of the proposed method is essen-
tially turned off, as empty WM masks are used for inference and artificial 
lesions are not occluded in the input images. We also evaluate the WM 
lesion effect on the FAST (Zhang et al., 2001) tissue segmentation 
method from the FSL package. Table 1 shows the absolute volume dif-
ferences of GM and WM volumes for FAST and our deep learning seg-
mentation method without inpainting. Overall, the proposed method is 
significantly less influenced by the presence of WM lesions at both local 
and global scales than FAST (p < 0.01). The proposed segmentation 
method shows an almost exclusively local influence, as nearly all the 
differences are located within the lesion neighborhood ROI. In contrast, 
the FAST segmentation method has a mostly global lesion influence, 
with high volume differences both within and outside the lesion 
neighborhood ROI. 

Fig. 4 shows the tissue probability differences from a representative 
example of the lesion effect experiment for both tissue segmentation 
methods. In both cases, artificially lesioned voxels display large 

Fig. 3. Comparison of segmentation results of FAST (b) and the proposed approach (c). (d) Absolute probability differences of voxels changing their most likely tissue 
class overlaid with a yellow to red colormap, where yellow corresponds to a difference of 0.02 and red corresponds to a difference of 1.0 or higher in the voxelwise 
sum of absolute probability differences. Differences between both methods are mainly located within tissue interfaces and in the outer brain border. 
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probability shifts caused by their newer darker intensities. The effect is 
not limited to these voxels and spreads to their neighborhood and even 
to the rest of the image. The FAST tissue segmentation method shows a 
large number of sparse small and medium probability differences mainly 
located in the interfaces between GM and WM tissue throughout the 
whole image. In contrast, the proposed patch-based deep learning 
approach displays groups of small probability shifts located around the 
artificially lesioned voxels and nearby structures. The differences are 
exclusively located in the within lesion neighborhood ROI, with no dif-
ferences in the rest of the image. In contrast, the segmentation differ-
ences of FAST appearing within the whole image add up to a larger 
volume shift. 

4.3. Lesion effect minimization 

In this experiment, we evaluate how well the WM lesion effect 
minimization techniques reduce the GM and WM volume differences 
between segmentations of healthy and artificially lesioned images. In 

Table 1 
Abs. volume differences (%) of the GM and WM of the healthy and artificially 
lesioned testing image pairs. The absolute volume differences of the proposed 
approach are all significantly lower (p < 0.01) than those of the baseline FAST 
method.   

FAST Proposed (without inpainting) 

Tissue mean ± std median mean ± std median 

(i) Whole brain 
GM 0.89 ± 1.14 0.27 0.07 ± 0.09 0.05 
WM 1.22 ± 1.58 0.35 0.10 ± 0.11 0.07 
(ii) Within lesion neighborhood 
GM 0.96 ± 1.23 0.34 0.13 ± 0.11 0.10 
WM 1.10 ± 1.50 0.26 0.13 ± 0.13 0.11 
(iii) Outside lesion neighborhood 
GM 0.70 ± 0.89 0.24 0.01 ± 0.03 0.00 
WM 1.91 ± 2.66 0.54 0.01 ± 0.06 0.00  

Fig. 4. Representative example of the absolute segmentation differences between healthy and artificially lesioned brain tissue segmentations without WM lesion 
effect minimization. Columns 4a and 4b show three axial slices from the healthy and artificially lesioned images that were segmented. In 4c, the artificial lesion mask 
is shown in white, the within lesion neighborhood ROI is shown in green and the outside lesion neighborhood ROI is shown in blue. In 4d and 4e, the absolute probability 
differences are shown overlaid in a yellow to red colormap, where yellow corresponds to a difference of 0.02 and red corresponds to a 1.0 or greater difference in the 
voxelwise sum of both GM and WM absolute probability differences. While the proposed approach shows large clusters of small differences close to the artificially 
lesioned voxels, FAST is affected by a larger number of sparsely distributed differences over the whole image which, overall, add up to a larger shift in measured 
tissue volumes. 
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the proposed approach, we perform end-to-end inpainting and seg-
mentation by occluding the artificial lesions with zero-valued voxels and 
providing the WM lesion mask as an additional input to our network. As 
a baseline comparison, we evaluate the WM lesion inpainting algorithm 
(FSL_inpainting) provided in the FSL package (Battaglini et al., 2012) to 
fill the lesion intensities before segmenting the brain tissues with FAST 
(Zhang et al., 2001). We also evaluate the use of FSL_inpainting to 
inpaint the WM lesions prior to performing brain tissue segmentation 
with our deep learning model which, in this case, is provided with empty 
WM lesion masks to avoid using the inpainter network. 

The absolute volume differences of the segmentations of healthy and 
artificially lesioned versions of the same image are summarized in  
Table 2. Compared with the results in Table 1, the use of FSL_inpainting 
and our proposed method significantly reduce the volume differences 
for all methods (p < 0.01). Compared with the FSL_inpainting + FAST 
pipeline, the FSL_inpainting + Proposed method obtains significantly 
lower volume differences in all the considered ROIs (p < 0.001). This 
shows that the proposed deep learn- ing brain tissue segmentation 
framework is more robust to the error introduced by WM lesions even 
when using classical inpainting methods. Compared with FSL_inpainting 
+ FAST, the proposed approach obtains significantly lower volume 
differences in all ROIs (p < 0.001). However, when comparing with the 
FSL_inpainting + Proposed approach, the proposed method obtains 
significantly lower Whole brain and within lesion neighborhood volume 
differences (p < 0.001), but significantly higher outside lesion neighbor- 
hood differences (p < 0.01). In this case, the input normalization pa-
rameters are much less affected by the intensities inpainted by FSL_in-
painting than by the zeroes that are used to occlude those same voxels 
within the proposed approach. The outside lesion neighborhood ROI dif-
ferences of the proposed approach increase significantly compared to 
those without performing inpainting in Table 1 (p < 10− 8). This is due to 
the occlusion with zeroes that we perform to the artificially lesioned 
voxels in the proposed approach, which slightly change the value of 
input normalization parameters and increase the segmentation differ-
ences for the whole image. 

Fig. 5 shows the correlation between the artificial lesion volume and 
absolute GM and WM volume differences for the evaluated methods. 
Larger lesion loads tend to increase the segmentation differences for all 
methods, however, the ones using our deep learning based brain tissue 

segmentation model show a much lower error when larger lesion vol-
umes are considered. This shows that the poor performance of the FSL 
pipeline on big lesions is not related to FSL_inpainting, since the pro-
posed deep learning based tissue segmentation framework also takes in 
images preprocessed with FSL_inpainting and performs much better on 
larger lesion loads. 

In terms of execution time, a brain tissue segmentation done with 
FAST within our system takes an average of 3.25 min per scan, while the 
FSL_inpainting part takes less than a second to complete. In total, the FSL 
pipeline doing WM lesion inpainting and tissue segmentation takes 
7 min to process a scan since it requires two separate FAST executions, 
one to obtain the white matter segmentation mask required by FSL_in-
painting and another to obtain the actual brain tissue segmentation from 
the inpainted image. In contrast, the proposed method doing end-to-end 
inpainting and tissue segmentation takes an average of 1 min to process 
a single scan. 

5. Discussion 

In this work, we focused on deep learning methods for brain tissue 
segmentation and performed the first study on the effect of WM lesions 
in this kind of approaches. We have proposed a deep learning based 
framework for brain volumetry which learns from a reference classical 
method and incorporates techniques to deal better with pathological 
cases having WM lesions. We have also proposed a multi-task double U- 
Net architecture, along with a training data generation procedure, to 
embed the WM lesion effect reduction within the brain tissue segmen-
tation method itself. In our approach, instead of performing lesion 
inpainting in a previous separate step, we perform end-to-end WM lesion 
inpainting and brain tissue segmentation. By jointly optimizing both 
tasks, the inpainter is also trained to aid in the segmentation task 
through the gradient updates coming from the segmentation loss. In this 
sense, the actual quality or accuracy of inpainting in our framework is 
not important as long as the output segmentation more faithfully ap-
proximates the healthy tissue probabilities. 

Without any kind of lesion inpainting, the tissue volumes provided 
by the proposed deep learning based framework are much less affected 
by the presence of WM lesions compared to the reference method used 
for training. Since the introduced artificial lesions affect the tissue 
probabilities of the patches where they appear, the use of a small patch 
size constrains the local effect to a smaller area around the lesion. 
Artificial lesions also change the estimated input normalization pa-
rameters which are calculated using all the image intensities. However, 
the proposed input normalization based on image percentiles is quite 
robust against these intensity changes and avoids any global segmen-
tation differences in most cases. In comparison, FAST is affected by a 
larger number of sparse segmentation differences spread out over the 
whole image which, overall, add up to a larger shift in measured tissue 
volumes. This is most likely due to the initial k-means clustering step 
that FAST performs over the entire image to estimate the mean intensity 
of each tissue, which is later used during the estimation of partial vol-
ume probabilities. The introduction of artificial lesions biases the esti-
mated mean intensity of each tissue which in turn biases the estimation 
of partial volume distributions, producing the observed segmentation 
differences in the interfaces between tissues. 

In terms of WM lesion effect minimization, both the FSL_inpainting 
and our proposed approach significantly reduce their effect on the 
measured tissue volumes. However, we obtain significantly lower vol-
ume differences than the baseline FSL pipeline, especially when 
considering larger lesion loads. The results in Fig. 5 show that our deep 
learning tissue segmentation framework provides significant improve-
ment even when using FSL_inpainting to preprocess the images. 
Furthermore, our proposed deep learning framework is faster, taking 
just under a minute to segment a whole brain scan while the baseline FSL 
pipeline takes an average of 7 min. 

The main limitation of this study is that we cannot assess or evaluate 

Table 2 
Abs. volume differences (%) of the GM and WM of the segmentations of healthy 
and artificially lesioned testing image pairs when using lesion effect minimiza-
tion techniques. Compared with the FSL inpainting + FAST method, both the 
Proposed and FSL_inpainting + Proposed approaches obtain significantly lower 
volume differences in all ROIs than the FSL_inpainting + FAST pipeline 
(p < 0.001). When comparing with the FSL_inpainting + Proposed approach, the 
proposed method obtains significantly lower whole brain and within lesion 
neighborhood volume differences (p < 0.01).   

FSL_inpainting +
FAST 

FSL_inpainting +
Proposed 

Proposed 

Tissue mean 
± std 

median mean 
± std 

median mean 
± std 

median 

(i) Whole brain 
GM 0.05 

± 0.09 
0.014 0.02 

± 0.03 
0.009 0.01 

± 0.03 
0.004 

WM 0.08 
± 0.14 

0.020 0.03 
± 0.04 

0.012 0.02 
± 0.04 

0.005 

(ii) Within lesion neighborhood 
GM 0.06 

± 0.10 
0.019 0.04 

± 0.04 
0.021 0.02 

± 0.03 
0.008 

WM 0.08 
± 0.14 

0.018 0.04 
± 0.04 

0.020 0.02 
± 0.03 

0.007 

(iii) Outside lesion neighborhood 
GM 0.04 

± 0.07 
0.011 0.01 

± 0.02 
0.000 0.01 

± 0.03 
0.000 

WM 0.13 
± 0.23 

0.032 0.01 
± 0.04 

0.000 0.03 
± 0.07 

0.000  
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the accuracy and precision of the learned tissue segmentation model and 
its lesion effect minimization performance on real WM lesions. Due to 
the way in which the proposed approach is trained, this requires a large 
database of MR images with manually annotated brain tissue and WM 
lesions of both healthy and pathological subjects. However, there is no 
such database, and our evaluation has therefore been limited to relative 
comparisons with FAST as the gold standard on artificially lesioned 
images. In this sense, our approach presents a lower WM lesion effect 
with and without inpainting with a Dice similarity coefficient of 94.6 
± 2.5% relative to FAST brain tissue segmentations. Unlike supervised 
learning methods using manually annotated segmentations for training, 
a higher DSC compared to that of the FAST segmentation is not indic-
ative of better quality or accuracy, just of higher similarity. Unlike FAST, 
deep learning methods suffer from the domain adaptation issue where 
their performance is not guaranteed outside of the image domains used 
during training. In this sense, a different MR scanner or acquisition 
protocol than those used during training would likely lead to a decreased 
segmentation performance. In such cases, training a model from scratch 
on the target image domain only requires a set of healthy MR images 
from that domain to which WM lesion masks from publicly accessible 
pathological scans can be registered to train the proposed method. 
Another option is to use domain adaptation techniques that fine-tune 
pretrained network weights to optimize the model for the target domain. 

In the proposed method, accurate WM lesion segmentation is 
required to obtain optimal results, and over or undersegmentation of the 
WM lesion would still introduce volume errors in the output segmen-
tation. This could be an issue since manual lesion delineation or auto-
mated lesion segmentation is often performed on FLAIR MR images, 
while brain tissue volumetry is usually performed on T1-w MR images 
(Rovira et al., 2015). In this case, the FLAIR lesion segmentation mask is 
usually registered to the T1 image and might not encompass all abnor-
mally appearing voxels in the target modality image. In the case of 
oversegmentation, the method can deal just as well with the inpainting 
and segmentation of larger occluded areas as long as they are to be 
segmented as WM. Due to the way the method was trained, any occluded 

voxel is assumed to be WM in its majority and will be segmented as such. 
If the WM lesion is undersegmented, the lesioned voxels are not 
inpainted, which introduces errors in neighboring tissue segmentation. 
However, the experimental results without inpainting show that the 
effect is still be smaller than that of FAST and confined to the under-
segmented lesioned voxels neighborhood. 

6. Conclusions 

In this work, we focus on deep learning based tissue segmentation 
methods for brain volumetry and studied the error introduced by WM 
lesions. We have proposed a deep learning framework for brain tissue 
segmentation which is much less affected by WM lesions than the 
reference method used to train thanks to the use of small patches and a 
percentile-based input normalization. We have also proposed a multi-
task double U-Net architecture, along with a training data generation 
procedure, which performs lesion inpainting and tissue segmentation in 
an end-to-end manner and can reduce the WM lesion effect to almost 
negligible levels. Reducing the effect of WM lesions is critical for accu-
rate and reliable cross-sectional volumetry or longitudinal brain atrophy 
quantification. Typically, state-of-the-art atrophy quantification ap-
proaches are based either on boundary shift integration (Smith et al., 
2002) or Jacobian integration (Boyes et al., 2006), both of which rely on 
prior accurate segmentation of brain tissue which needs to be robust 
against the influence of WM lesions. Automated brain volumetry 
methods are currently only used to evaluate the efficacy of experimental 
therapies and to correlate with treatment outcomes in clinical studies. 
Improving their accuracy would either strengthen the statistical signif-
icance of correlations or reduce the sample sizes needed to establish 
them. In routine clinical practice, the use of brain volumetry methods is 
discouraged for prognosis, such as assessing patient progression in MS 
(Rovira et al., 2015). These methods are unreliable when applied to a 
single subject instead of a large population due to the inherent technical 
issues and other confounding factors that severely affect brain volu-
metry methods. Improving the accuracy and reducing the error from 

Fig. 5. Correlation of artificial lesion volume and the absolute volume differences (%) of the GM and WM of healthy and artificially lesioned images when using 
lesion inpainting. 
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confounding factors such as WM lesions is critical to unlock brain 
volumetry as an imaging marker for the prognosis of patients with 
neurodegenerative diseases. In this sense, the proposed deep learning 
methodology is significantly less affected by WM lesions and can mini-
mize the error they introduce in the measured tissue volumes. 
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Santos, M.M., Santos, W.P., Silva-Filho, A.G., Tomas-Fernandez, X., Urien, H., 
Bloch, I., Valverde, S., Cabezas, M., Vera-Olmos, F.J., Malpica, N., Guttmann, C., 
Vukusic, S., Edan, G., Dojat, M., Styner, M., Warfield, S.K., Cotton, F., Barillot, C., 
2018. Objective evaluation of multiple sclerosis lesion segmentation using a data 
management and processing infrastructure. Sci. Rep. 8, 13650. 

Cortese, R., Battaglini, M., Sormani, M.P., Luchetti, L., Gentile, G., Inderyas, M., 
Alexandri, N., De Stefano, N., 2022. Reduction in grey matter atrophy in patients 
with relapsing multiple sclerosis following treatment with cladribine tablets. Eur. J. 
Neurol. 

Di Filippo, M., Anderson, V.M., Altmann, D.R., Swanton, J.K., Plant, G.T., Thompson, A. 
J., Miller, D.H., 2010. Brain atrophy and lesion load measures over 1 year relate to 
clinical status after 6 years in patients with clinically isolated syndromes. J. Neurol. 
Neurosurg. Psychiatry 81, 204–208. 

Ghione, E., Bergsland, N., Dwyer, M., Hagemeier, J., Jakimovski, D., Ramasamy, D., 
Hojnacki, D., Lizarraga, A., Kolb, C., Eckert, S., Weinstock-Guttman, B., 
Zivadinov, R., 2020. Disability improvement is associated with less brain atrophy 
development in multiple sclerosis. Am. J. Neuroradiol. 41, 1577–1583. 
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Chapter 6

Improving segmentation-based
brain atrophy quantification with
unsupervised deep learning using
tissue similarity regularization

In this chapter, we present our approach for segmentation-based longitudinal
atrophy quantification with an unsupervised deep learning approach using a
novel tissue similarity regularization that penalizes volume differences between
pairs of co-registered short interval scans. These scan pairs are typically used for
evaluation of quantification error by assuming that an ideal method would mea-
sure zero change between them. In our approach, we use this same assumption
to regularize the segmentation model during training and reduce the errors and
biases that are learned from the reference method. Typically, skull-stripping and
tissue segmentation are performed in separate steps, but here we perform them
in an end-to-end fashion so that the training regularization can also reduce the
intracranial cavity volume differences. While training is done with pairs of short
interval scans, inference in the longitudinal case is performed independently for
the baseline and follow-up scans.
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Abstract

Brain atrophy measurements derived from magnetic resonance imaging (MRI) are a promising marker for the diagnosis
and prognosis of neurodegenerative pathologies such as Alzheimer’s disease or multiple sclerosis. However, its use in
individualized assessments is currently discouraged due to a series of technical and biological issues. In this work, we
present an unsupervised deep learning pipeline for segmentation-based brain atrophy quantification that improves upon
the reference method from which it learns. This goal is achieved through tissue similarity regularization that exploits the a
priori knowledge that scans from the same subject made within a short interval must have similar tissue volumes. To train
the presented pipeline, we use unlabeled pairs of T1-weighted MRI scans having a tissue similarity prior, and generate the
target brain tissue segmentations in a fully unsupervised manner using the fsl anat pipeline implemented in the FMRIB
Software Library (FSL). Tissue similarity regularization is enforced during training through a weighted loss term that
penalizes tissue volume differences between short-interval scan pairs from the same subject. In inference, the pipeline
performs end-to-end skull stripping and brain tissue segmentation from a single T1-weighted MRI scan in its native space,
i.e., without performing image interpolation. For longitudinal evaluation, each image is independently segmented first,
and then measures of change are computed. We evaluate the presented pipeline in two different MR datasets, MIRIAD
and ADNI1, which have longitudinal and short-interval imaging from healthy controls (HC) and Alzheimer’s disease
(AD) subjects. In short-interval scan pairs, tissue similarity regularization reduces the quantification error and improves
the consistency of measured tissue volumes. In the longitudinal case, the proposed pipeline shows reduced variability of
atrophy measures and higher effect sizes of differences in annualized rates between HC and AD subjects. Our pipeline
obtains a Cohen’s d effect size of d = 1.89 on the MIRIAD dataset, an increase from the reference pipeline used to train
it (d = 1.01), and higher than that of SIENA (d = 1.73), a well-known state-of-the-art approach. In the ADNI1 dataset,
the proposed pipeline improves its effect size (d = 1.39) with respect to the reference pipeline (d = 0.80) and surpasses
SIENA (d = 1.33). The proposed data-driven deep learning regularization reduces the biases and systematic errors
learned from the reference segmentation method, which is used to generate the training targets. Improving the accuracy
and reliability of atrophy quantification methods is essential to unlock brain atrophy as a diagnostic and prognostic
marker in neurodegenerative pathologies.

Keywords: magnetic resonance imaging, brain tissue segmentation, deep learning, brain atrophy quantification

1. Introduction

Global and regional brain atrophy quantification has
been shown to be a relevant marker for prognosis of neu-
rodegenerative pathologies, such as Alzheimer’s disease
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(AD) (Pini et al., 2016) and multiple sclerosis (MS) (Rocca
et al., 2017). Magnetic resonance imaging (MRI) allows for
noninvasive quantitative measures of global and regional
atrophy of the brain parenchyma. These measurements
are typically obtained from longitudinal T1-weighted (T1-
w) images, on which there is good contrast between the
cerebrospinal fluid (CSF) and the distinct gray matter
(GM) and white matter (WM) components that form the
brain parenchyma. Methods for brain atrophy quantifi-
cation are currently affected by a number of confounding
factors related to image acquisition, technical issues and
pathophysiological changes (Sastre-Garriga et al., 2020),
reducing their reliability and applicability. Although MRI-
derived measurements of atrophy have proven useful for
clinical population studies analyzing disease progression

Preprint submitted to Medical Image Analysis December 20, 2022



or treatment effects, they are still not considered suffi-
ciently accurate or reliable for their use in individualized
assessments (Rovira et al., 2015).

In general, longitudinal brain atrophy quantification
methods can be classified into either segmentation-based
or registration-based techniques. In segmentation-based
methods, a target set of structures or tissues is indepen-
dently segmented in each of the longitudinal scans, and
atrophy is quantified from differences in the measured vol-
umes. In contrast, registration-based techniques derive
measures of atrophy from the observed spatial deformation
of structures or tissues between two longitudinal scans.
Segmentation-based methods are typically regarded as less
accurate and more variable than their registration-based
counterparts, and their use has been discouraged for longi-
tudinal studies (Sastre-Garriga et al., 2017). Although
several segmentation-based methods for cross-sectional
brain volumetry from T1-w MRI have been proposed in
the recent literature, only SIENA-XL (Battaglini et al.,
2018) has been purposefully built for longitudinal imag-
ing. Registration-based methods are typically preferred for
longitudinal change analysis since they have lower quan-
tification error and better sensitivity to atrophy changes
(Sastre-Garriga et al., 2017). SIENA (Smith et al., 2002) is
a well-known and widely used registration-based atrophy
quantification method based on the boundary shift integral
(BSI) (Freeborough and Fox, 1997). Within SIENA, atro-
phy is measured between two linearly registered scans from
the surface displacement of the interface between GM and
WM, which was obtained from FAST (Zhang et al., 2001)
tissue segmentations of each scan. Measures of longitudinal
change can also be derived from the deformation fields
obtained from nonlinear registration between baseline and
follow-up. The work of Holland and Dale (2011) used the
deformation field to approximate voxels as irregular hexa-
hedrons and directly compute the fractional volume change
of a certain region between timepoints. More recently,
methods based on Jacobian integration of displacement
fields have shown further improvements, such as larger
effect sizes and lower quantification error (Nakamura et al.,
2014; Smeets et al., 2016). These methods measure volume
changes by integrating the determinant of the Jacobian
of a nonlinear transformation between two longitudinal
scans. The region for integration is typically obtained
from a cross-sectional segmentation of tissues or structures
in one of the scans. It is worth noting that even within
registration-based methods, some form of cross-sectional
segmentation of tissue or structures is still needed.

In recent years, deep learning techniques have achieved
higher levels of accuracy and performance in brain MRI seg-
mentation tasks for Alzheimer’s disease (Yamanakkanavar
et al., 2020). Several deep learning approaches have been
recently proposed for cross-sectional brain tissue segmenta-
tion using a mix of automated and manually annotated data.
QuickNAT (Guha Roy et al., 2019) is first trained on auto-
mated segmentations made with FreeSurfer (Fischl et al.,
2002) and then fine-tuned on manually delineations of brain

tissue. In contrast, FastSurfer (Henschel et al., 2020) and
NeuroNet (Rajchl et al., 2018) are both trained solely on au-
tomated brain tissue segmentations made with FreeSurfer
(Fischl et al., 2002) and FSL (Jenkinson et al., 2012), re-
spectively, two of the most frequently used automated tools
for neuroanatomical analysis. These approaches achieve
greater consistency, reliability and shorter execution time
than the reference methods on which they were trained.
Moreover, both QuickNAT and FastSurfer also demonstrate
improvements with respect to longitudinal brain atrophy
quantification, having lower short interval error and higher
sensitivity to atrophy changes. For pathological cases with
brain lesions, Dorent et al. (2021) used several disjoint
heterogeneous datasets with manual annotations to learn
a joint brain tissue and lesion segmentation model. This
approach is much more robust to the volumetric errors
introduced by the presence of abnormal brain lesions and
can also deal with a variable number of input modalities.
While advances in methods for cross-sectional brain tissue
segmentation can be used by atrophy quantification ap-
proaches to improve their longitudinal results, there is still
no deep learning approach that is purposefully built toward
improving brain tissue segmentation in the longitudinal
case.

In this work, we present an unsupervised deep learning
pipeline for segmentation-based brain atrophy quantifica-
tion that uses tissue similarity regularization to improve
upon the reference method used for training. The proposed
regularization exploits a priori knowledge that pairs of scans
from the same subject made within a short interval must
have similar brain tissue volumes. The pipeline is trained
using a set of short-interval scan pairs from which training
targets are generated in a fully unsupervised manner using
the fsl anat pipeline provided in FSL. The reference tis-
sue segmentations are obtained from fsl anat in a similar
fashion to SIENA-XL (Battaglini et al., 2018) by merging
the resulting brain tissue segmentation of FAST (Zhang
et al., 2001) and the deep gray matter structures of FIRST
(Patenaude et al., 2011). Tissue similarity regularization is
enforced during training through a weighted loss term that
penalizes volume differences between similar scan pairs.
In inference, the pipeline acts on a single T1-w scan in
its native space and performs end-to-end skull stripping
and brain tissue segmentation. For longitudinal evaluation,
each image is independently segmented, and then change
measures are computed. We performed a quantitative and
qualitative evaluation of the improvements in brain atrophy
quantification using two publicly accessible longitudinal
MR datasets, MIRIAD and ADNI1. The presented pipeline
improves upon the reference method used for training by
having a lower quantification error, better intracranial cav-
ity consistency and higher sensitivity to differences in brain
atrophy rates between healthy controls and Alzheimer’s
disease (AD) patients.
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2. Materials

2.1. MIRIAD dataset
The Minimal Interval Resonance Imaging in Alzheimer’s

Disease (MIRIAD) dataset (Malone et al., 2013) is a pub-
licly accessible series of longitudinal T1 MRI scans of 46
mild–moderate Alzheimer’s subjects and 23 healthy con-
trols with an average age of 69.5±7.1 years old. The dataset
consists of longitudinal scans taken at intervals of 2, 6, 14,
26, 38 and 52 weeks and 18 and 24 months from baseline,
as well as rescan images at three of the timepoints, for both
AD and controls. The rescan images were taken during
three of the scanning sessions (0, 6 and 38 weeks) without
repositioning of the subject. All scans were taken by the
same radiographer on the same 1.5 T Signa MRI scanner
(GE Medical systems, Milwaukee, WI, USA) with a voxel
size of 0.9375 × 1.5 × 0.9375 and total image dimensions of
256 × 124 × 256. In our study, we consider both the rescan
image pairs and the baseline to 2-weeks image pairs to have
a tissue similarity prior that can be used for regularization.
From the original dataset, some images were discarded
due to poor scan quality or movement artifacts; details on
which image pairs were used for training and evaluation
can be found in the supplementary material.

2.2. ADNI1 data
Data used in the preparation of this article were ob-

tained from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) database (adni.loni.usc.edu). The ADNI was
launched in 2003 as a public-private partnership, led by
Principal Investigator Michael W. Weiner, MD. The pri-
mary goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography
(PET), other biological markers, and clinical and neuropsy-
chological assessment can be combined to measure the
progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD).

In our work, we consider a subset of subjects originally
included in the “ADNI1: Complete 1Yr 1.5T” standardized
data collection and use similarly preprocessed scans with
corrected gradient nonlinearity and B1 and N3 nonunifor-
mity correction. In total, we consider 1063 scans from
105 AD patients and 145 healthy control subjects, hav-
ing 250 pairs of baseline and 1 year of follow-up with 541
scan-rescan images taken at both timepoints. Within this
cohort, scans were taken with varied voxel sizes ranging
from 0.94×0.94×1.2 to 1.3×1.3×1.2. In total, 8 different
scanners from 2 manufacturers (GE and Siemens) were
used for image acquisition. In 45 of the 250 subjects, a
different scanner model from the same manufacturer was
reported for the 1-year follow-up scan. Details of the image
pair IDs used for training and inference can be found in
the supplementary material.

3. Methods

We present an unsupervised deep learning pipeline for
segmentation-based brain volumetry that learns from tis-
sue segmentations derived from fsl anat while enforcing a
tissue similarity regularization that improves longitudinal
brain atrophy quantification. The proposed regularization
exploits the assumption that two scans from the same sub-
ject taken within a short time interval should have similar
brain tissue volumes. For training, we use a set of coreg-
istered T1-w scan pairs having a tissue similarity prior
and generate the segmentation targets in an unsupervised
manner using fsl anat. In inference, the pipeline performs
end-to-end skull stripping and brain tissue segmentation
from a single image in its native space, i.e., without image
interpolation. For longitudinal evaluation, each image is in-
dependently segmented first, and then measures of change
are computed. In the following sections, we describe in
detail how to prepare the unsupervised training data and
the architecture of our deep learning framework, along with
the procedures for network training and image inference.

3.1. Training data preparation
The pipeline is trained from a set of T1-w scan pairs

belonging to the same subject and acquired within a short
interval, thus having a tissue similarity prior, from which
we generate the reference brain tissue segmentations in
a fully unsupervised manner, as shown in Figure 1. For
this purpose, the fully automated fsl anat anatomical im-
age processing pipeline implemented in FSL is applied to
each T1-w scan to perform skull stripping, as well as seg-
mentation of brain tissue using FAST (Zhang et al., 2001)
and deep gray matter structures using FIRST (Patenaude
et al., 2011). This tissue segmentation procedure is very
similar to that done by SIENA-XL (Battaglini et al., 2018),
which also used the fsl anat pipeline to generate the tissue
and subcortical structure segmentation. More specifically,
fsl anat performs skull-stripping through a nonlinear reg-
istration to the MNI standard space, which is used to
transform a dilated MNI brain mask back into the native
space of the T1-w image. From this skull-stripped image,
brain tissue probabilities are obtained using FAST (Zhang
et al., 2001), which is run with the --weakbias option.
Additionally, the deep gray matter of subcortical structures
is segmented with the registration-based FIRST method
(Patenaude et al., 2011). Similar to SIENA-XL (Battaglini
et al., 2018), we merge the FIRST subcortical structure
segmentation into the FAST tissue probabilities by setting
them as pure gray matter, obtaining the final reference
FAST + FIRST segmentation in the native space of each
T1-w scan.

As part of the fsl anat pipeline, we also obtain a trans-
form to an MNI T1-w structural template with 2 mm
resolution. We use the inverse of this transform to bring a
2 mm resolution MNI brain mask through nearest neigh-
bor interpolation into the native T1-w scan space. This
coarse brain mask is later used as a normalization mask to
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Figure 1: Training data preparation diagram for each pair of short-interval T1-w scans, A and B, which have tissue similarity prior. The
T1-w scans are first processed using the fsl anat anatomical image processing pipeline to obtain the reference FAST + FIRST brain tissue
probabilities and input normalization mask for each of them. Then, the T1-w scans and their segmentations are spatially aligned by linear
registration to a halfway space, Ah and Bh, between them.

constrain the computation of image statistics to the brain
tissues for performing the input normalization of our deep
learning system.

Finally, each pair of similar T1-w scans is spatially
aligned to be able to exploit their tissue similarity prior
during training. This goal is achieved by performing a
linear registration to a halfway space between them using
the mri robust register method (Reuter and Fischl, 2011)
implemented in the FreeSurfer image analysis suite with
default parameters, using cubic interpolation to transform
the images. Then, the reference FAST + FIRST tissue
probabilities are also transformed through linear interpola-
tion into the halfway space, along with the normalization
mask, which is transformed using nearest neighbor interpo-
lation. Note that the halfway registered T1-w scans and
tissue probabilities are exclusively used during training,
while image inference for evaluation is performed in the
native space of each scan without any type of interpolation.

3.2. Deep learning pipeline
We utilize a patch-based deep learning pipeline using a

residual 3D architecture based on the U-Net (Ronneberger
et al., 2015), which performs both skull stripping and brain
tissue segmentation from a single T1-w scan. As input,
the network receives a single 3D patch with spatial dimen-
sions of 32 × 32 × 32 and outputs a brain tissue probability
distribution among four classes (background, CSF, GM
and WM) for each input voxel. The selected patch size of
32×32×32 provides sufficient context for accurate segmen-
tation while balancing class representation and improving
training stability through the use of a larger batch size.
The network architecture, depicted in Figure 2, consists of
a 3D U-Net model that uses residual convolution blocks and
skip connections. All the convolutional layers use 3 × 3 × 3
kernels and are always preceded, except for the input and
output nodes, by a batch normalization (BN) layer (Ioffe
and Szegedy, 2015) and a parametric rectified linear unit
(PReLu) activation (Nair and Hinton, 2010). The parame-

ter distribution is asymmetrical, with the residual blocks
of the encoder part using two convolutional layers while
a single one is used in the decoder. The network uses
four different resolution levels, where the feature maps are
downsampled by 2 × 2 × 2 in each level of the encoder and
upsampled back by the same factor in the decoder. Down-
sampling is performed by concatenating the result of a
max pooling operation and strided convolution as proposed
by Szegedy et al. (2016), while upsampling is performed
using a transposed convolution that learns the upsampling
operator for each feature map. The last layer outputs a
four-channel patch with the same 32 × 32 × 32 spatial size
as the input and is activated with a softmax to obtain a
probability distribution among the background and three
considered tissue classes.

Before extracting patches for either training or inference,
we normalize the T1-w image intensities to standardize the
input range and reduce the influence of outliers. More
specifically, the intensity range is winsorized within the
0.05% and 99.95% percentiles and then the minimum and
maximum intensities are mapped to the [-1, 1] interval. To
avoid influence from intensities not belonging to the brain
tissues, image statistics are computed exclusively within a
normalization mask, which is a coarse brain mask obtained
through linear registration from a 2 mm resolution T1-w
MNI template.

3.2.1. Training procedure
To train the proposed pipeline, we use the prepared

halfway registered T1-w scans and their corresponding
FAST + FIRST brain tissue probabilities derived from
fsl anat as the segmentation target. From these halfway
registered scans, a patch set is generated with 100,000 pairs
of samples, 85,000 for training and 15,000 for validation,
extracted from the same spatial location of each halfway
registered pair. The same number of patches is extracted
from each of the available pairs with a deliberate sampling
strategy to balance the representation of segmentation

4



Figure 2: Diagram of the 3D U-Net based model used for both the inpainter and tissue segmenter networks. The parameter distribution
is asymmetrical, with the residual blocks of the encoder using two convolutional blocks, while a single one is used in the decoder. In the
convolutional layers (Conv), Kx×Ky×Kz@[Sx,Sy,Sz] indicates the kernel and stride dimensions on each axis. The gray boxes represent the
feature maps with the number of channels indicated above or below it. The numbers of input and output feature maps are denoted by I and O,
respectively.

classes. For this purpose, we use the FAST + FIRST
segmentations derived from fsl anat as a guide to extract
25% of patches centered on CSF, 25% on GM, 25% on WM,
20% on the head and 5% from the background. To obtain
a rough approximation of the nonparenchyma voxels, we
define the head class as any nontissue voxel with a T1-
w intensity greater than the mean of the image and the
background class as any nontissue voxel with an intensity
less than the mean. Additionally, a random 3D offset of up
to half the patch size is applied to each sampled patch to
increase the representation of class boundaries.

Once the training patch set is built, the randomly ini-
tialized network weights are iteratively trained following
the procedure depicted in Figure 3. Each training itera-
tion consists of two separate forward passes through the
network, obtaining a dense prediction for each halfway
registered T1-w patch and a single backward pass that is
used to update the network weights to minimize the loss
function. In practice, each iteration is performed on a batch
of 16 patch pairs, so that we first forward pass each of the
16 patch pairs and then perform a single backward pass
from the average of their loss values. The network weights
are updated through the Adadelta optimizer (Zeiler, 2012)
with a learning rate of 0.05. To prevent overfitting, early
stopping is performed when the loss on the validation set
does not improve for 8 consecutive epochs.

As shown in Figure 3, the training loss function com-
prises the sum of three terms: two of them come from
segmentation loss terms, one for each T1-w patch, and the
third is a shared similarity loss term that enforces the tissue
similarity regularization during training. The probabilistic
version of the cross-entropy loss (PCE) is used as the seg-
mentation loss, targeting the partial volume probabilities

of the FAST + FIRST segmentation derived from fsl anat.
Using probabilities as targets, instead of categorical labels,
we encourage approximating the partial volume probabili-
ties instead of attempting to maximize the probability of
the most likely tissue class. More specifically, given a pre-
dicted probability distribution of a patch P over C classes
with dimensions C × X × Y × Z and a target probability
distribution T of the same dimensions, the probabilistic
cross-entropy segmentation loss term is defined as:

Lseg(P, T ) = 1
XY Z

∑

x,y,z

C−1∑

ci=0

− P (ci, x, y, z) · T (ci, x, y, z)·

· ln

(
C−1∑
cj =0

exp[P (cj , x, y, z)]

) (1)

The similarity loss term is taken as the sum of the L1
norm between the CSF, GM and WM percentages of the
two predicted patches. More specifically, given two output
probability distributions, Pa and Pb, over C classes with
dimensions C × X × Y × Z, the similarity loss term is
defined as:

Lsim(Pa, Pb) =
C−1∑

c=1

100
XY Z

∣∣∣∣∣
∑

x,y,z

Pa(c, x, y, z) −
∑

x,y,z

Pb(c, x, y, z)

∣∣∣∣∣
(2)

Note that the two patches Pa and Pb used in the similarity
loss term are forward passed separately so that the model
cannot extract joint features between the short-interval
scans to reduce the volume differences. In this way, the
model is constrained to the use of cross-sectional features
acting on a single patch to achieve this reduction. As a
result, we obtain a model that performs inference on a single
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Figure 3: Training iteration diagram of the proposed pipeline. The input comprises two patches extracted from a pair of halfway registered
T1-w scans having a tissue similarity prior. As a segmentation target, we use the FAST + FIRST brain tissue probabilities computed in
the native space of each T1-w scan and transformed to the halfway space. The two T1-w patches are predicted in two independent forward
passes through the network, and two separate patch predictions are obtained. Then, a single backward pass is performed that updates the
network weights to minimize the two segmentation loss terms, as well as the shared similarity loss term, which enforces the tissue similarity
regularization.

image at a time but does so with reduced quantification
error thanks to the training regularization.

In summary, given two predicted tissue probability dis-
tributions Pa and Pb and their corresponding target proba-
bility distributions Ta and Tb, respectively, the loss function
is defined as:

L(Pa, Pb, Ta, Tb) = Lseg(Pa, Ta) + Lseg(Pb, Tb) +
+ wsim · Lsim(Pa, Pb)

(3)

where wsim is a term that modulates the degree to which
the model will be allowed to deviate from approximating
the reference segmentation probabilities and instead fo-
cus on reducing tissue volume differences between similar
patches. Setting wsim = 0.0 would set the optimization tar-
get purely on approximating the target tissue probabilities
as faithfully as possible, and any deviation from the target
would be penalized by the segmentation loss terms. How-
ever, to avoid learning the biases and errors of the reference
method, a level of disagreement is needed with respect to
the target segmentations to allow room for improvement.
By increasing the value of wsim, we progressively shift the
optimization target away from approximating the target
probabilities and toward reducing the segmentation differ-
ences between short-interval scans. However, if wsim is set
too high, the learned segmentation model would be allowed
to excessively ignore the FAST + FIRST segmentations to
the point at which it might produce anatomically unfeasi-
ble results. For this reason, the preferred value for wsim
is the smallest one that provides sufficient improvement
in brain atrophy quantification. The effect on segmenta-
tion accuracy and atrophy quantification of the proposed
regularization is analyzed later in Section 5.1.

3.2.2. Image inference
Within the proposed pipeline, image inference perform-

ing end-to-end skull stripping and brain tissue segmen-
tation is performed on a single T1-w scan in its native
space, i.e., without image interpolation. First, input nor-
malization is performed on the T1-w image as previously

described within a normalization mask obtained by linear
transformation of a brain mask from a 2 mm resolution
MNI template. Then, highly overlapping patches of size
32 × 32 × 32 are extracted for inference at regular spatial
steps of 10 × 10 × 10. This level of overlap helps to reduce
block boundary artifacts and improve spatial coherence.
Before patch extraction, the T1-w image is edge padded on
all sides by 16 voxels, which is half the patch size, to ensure
that every voxel in the image is predicted with a similar
degree of overlap. The extracted patches are then forward
passed through the trained segmentation model, obtaining
dense tissue probability distributions for each patch. The
use of overlapping patches results in several brain tissue
probability distributions for each voxel of the input image.
To achieve the final whole image segmentation, the overlap-
ping predictions are averaged and normalized to produce a
single brain tissue probability distribution for each input
image voxel.

Additionally, the brain tissue probabilities are post-
processed to improve the accuracy in intracranial cavity
segmentation. Since the proposed pipeline performs end-to-
end skull stripping and brain tissue segmentation, there is
no assumption made regarding which voxels should be pure
tissue or pure background, leading to small background
probabilities appearing inside the intracranial cavity and
small probabilities of tissue appearing outside of the brain.
To reduce these small errors from compounding onto large
volume measurement errors, postprocessing is performed
based on the assumption that the intracranial cavity will
be the largest connected component in the output segmen-
tation. In practice, we first define a pure tissue mask as
p(CSF)+p(GM)+p(WM) > 0.99, which is processed using
morphological operators by filling holes and then keeping
only the largest connected component. Within the pure
tissue mask, the background probability is set to zero, and
the remaining tissue probabilities are normalized to ensure
that they total one. Outside of the pure tissue mask, the
background probability is set to one, and all tissue probabil-
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Figure 4: Longitudinal inference procedure. The baseline and follow-up images are independently segmented in their native space and change
measures are computed from the predicted tissue probability distributions.

ities are set to zero. From these probabilistic segmentations,
measures of volume for each tissue are obtained by taking
the brain tissue probability distribution of each voxel as
an estimation of its partial volume mixture. In this way,
the volume of each tissue class is calculated by totaling
its voxelwise probability across the whole image and then
normalizing by the voxel size to obtain the volume in mm3.

For longitudinal evaluation, inference is performed in-
dependently for the baseline and follow-up images, in their
native space, and then measures of change are computed
from the predicted tissue probability distributions, as shown
in Figure 4.

3.3. Implementation details
The proposed method was implemented with Python

using the Torch scientific computing framework (Paszke
et al., 2017). All experiments were run on a GNU/Linux
machine running the Ubuntu operating system, version
18.04, with 128 GB of RAM memory and an Intel ®Core
TM i7-7800X CPU. The versions of the software packages
used were 6.0.4 for FSL and 6.0.0 for FreeSurfer. The
network training and inference were performed with an
NVIDIA 1080 Ti GPU (NVIDIA Corp., United States)
with 12 GB G5X memory. The proposed network archi-
tecture has 7 million trainable parameters and takes 3.6
GB of GPU memory during training and only 1.5 GB for
inference. The time to perform inference for a whole image
using the proposed pipeline within our system is between
2 and 3 minutes, depending on the image dimensions. The
linear registration to obtain the normalization mask takes
approximately 1 minute, while inference of an image using
the GPU takes between 1 and 2 minutes.

4. Evaluation

To evaluate the proposed pipeline, we first studied the
effect of tissue similarity regularization on brain volumetry
by training the pipeline with increasing amounts of tissue
regularization controlled by the wsim parameter. More
specifically, we trained seven instances of the pipeline for
each dataset considering higher values for wsim. From
the results of this experiment, we set an optimal default
value for wsim and then performed a detailed quantitative

analysis of the pipeline trained with the selected optimal
weight.

The evaluation was performed on two publicly available
MRI datasets with different characteristics, MIRIAD and
ADNI1, which have short-interval and longitudinal imaging
for healthy controls (HCs) and AD subjects. The MIRIAD
dataset provides a small set of homogeneous MR scans
taken with the same scanner and acquisition protocol, while
the ADNI1 dataset has a larger number of subjects with
more heterogeneous imaging acquired on different scanners
and with varied voxel spacings. The proposed pipeline was
independently trained on each dataset using the available
short-interval scan pairs having a tissue similarity prior and
preparing the data for training as described in Section 3.1.
For the MIRIAD dataset, we used all 182 scan-rescan
pairs, as well as 125 scan pairs made within 2 weeks, for
a total of 307 training scan pairs. For the ADNI1 cohort,
from the 541 available scan-rescan pairs, we considered a
random subset of 298 pairs for training due to memory
constraints on our system. Inference was then performed
for the maximum interval scan pairs, i.e., the first and
last available timepoints for each subject, which amounted
to 69 longitudinal pairs for the MIRIAD dataset and 250
for ADNI1. We also performed inference on all of the
short-interval scans, including those used for generating
the training data, for evaluation and analysis purposes.
While short-interval scans are registered to a halfway space
for training, inference is performed in their native space
without image interpolation.

We compared our results to the FAST + FIRST brain
tissue probabilities derived from fsl anat used as training
targets and with SIENA, a well-known and widely used
state-of-the-art brain atrophy quantification method also
implemented in FSL. In practice, SIENA is run with the
-R option in MIRIAD, which iterates the skull stripping
several times to robustly estimate the brain center, and
with the -B option in ADNI1, which removes the neck
present on the images.

Measures of whole-brain atrophy in segmentation-based
methods are typically based on the volume change of brain
parenchyma between the baseline and follow-up segmen-
tations, which can be computed either from raw or from
normalized volumes. Additionally, since our pipeline not
only segments the parenchyma but also its distinct gray and
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white matter components, we also provide individualized
measures of change for these tissues. To account for differ-
ent time intervals between longitudinal scans of different
subjects, all reported measures of change are annualized.
Relative change measures are not computed relative to the
baseline or follow-up volumes, but instead we do so with
respect to their average as follows:

Change % = 100 · 2(Vfollow-up − Vbaseline)
Vfollow-up + Vbaseline

(4)

where V can be any measure of volume derived from the
probabilistic brain tissue segmentations. The percentage
of brain volume change (PBVC) is obtained when V is
set as the raw volume of the brain parenchyma. Similarly,
setting V as the raw volume of the GM or WM provides the
percentage of GM volume change (PGMVC) or percentage
of WM volume change (PWMVC), respectively. However,
measures of change based on raw unscaled volumes are
affected by a number of technical and physiological con-
founding factors (Sastre-Garriga et al., 2017). A more
robust measure of change can be obtained using tissue frac-
tions, which are computed by normalizing the raw tissue
volumes with respect to the intracranial volume (ICV), com-
puted as the sum of all tissue volumes (CSF + GM + WM).
In this way, the brain parenchymal fraction (BPF), gray
matter fraction (GMF) and white matter fraction (WMF)
are obtained by normalizing their respective raw volume
measurements by the intracranial volume. Additionally, to
study the longitudinal skull stripping consistency of the
proposed pipeline, the ICV change is also measured by
setting V as the raw intracranial volume. Although the
ICV has been shown to decrease as a result of aging beyond
adulthood (Royle et al., 2013), this change is expected to
be close to zero within the time intervals between scans of
the considered datasets.

These measures of volume change are also computed for
the short-interval scan pairs to evaluate the quantification
error. Between these images, an ideal atrophy quantifica-
tion method should measure zero change between them;
therefore, we consider any deviation from zero as quantifi-
cation error.

In the absence of an atrophy ground truth, the mea-
sures of change by themselves are not indicative of the
accuracy or quality of the brain tissue segmentations. How-
ever, the sensitivity of an atrophy quantification method
to longitudinal changes can be assessed by quantifying the
differences between two subject populations known to have
different rates of change. In this way, atrophy quantification
methods can be compared based on the assumption that
better methods would detect larger and more pronounced
differences between these two populations. In our case, we
quantified differences between HC and AD subjects based
on their annualized change measures. As in the work of
Smith et al. (2007), a measure of discriminative power
can be obtained from the t statistic of Welch’s unequal
variances test, which quantifies confidence in the existence
of differences between both groups. A large t provides a

high level of evidence that the observed differences between
the two populations are statistically significant —in other
words, a low probability that the observed differences could
be due to chance. However, t does not reflect the strength
or size of these differences; for instance, a large t could be
obtained for a very small difference in the magnitude of
annualized change, which would not necessarily be of any
practical significance or clinical importance. For this pur-
pose, measures of effect size are typically used to quantify
the magnitude or strength of observed differences. More
specifically, we use Cohen’s d to measure the effect size,
which is calculated as:

d = x̄1 − x̄2

s
(5)

where s, the pooled standard deviation, is defined for two
independent populations as:

s =
√

(n1 − 1)s2
1 + (n2 − 1)s2

2
n1 + n2 − 2 (6)

where n1 and n2 are the number of samples in each pop-
ulation, and s2

1 and s2
2 are the variances of each group,

computed as:

s2
1 = 1

n1 − 1

n1∑

i=1

(x1,i − x̄1)2

s2
2 = 1

n2 − 1

n2∑

i=1

(x2,i − x̄2)2

(7)

We also calculate the Dice similarity coefficient (DSC)
between the segmentations of the proposed pipeline with
respect to the FAST + FIRST reference derived from
fsl anat to quantify the extent to which the tissue similarity
regularization shifts the segmentation away from the target.
In practice, we calculate the DSC by first taking the argmax
of the brain tissue probabilities to obtain a categorical
multiclass segmentation.

5. Results and discussion

5.1. Similarity weight analysis
In this section, we study the effect of the tissue simi-

larity regularization on the proposed pipeline by training
several instances with increasing values for wsim, from 0.0
to 0.6. To analyze the effect on brain atrophy quantification
properties, we studied the response of annualized change
measures as well as any improvement in the sensitivity
to differences between healthy and AD subjects of these
change measures. We also study how regularization affects
the tissue segmentation model by calculating short interval
error measures, as well as the DSC with respect to the
reference FAST + FIRST segmentations used for training.

Figures 5a and 5b show boxplots of annualized change
measures of BPF, GMF and WMF between the maximum
interval pairs of the MIRIAD and ADNI1 datasets, respec-
tively. Overall, increasing values of wsim reduce the stan-
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(a) MIRIAD dataset

(b) ADNI1 dataset

Figure 5: Annualized change measures between maximum interval pairs of healthy controls (HC) and Alzheimer’s disease (AD) patients for the
FAST + FIRST reference segmentations and the proposed pipeline with increasing similarity regularization weight. The boxes representing the
interquartile range are notched within the confidence interval around the median, with the left and right whiskers set to the 5th and 95th
percentiles, respectively.

dard deviation of all considered change measures in both
datasets. The reduction in variability is more pronounced
in the MIRIAD measures, especially for the healthy sub-
jects, most likely due to the high similarity between images
acquired with the same scanner and imaging protocol. In
both datasets, higher values of wsim increase the median
BPF and GMF change, while the median WMF change is
decreased.

The effect of increasing regularization on the discrimi-
native power and effect size of change measures between
healthy and AD subjects is summarized in Table 1. The re-

sults show that tissue similarity regularization improves the
discrimination and effect size between groups in all change
measures in both the MIRIAD and ADNI1 datasets. In the
MIRIAD dataset, the proposed pipeline with wsim = 0.0
already improves the sensitivity of BPF, GMF and WMF
change compared to the reference FAST + FIRST segmen-
tations. When the regularization is enforced, increasing the
similarity weight value further improves the results until
wsim = 0.4, where the improvement reaches its peak, and
beyond this point, higher values actually worsen the differ-
ences between groups. In the ADNI1 dataset, the proposed
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Table 1: Discrimination and effect size of annualized change measures between healthy controls (HC) and Alzheimer’s disease (AD) subjects
for the maximum interval scan pairs. The discriminative power is measured with the t statistic from Welch’s unequal variances test, while the
effect size is measured using Cohen’s d.

MIRIAD ADNI1
∆BPF ∆GMF ∆WMF ∆BPF ∆GMF ∆WMF

Method t d t d t d t d t d t d

FAST + FIRST 4.66 1.01 3.35 0.71 -0.49 0.10 6.19 0.80 5.29 0.69 -0.56 0.07
wsim = 0.0 6.29 1.31 5.10 1.12 2.05 0.44 5.38 0.72 5.97 0.78 0.47 0.06
wsim = 0.1 9.07 1.76 7.93 1.59 7.71 1.52 8.28 1.11 7.64 1.01 4.72 0.63
wsim = 0.2 9.05 1.73 7.14 1.38 7.54 1.47 8.63 1.16 8.27 1.09 5.58 0.74
wsim = 0.3 9.47 1.82 7.65 1.56 8.72 1.68 9.84 1.34 8.43 1.11 7.35 0.98
wsim = 0.4 9.85 1.89 8.05 1.63 9.31 1.85 10.14 1.39 9.13 1.23 7.88 1.06
wsim = 0.5 9.76 1.89 8.43 1.65 8.29 1.64 10.21 1.40 9.14 1.21 7.92 1.07
wsim = 0.6 9.22 1.83 7.17 1.50 7.99 1.61 10.37 1.43 9.46 1.27 8.03 1.08

Table 2: DSC (mean ± std. dev. %) of the maximum interval pair segmentations between FAST + FIRST and the proposed pipeline with
increasing tissue similarity regularization weights.

MIRIAD ADNI1
Method GM+WM GM WM GM+WM GM WM
wsim = 0.0 96.9 ± 1.2% 88.6 ± 3.0% 92.4 ± 2.1% 97.7 ± 0.8% 90.5 ± 1.9% 94.3 ± 1.1%
wsim = 0.1 97.1 ± 0.7% 88.5 ± 2.8% 91.7 ± 2.1% 97.6 ± 0.8% 90.3 ± 2.0% 94.1 ± 1.2%
wsim = 0.2 96.9 ± 0.7% 87.6 ± 2.9% 90.8 ± 2.2% 97.5 ± 0.9% 89.3 ± 2.2% 93.1 ± 1.5%
wsim = 0.3 96.9 ± 0.8% 87.4 ± 2.9% 90.9 ± 2.2% 97.3 ± 0.9% 88.4 ± 2.3% 92.5 ± 1.5%
wsim = 0.4 96.8 ± 0.8% 87.2 ± 3.1% 90.3 ± 2.4% 97.2 ± 0.9% 88.2 ± 2.3% 92.4 ± 1.5%
wsim = 0.5 96.8 ± 0.8% 86.7 ± 3.1% 90.0 ± 2.3% 97.0 ± 1.0% 87.2 ± 2.5% 91.8 ± 1.6%
wsim = 0.6 96.4 ± 0.9% 85.9 ± 3.2% 89.6 ± 2.3% 97.0 ± 0.9% 87.7 ± 2.4% 92.2 ± 1.5%

pipeline without regularization (wsim = 0.0) improves both
the GMF and WMF change sensitivity while having a
worse effect on BPF change compared with the reference
FAST + FIRST segmentations. When the regularization is
enforced, the sensitivity in all three measures steadily im-
proves for higher values of wsim. In contrast to the MIRIAD
results, the sensitivity of ADNI1 measures does not peak
at wsim = 0.4, but beyond this point, improvement gains
decrease rapidly.

Table 2 shows DSC measures between the reference
FAST + FIRST segmentations and the proposed pipeline
with increasing wsim values. The reported DSC results are
calculated from the argmax classification of the probabilis-
tic brain tissue segmentations and are given separately for
parenchyma (GM+WM) as well as for its GM and WM
components. As expected, higher amounts of regulariza-
tion decrease the similarity with respect to the reference
FAST + FIRST brain tissue segmentations. Moreover, it
can also be observed that the DSC of GM and WM com-
ponents that form the parenchyma decrease much more
rapidly with increasing regularization than those of the
parenchyma itself. This outcome suggests that the dissimi-
larity is due to a redistribution of probabilities between GM
and WM classes. By increasing wsim, the learning focus is
progressively shifted away from approximating the FAST

+ FIRST probabilities, and a greater degree of deviation
is allowed to reduce the segmentation differences between
short-interval scans.

Figures 6a and 6b show the absolute BPF change error
between short-interval scans of the two considered datasets.
A reduction in short interval error is to be expected since
the metrics are calculated on the same short-interval pairs
used for training; however, the aim is to illustrate how
and to what extent the segmentation is affected. Without
regularization (ωsim = 0.0), the proposed pipeline exhibits
levels of error similar to those of of the reference FAST +
FIRST segmentations. Even when the smallest amount of
regularization is enforced (ωsim = 0.1), the error is greatly
reduced, with higher weights providing smaller improve-
ments thereafter. Figure 6a also shows that, despite both
the rescan and 2-week pairs of the MIRIAD dataset being
used for training, the rescan pairs without repositioning
show a much greater reduction in error than the 2-week
pairs. This outcome suggests that the scan differences
due to repositioning and/or small time intervals are larger
than those of the rescan images. Surprisingly, even when
directly using the 2-week pairs with repositioning to regu-
larize the training, the effect size of differences between AD
and HC groups is not much different than that of ADNI1,
which only used rescan images without repositioning for
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(a) MIRIAD dataset

(b) ADNI1 dataset

Figure 6: Short interval error

regularization. These results suggest that the proposed
regularization does not especially benefit from images with
repositioning to improve in the longitudinal case.

The experiments performed have shown that the pro-
posed regularization can improve the sensitivity of atrophy
measures to differences between healthy and AD subjects.
However, these improvements are obtained at the cost of
decreasing the segmentation similarity with respect to the
reference FAST + FIRST segmentations. In our experi-
ments, the sensitivity to differences between groups reached
its maximum at wsim = 0.4 for the MIRIAD dataset while
reaching a point of diminishing returns at wsim = 0.4 for
the ADNI1 dataset. Thus, we decided on wsim = 0.4 as an
optimal default value for the proposed pipeline, providing
the most improvement for the least deviation from the
reference segmentations.

5.2. Longitudinal atrophy quantification analysis
In the previous section, we studied the effect of varying

degrees of tissue similarity regularization on the presented
deep learning pipeline for brain tissue segmentation in both
single-site and multisite datasets. In this section, we now
perform a detailed quantitative and qualitative evaluation
of the presented pipeline trained with wsim = 0.4, the
empirically selected optimal regularization weight.

5.2.1. Intracranial volume change
The results for ICV measurements of the selected mod-

els trained with wsim = 0.4 can be found in Table 3. On
average, the absolute ICV change of the proposed pipeline
is lower in both datasets than for the fsl anat reference,
suggesting a more consistent intracranial volume between
longitudinal scans. In terms of ICV change, the brain
masks from fsl anat show a similarly negative rate in the
MIRIAD dataset for both HC and AD subjects, while
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Table 3: Annualized measures of ICV change (mean ± std. dev.) for the proposed and fsl anat pipelines.

MIRIAD ADNI1
Proposed Proposed

fsl anat (wsim = 0.4) fsl anat (wsim = 0.4)
|∆ICV| HC 0.38 ± 0.61 % 0.25 ± 0.32 % 0.80 ± 1.49 % 0.43 ± 0.69 %

AD 0.67 ± 0.91 % 0.55 ± 0.52 % 0.83 ± 1.42 % 0.45 ± 0.30 %
∆ICV HC -0.23 ± 0.69 % -0.06 ± 0.40 % 0.20 ± 1.68 % -0.09 ± 0.81 %

AD -0.25 ± 1.11 % -0.34 ± 0.68 % 0.30 ± 1.62 % -0.26 ± 0.47 %

the ADNI1 dataset shows positive ICV changes for both
groups, with a slightly higher average rate for the AD
subjects. The proposed pipeline obtains a much more con-
sistent ICV change between datasets and subject groups,
having a small negative ICV change for the healthy sub-
jects and a larger negative change for the AD subjects.
The results suggest that the learned skull stripping of our
pipeline is somehow affected by global atrophy since the
longitudinal ICV change is negative and more pronounced
for the AD group. This outcome would be caused by the
way in which skull stripping is performed by fsl anat, which
nonlinearly registers a dilated brain mask to segment the
brain parenchyma. In this way, instead of attempting to
segment the entire intracranial cavity, fsl anat essentially
sets a fixed band around the parenchyma that does not
encompass the entire intracranial cavity. Thus, in cases
with greater amounts of atrophy, the fixed band around
a more shrunken parenchyma means that there will be
a larger amount of the intracranial cavity which will not
be segmented by fsl anat. Within the presented pipeline,
tissue similarity regularization cannot reduce the learning
of this fixed band bias, and the measured ICV is affected
by the brain shrinkage observed on follow-up scans, which
is higher for AD subjects than for healthy controls.

5.2.2. Short interval error
Within the performed evaluation, measures of short

interval error are biased since our pipeline is explicitly and
directly trained to reduce differences between the same
short-interval scan pairs that would be used for evaluation.
However, there is a set of 243 rescan image pairs from
ADNI1, 139 pairs from healthy control subjects and 104
from AD subjects that were not seen during training and
from which meaningful measures of short interval error can
be obtained. Table 4 shows the short interval error for
raw and normalized measures of change in these ADNI1
rescan pairs not used during training. Compared with the
reference FAST + FIRST results and those of SIENA, the
short interval error of our pipeline is significantly lower in
all measures (p < 10−6) and with much lower variability.
Moreover, while the reference FAST + FIRST segmenta-
tions have much greater error for individual GM and WM
tissue than for the parenchyma, in the proposed pipeline,
the error is much more similar between the parenchyma
and its GM and WM components. These results show

that tissue similarity regularization not only reduces the
quantification error of the pipeline but also increases the
consistency of GM and WM volumes between short-interval
scans.

5.2.3. Annualized atrophy rates
Table 5 shows the annualized rates of ∆BPF, ∆GMF,

∆WMF, PBVC, PGMVC and PWMVC of all maximum
interval pairs for the reference FAST + FIRST segmenta-
tions and the proposed pipeline trained with wsim = 0.4.
In general, our pipeline shows much less variability in all
measures of change than the FAST + FIRST reference seg-
mentations. Compared with the results of FAST + FIRST,
the annualized PBVC in the MIRIAD dataset is slightly
reduced, especially for the HC subjects, while it is slightly
increased in the ADNI1 dataset for both subject groups.
In terms of BPF changes, the average rate of the proposed
pipeline is reduced in both datasets compared to the refer-
ence FAST + FIRST segmentations. This finding would be
mostly explained by the generally smaller ICV obtained by
our pipeline for the follow-up scans, especially for the AD
subjects, which slightly biases the follow-up tissue fractions
toward larger values and reduces the apparent atrophy rate.

It can also be observed that the WMF change, as mea-
sured from the FAST + FIRST segmentations suggests that
healthy controls have greater WM atrophy than AD sub-
jects. In contrast, our pipeline shows greater WM atrophy
for the AD subjects than for the healthy controls, which
makes more intuitive sense in the context of a generalized
brain atrophy process. As seen in Figure 5, the amount
of regularization is directly related to the lowering of the
median WMF change, suggesting that the segmentation of
WM is directly improved by tissue similarity regularization.

For comparison, we also calculated the annualized at-
rophy rates with SIENA (Smith et al., 2002). Our results
in the MIRIAD dataset (HC: -0.26 ± 0.43%; AD: -1.31 ±
0.86%) showed reduced average rates for both groups, with
a pronounced reduction of variability for the AD group,
compared to those of SIENA (HC: -0.53 ± 0.45%; AD:
-2.43 ± 1.34%). In the ADNI1 dataset, the annualized
PBVC of our pipeline (HC: -0.41 ± 0.92%; AD: -1.14 ±
0.76%) also shows lower average rates when compared to
SIENA (HC: -0.61 ± 0.75%; AD: -1.85 ± 1.13%).
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Table 4: Short interval error (mean ± std. dev. (median)) for raw and normalized change measures on the 243 rescan pairs from ADNI1 that
were not seen during training of the presented pipeline. In the case of SIENA, which uses the BSI method, PBVC is the only provided measure
of atrophy.

Proposed
FAST + FIRST (wsim = 0.4) SIENA

PBVC HC 0.43 ± 0.88% (0.21%) 0.16 ± 0.71% (0.06%) 0.33 ± 0.39% (0.20%)
AD 0.43 ± 0.66% (0.23%) 0.12 ± 0.20% (0.07%) 0.38 ± 0.53% (0.19%)

PGMVC HC 1.17 ± 1.38% (0.71%) 0.17 ± 0.69% (0.06%) N/A
AD 1.35 ± 1.34% (0.92%) 0.14 ± 0.19% (0.09%) N/A

PWMVC HC 1.35 ± 1.59% (0.82%) 0.21 ± 0.77% (0.08%) N/A
AD 1.32 ± 1.43% (0.79%) 0.14 ± 0.22% (0.08%) N/A

∆BPF HC 0.31 ± 0.46% (0.19%) 0.06 ± 0.12% (0.03%) N/A
AD 0.40 ± 0.61% (0.21%) 0.09 ± 0.16% (0.05%) N/A

∆GMF HC 1.09 ± 1.29% (0.63%) 0.08 ± 0.21% (0.04%) N/A
AD 1.19 ± 1.25% (0.80%) 0.11 ± 0.17% (0.06%) N/A

∆WMF HC 1.26 ± 1.38% (0.75%) 0.12 ± 0.19% (0.06%) N/A
AD 1.44 ± 1.48% (0.84%) 0.12 ± 0.17% (0.07%) N/A

Table 5: Annualized measures of atrophy (mean ± std. dev.) from maximum interval scan pairs.

MIRIAD ADNI1
Proposed Proposed

FAST + FIRST (wsim = 0.4) FAST + FIRST (wsim = 0.4)
∆BPF HC -0.35 ± 0.51 % -0.20 ± 0.15 % -0.52 ± 0.84 % -0.32 ± 0.31 %

AD -1.13 ± 0.87 % -0.96 ± 0.48 % -1.23 ± 0.92 % -0.88 ± 0.50 %
∆GMF HC -0.46 ± 1.50 % -0.19 ± 0.22 % -0.51 ± 2.12 % -0.28 ± 0.42 %

AD -2.21 ± 2.83 % -0.90 ± 0.51 % -2.07 ± 2.41 % -0.88 ± 0.57 %
∆WMF HC -0.21 ± 1.25 % -0.20 ± 0.21 % -0.54 ± 2.41 % -0.35 ± 0.42 %

AD 0.02 ± 2.61 % -1.05 ± 0.53 % -0.36 ± 2.53 % -0.87 ± 0.58 %
PBVC HC -0.58 ± 0.74 % -0.26 ± 0.43 % -0.32 ± 1.46 % -0.41 ± 0.92 %

AD -1.38 ± 1.35 % -1.31 ± 0.86 % -0.93 ± 1.45 % -1.14 ± 0.76 %
PGMVC HC -0.69 ± 1.39 % -0.26 ± 0.44 % -0.31 ± 2.27 % -0.37 ± 0.87 %

AD -2.47 ± 3.15 % -1.24 ± 0.81 % -1.77 ± 2.50 % -1.14 ± 0.78 %
PWMVC HC -0.44 ± 1.59 % -0.27 ± 0.48 % -0.34 ± 2.83 % -0.44 ± 1.04 %

AD -0.24 ± 2.64 % -1.39 ± 0.97 % -0.06 ± 2.95 % -1.14 ± 0.84 %

5.2.4. Sensitivity to differences between groups
As shown in Table 1, the sensitivity to differences be-

tween groups of ∆BPF is improved by tissue similarity
regularization. In the MIRIAD dataset, the results of the
proposed pipeline with wsim = 0.4 (t = 9.85; d = 1.89)
improve with respect to the FAST + FIRST reference
(t = 4.66; d = 1.01) and are also better than those of
SIENA (t = 8.99; d = 1.73). In the ADNI1 dataset, the
proposed pipeline results (t = 10.14; d = 1.39) are also
improved with respect to the FAST + FIRST reference
(t = 6.19; d = 0.80) and are better than those of SIENA
(t = 9.78; d = 1.33). The sensitivity of the ∆GMF and
∆WMF measures is also improved with respect to the ref-

erence FAST + FIRST segmentations. In the MIRIAD
dataset, the sensitivity of ∆GMF as measured with our
pipeline (t = 8.05; d = 1.63) is higher than that of the
reference used for training (t = 3.35; d = 0.71). The
∆WMF sensitivity of our pipeline (t = 9.31; d = 1.85) is
much higher than the reference (t = −0.49; d = 0.10). In
the ADNI1 dataset, the ∆GMF sensitivity of our pipeline
(t = 9.13; d = 1.23) improves with respect to the reference
(t = 5.29; d = 0.69). Similarly, the ∆WMF sensitivity of
our pipeline (t = 7.88; d = 1.06) is improved with respect
to the FAST + FIRST reference (t = −0.56; d = 0.07).
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T1-w FAST + FIRST Proposed (wsim = 0.4) Overlayed differences

(a) MIRIAD dataset

T1-w FAST + FIRST Proposed (wsim = 0.4) Overlayed differences

(b) ADNI1

Figure 7: Comparison of argmax segmentation results between FAST + FIRST and the proposed pipeline for a representative case of each
dataset. The last column shows the absolute probability differences of voxels changing their most likely tissue class overlaid with a yellow
to red colormap, where yellow corresponds to a difference greater than 0.0 and red to a difference of 1.0 in the voxelwise sum of absolute
probability differences. Differences for both datasets are mainly located in the cortex, in the interfaces between subcortical structures and in
the outer brain border.

5.2.5. Tissue segmentation
It can also be seen that, overall, the effect size of all

measures is larger for the MIRIAD dataset than for ADNI1,
most likely due to the more consistent imaging parameters
that introduce a lower level of confounding factors.

To study the effect of regularized deep learning on the
resulting brain tissue segmentations, we perform a qualita-
tive evaluation comparing the reference FAST + FIRST
segmentations to those of the presented pipeline trained
with wsim = 0.4. Figure 7 shows the tissue segmentation
results of FAST + FIRST and our pipeline for two represen-
tative cases of MIRIAD and ADNI1. In both datasets, the
segmentation of our pipeline presents some differences with
respect to the reference, having generally smoother edges
between tissues and less noise. The largest segmentation
differences are located in the outer brain interface, where
our pipeline tends to segment a larger area as brain, and in

the borders of subcortical structures, which depending on
the case are either enlarged or shrunken. Smaller segmenta-
tion differences are also observed in the interfaces between
tissues throughout the cortex, where our pipeline tends to
segment less WM and more GM than the reference FAST
+ FIRST segmentation.

Figure 8 shows the median differences between the
probabilistic segmentations of FAST + FIRST and the
proposed pipeline across all of the cases from each dataset.
In practice, we subtract the FAST + FIRST probabilities
of each tissue from those of our pipeline, which are then
transformed to the MNI space, where we obtain the vox-
elwise median across all available cases for each dataset.
The differences for both datasets show a very similar be-
havior, with MIRIAD displaying stronger differences, most
likely due to its more homogeneous single-center images.
In terms of CSF, the blue color around the outer brain
border indicates a tendency for our pipeline to segment
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T1-w CSF GM WM

(a) MIRIAD dataset

T1-w CSF GM WM

(b) ADNI1

Figure 8: Median probability differences between the probabilistic segmentations of the proposed (wsim = 0.4) pipeline with respect to the
reference FAST + FIRST segmentations. For this purpose, the tissue probability maps of FAST + FIRST and the presented pipeline from
each case are subtracted and then transformed to the MNI space for joint analysis across the whole dataset. The differences are displayed per
tissue in a red to white to blue colormap, where red corresponds to a median difference of -0.25 or less, white to 0.0 and blue to an increase in
median probability of 0.25 or higher.

more CSF in that region compared to the reference method.
Conversely, the red color in the midline region, ventricle
borders and temporal lobes suggests that our pipeline seg-
ments less CSF in these regions when compared to FAST
+ FIRST. Median GM differences display a generalized
blue color throughout the cortex, while the WM differences
take on a red color, indicating that the presented pipeline
segments less WM and more GM in those regions than
FAST + FIRST. Another area showing large differences
consists of the subcortical structures; the red color in their
inner borders suggests that our pipeline tends to reduce
their size compared to FAST + FIRST. However, this be-
havior is reversed when examining the outer borders, where
more GM is segmented in favor of reducing the WM. In
some cases, such as that illustrated in Figure 6a, different
subcortical structures with a thin WM interface between
them are merged by our pipeline. Most likely, thin WM

interfaces between subcortical structures are a large source
of variability within short-interval scans, and the tissue
similarity regularization ends up segmenting it as mostly
GM to avoid increasing the segmentation differences.

5.3. Limitations
This study has some limitations related to the evalu-

ation of atrophy measures and the clinical applicability
of the presented pipeline. Within this work, we have not
been able to evaluate the quality or accuracy of either the
brain tissue segmentation or the measured atrophy rates.
For this purpose, we would need a dataset similar to those
considered in this work with sufficiently accurate manual
delineations of brain tissue. Despite this limitation, we have
evaluated our pipeline on several metrics typically used in
the literature to assess longitudinal atrophy quantification
and have shown that it improves over extensively validated
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state-of-the-art methods. In this sense, the comparison
with fsl anat is nuanced since our data-driven pipeline has
been previously trained and optimized for the evaluation
dataset, whereas fsl anat was not. However, the main goal
of these comparisons is only to quantify the relative im-
provement of our pipeline, which is trained on these same
fsl anat outputs. Similarly, the comparison with SIENA is
also nuanced in the same way since it was not trained or
optimized beforehand for the evaluation dataset.

Another limitation is that the performance of deep
learning methods could be degraded when applied to images
that differ in excess from those seen during training, i.e.,
from a different image domain, such as one acquired with
a different MR scanner, acquisition protocol or different
voxel spacing. In this case, training the proposed pipeline
from scratch would only require a set of unlabeled short-
interval scan pairs from the target domain. Alternatively,
the number of training images could be reduced by using a
model pretrained on public data along transfer learning or
one-shot domain adaptation techniques for deep learning
methods (Valverde et al., 2021).

6. Conclusion

In this work, we have presented a novel unsupervised
deep learning pipeline for segmentation-based brain atrophy
quantification that uses tissue similarity regularization to
improve upon the reference segmentation method from
which it is trained. We have analyzed the tissue similarity
regularization effect and empirically selected wsim = 0.4
as an optimal default value for the similarity weight loss
term, which performs well across single-site and multisite
datasets.

In general, the presented pipeline improves upon atro-
phy evaluation metrics and produces smoother and less
noisy segmentations than the reference method used for
training. The regularization introduces differences in the
segmentation of GM/WM in the cortex, the outer brain
interface and borders of subcortical structures compared
with the reference method. Our evaluation results on short-
interval scan pairs show that the proposed regularization
lowers the quantification error and improves the overall
tissue segmentation consistency, especially for the gray
and white matter components. In this sense, our pipeline
shows lower and more similar levels of error between the
parenchyma and its distinct GM and WM components,
whereas the reference method had much larger errors for
GM and WM than for the parenchyma. In the longitudinal
case, we observed lower variability in atrophy rates and
greater sensitivity to differences between healthy controls
and AD subjects. Furthermore, while the reference method
measured higher levels of WM atrophy for healthy controls
than for the AD group, which does not make intuitive
sense within a generalized atrophy process, the proposed
regularization in our pipeline reverses this tendency and
shows more coherent WM atrophy rates between the HC
and AD groups.

The presented pipeline is based on the idea that reg-
ularized deep learning can exploit data priors to reduce
the biases and systematic errors learned from a reference
segmentation method. We have shown that the proposed
regularization, which aims at reducing short-interval scan
differences, can directly improve brain atrophy quantifica-
tion in the longitudinal case. To the best of our knowledge,
this study is the first application of deep learning tech-
niques specifically aimed at improving longitudinal brain
atrophy quantification. Data-driven approaches have the
potential to surpass their classical counterparts and unlock
brain atrophy as a useful diagnostic and prognostic marker
for neurodegenerative pathologies.
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Chapter 7

Main results and discussion

In this thesis, we have explored a range of clinically relevant brain imaging
tasks for the prognosis of neurological pathologies such as stroke, multiple
sclerosis or Alzheimer’s disease. More specifically, we have presented works for
ischemic stroke lesion segmentation, reducing the effect of WM in brain tissue
segmentation and for longitudinal atrophy quantification. Dealing with several
image markers and their challenges has provided a deeper understanding of the
issues and possible approaches for their combined use in predictive models. In
this chapter, we outline the main results and findings obtained in this thesis and
discuss their significance towards completion of the main objectives.

7.1 Brain lesion segmentation

7.1.1 Class imbalance handling
Within deep learning approaches, a deliberate strategy to balance the representa-
tion of lesioned and healthy tissue in the training set has been essential towards
achieving good segmentation performance. In our patch-based approaches, this
has been addressed with the proposed patch sampling strategy, which is based
on a mixture of recently presented works in brain lesion segmentation [26, 51].
We proposed a balanced sampling of patches centered in healthy and lesion
classes as done by Kamnitsas et al. [26]. However, systematically sampling
patches centered on lesion voxels will induce a neighborhood bias by which the
lesion is always seen centered in the patch and surrounded by a uniform band
of healthy tissue [51]. As proposed by Guerrero et al. [51], we add a random
3D offset of up to half of the patch size to the lesion sampled patches. This
increases the representation of lesion boundaries as well as the variability of
healthy neighborhoods in which the lesion is seen during training. However,
even with the use of balanced patch sampling strategies, which equalize the
number of patches with and without lesions, the training set will still tend to
be highly imbalanced at a voxel level due to the generally higher proportion
of healthy voxels in each patch. To avoid this, Guerrero et al. [51] proposed
exclusively sampling the lesion class, however, overrepresenting the lesion class
implies underrepresenting the healthy class and actually increasing the error rate
in healthy regions. Since these areas represent the majority of the segmentation,
even a tiny increase in error rates of the healthy class will translate in higher
overall segmentation error.
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To further reduce the effect of class imbalance without underrepresenting
any class or region of the brain, we also proposed the use of class balancing
loss functions, which work by modulating the contribution of each class to the
final loss term. More specifically, we have used two functions based on different
principles to handle class imbalance, the Focal loss [52] and the Generalized
Dice Loss (GDL) [53]. The Focal loss, used in Chapter 3, is a difficulty weighted
version of the crossentropy loss which is dynamically scaled to avoid learning
from examples that are already correctly segmented with high confidence. When
the network specializes more in one class, its classification confidence will be
higher and thus, the focal loss will scale down its contribution to favor the
other class. In contrast, the GDL, used in Chapter 4, is a differentiable loss
function based on the Dice similarity coefficient (DSC). The class balancing
mechanism is provided by the underlying concept of segmentation overlap as
well as by a class weight which normalizes the class contributions based on
their relative representation in the training set. In general, the use of balancing
loss functions raises the positive predictive value (PPV) and DSC metrics by
reducing the number of false positives. However, the class balancing mechanisms
of loss functions might come at the cost of worsened stability and convergence
properties. More specifically, the GDL is quite unstable and slow in training,
which is why its typically used in conjunction with a crossentropy loss term.
The sum of both provides the class balancing of the GDL along with the good
convergence properties of the crossentropy loss. Furthermore, we have observed
in our experiments that some class balancing losses are better suited to different
tasks. Although we tested both the focal loss and GDL in both of the proposed
approaches, the best results were obtained with the Focal loss in our 2D CT
approach and with the GDL and crossentropy in our 3D MRI method.

7.1.2 Symmetry features in stroke
The use of features based on the symmetry between brain hemispheres for
ischemic stroke lesion segmentation has consistently improved our results in
both CT and MRI imaging as well as within 2D and 3D approaches. The use of
symmetry features is based upon the observation that ischemic stroke typically
affects only one hemisphere and that comparing with the opposing healthy side
can help better outline the tissue with abnormal appearance on the affected
side. In our implementation, we generate symmetrically augmented modalities
through mid-sagittal flipping and linear registration, which robustly aligns
opposing hemispheres between the original and augmented modality. Then, we
perform early fusion by concatenating the original and symmetrically augmented
modalities along the channel dimension. In this way, the convolutional kernels of
our network are able to extract spatial features jointly considering the intensities
of left and right hemispheres. Moreover, early fusion allows the use of a standard
single-path U-Net, which avoids multi-path architectures that would raise the
amount of training parameters and increase the risk of over-fitting.

The main limitation of our patch-based implementation of symmetry features
is the reduced receptive field due to the use of small patches. This constrains the
spatial extent from which the model can extract symmetry features useful for
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segmentation. In stroke, due to the vascular nature of the pathology, information
about the perfusion of distant regions can be informative for segmentation.
However, we have empirically tested that the use of larger patches decreases
segmentation performance due to worsened class imbalance. Although reduced
spatial context is a big drawback of using small patches, class imbalance handling
is currently the main limitation. Another possible drawback of the current
symmetric modality augmentation procedure is that it uses image interpolation
to align the opposing hemispheres. Although it is only applied to the augmented
modalities, and not the original ones which are the ones actually being segmented,
the interpolation distorts the image intensities and might limit the quality and
accuracy of symmetry features.

7.1.3 Post-processing of segmentation results
Post-processing of segmentation results has been an essential technique to correct
the biases of deep learning models and further improve lesion segmentation
results. Perhaps the most basic technique is that of variable thresholding.
Typically, segmentation probabilities are binarized by taking the class with
largest probability, which would equate to using a threshold of 0.5 in a binary
classification task such as brain lesion segmentation. However, this makes the
implicit assumption that the confidence of the deep learning model is perfectly
calibrated around the 0.5 threshold. It might be the case that a model is under
or overconfident, which would mean that the best segmentation results would
be obtained with a lower or higher threshold respectively. The confidence of a
model can be influenced by a different number of factors, such as the training set
class distribution, loss function, input normalization, etc. Lowering the threshold
would increase the model sensitivity, reducing the number of false negatives
but also increasing the amount of false positives. The opposite is also true if
the threshold is increased, leading to a reduction of false positives but also an
increase in the amount of false negatives. In our works dealing with brain lesion
segmentation, we have selected the optimal threshold by empirical tests on the
validation data. For instance, in Chapter 4, the output of our under-confident
model was compensated by selecting a lower threshold of 0.2, which raised the
sensitivity but also the number of false positive lesions. To complement the
variable thresholding, we have also utilized morphological post-processing to
leverage the a priori knowledge about the morphology characteristics of target
lesions. In the case of ischemic stroke, the core and penumbra are typically
large in size, so we discarded lesions under an empirically chosen minimum
volume size, which led to an overall improvement of the segmentation metrics
by reducing the number of false positive lesions. However, minimum lesion size
filtering must be carefully considered in the clinical setting, as lesions under the
selected threshold will be discarded during inference.

Another technique which we explored, inspired by the work of Nair et al. [54],
is segmentation filtering based on Monte Carlo (MC) uncertainty estimation.
In our implementation, we added prediction dropout layers in the lower levels
of the U-Net model and performed the patch-wise average of three predictions
made with a 10% dropout rate during inference. The use of uncertainty filtering
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lowered the HD and improved lesion volume estimation without affecting the
DSC, which suggests a better segmentation of the lesion borders. However, the
use of this technique increased the inference time three-fold, which is why it was
only applied within the 2D approach presented in Chapter 3, that had lower
computational requirements than the 3D approach presented in Chapter 4.

7.2 Brain tissue segmentation
In this thesis, we have also developed a deep learning framework for brain tissue
segmentation which has been the basis for the WM lesion effect analysis done
in Chapter 5 and the longitudinal atrophy quantification method presented in
Chapter 6. The framework consists on a 3D patch-based unsupervised deep
learning approach for segmentation-based volumetry of brain tissue. To avoid the
need for manual ground truth segmentations, we generate the training targets
using fully automated classical methods, which are regarded as more accurate
and reproducible than those manually made by experts [55]. In recent literature,
similar deep learning approaches for brain tissue segmentation trained on the
outputs of classical methods have shown improved properties. For instance,
NeuroNet [56] obtained similar DSC to manual segmentations than the reference
methods used for training, but having a shorter execution time and with less
failed cases. FastSurfer [57] also reports similar DSC to manual segmentations
than FreeSurfer, the method used to generate the training targets. Moreover,
results of FastSurfer on longitudinal data show reduced short interval error
and increased sensitivity to group differences between healthy and dementia
patients. In contrast with previous works focusing on categorical segmentation,
our framework focuses on providing accurate brain volumetry in pathological
cases. Thus, we incorporate a series of specific techniques to improve partial
volume estimation accuracy and to deal with pathological images more robustly:

• Input normalization. The proposed minmax input normalization based
on intensity percentiles within the brain parenchyma provides several
benefits for brain volumetry. Since the normalization parameters are
computed only from intensities of the parenchyma, the intensity range of
brain tissue is always within the same interval regardless of the amount
of face or neck present in the images. In addition, the use of percentiles
allows to reduce the influence of outlier or abnormal intensities, such as
WM lesions. Furthermore, percentiles are also more robust to changes
in relative tissue volumes, such as those caused by atrophy, since the
minimum or maximum intensity of an image is typically not affected by
these changes.

• Probabilistic loss. In our experiments, we observed that the categorical
crossentropy loss, which uses class labels as targets, resulted in very sharp
and over-confident segmentation probabilities, which differed from the
softer probability maps used for training. Since our goal in inference is
not to maximize the probability of the most likely tissue class, but rather,
to approximate the partial volume probabilities, we propose the use a soft
version of the crossentropy loss using probabilistic targets.
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• Small patches. The use of small patches provides several advantages
for brain tissue segmentation. First, small patches allow the use of bigger
batch sizes, which stabilize the training procedure. Second, it allows for
the use of patch sampling strategies to balance the representation of tissue
and structures in the training set. Although class imbalance is not a
big issue in tissue segmentation, there is still a difference between the
relative volumes and representation of tissue classes. Finally, as we will
later discuss, small patches also limit the spatial extent to which a lesion
can introduce errors in the tissue segmentation.

Despite the use of much smaller patches, our framework obtains a DSC to
the reference method of 94.6 ± 2.5%, a level comparable to the ones reported by
similar state-of-the-art approaches, such as NeuroNet (93.1±2.4%) or FastSurfer
(avg. 89%). This suggests that a large spatial context is not important for
brain tissue segmentation and that small patches can be used without any
performance penalties. The competitive results also show that the proposed
input normalization and probabilistic loss function do not harm segmentation
performance in any way, while providing the previously discussed benefits.
Compared to traditional statistical methods, a big advantage of deep learning
approaches is that they can adapt their architecture and training procedure
to incorporate additional elements or data-driven techniques to improve or
amplify their capabilities. The works in this thesis take advantage of this fact
and propose modified architectures and data-driven techniques to extend and
improve upon the reference method used for training.

7.2.1 Effect of WM lesions
In Chapter 5, we have shown that the ways in which WM lesions affect patch-
based deep learning approaches are different than those of classical statistical
methods. In the reference tissue segmentation method used for training our
approach, WM lesions interfered with the characterization of tissue intensity
distributions and shifted the partial volume estimation probabilities across the
whole image. In contrast, the error from WM lesions is introduced in our deep
learning framework at the global level through changes in the input normal-
ization parameters and at the local level through changes in the segmentation
probabilities of patches where the lesion appears. The proposed percentile-based
minmax input normalization on the parenchyma reduces the effect of the WM
lesion intensities in the normalization parameters and avoids shifting the in-
tensities of the whole image on most cases. Since lesions only affect a small
percentage of white matter, the upper intensity percentile is rarely affected and
the normalization parameters remain fairly constant. Moreover, WM lesion
intensities in the T1-w images used for volumetry are typically darker than
the WM itself and do not influence the upper intensity percentiles. At the
local level, the use of small patches limits the spatial extent of patches affected
by the WM lesion without compromising segmentation performance. Without
any kind of lesion filling or inpainting, our deep learning framework already
showed much lower volume error due to WM lesions (GM: 0.07 ± 0.09%; WM:
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0.10 ± 0.11%) than the reference approach used for training (GM: 0.89 ± 1.14%;
WM: 1.22 ± 1.58%).

To reduce the effect of WM lesions in the measured volumes, the gold standard
technique is to perform WM lesion inpainting prior to the tissue segmentation.
Recently, several deep learning methods have been proposed that perform much
more realistic and accurate WM lesion inpainting that further reduce the error
on upcoming segmentation tasks. However, since the ultimate goal of the lesion
inpainting is to provide more accurate brain volumetry, we proposed a deep
learning method in Chapter 5 that is trained to perform both inpainting and
tissue segmentation in and end-to-end fashion using a multi-task double U-Net
architecture. In our approach, we introduce artificial lesions to a healthy image
and then train our model to inpaint the lesions and approximate the originally
healthy tissue probabilities. By jointly optimizing both tasks, the inpainting is
also trained to improve the downstream segmentation task through the gradients
coming from the segmentation loss. This data-driven technique allows to directly
minimize the WM lesion effect in the tissue segmentation without going through
the intermediate step of accurately concealing its intensities. The error from WM
lesions on the tissue volumes measured with our approach is almost negligible
(GM: 0.01 ± 0.03%; WM: 0.02 ± 0.04%) thanks to the use of small patches, the
proposed input normalization and the end-to-end multi-task optimization. The
main limitation of our method is that its not trained on pathological images with
actual WM lesions, since it needs to be trained on tissue segmentations from
healthy scans to which we later add artificial lesions. WM lesions might induce
inflammatory edema or mass effect deformation on the surrounding healthy
tissue and change its appearance in a way that the network might not be trained
to deal with.

7.2.2 Longitudinal atrophy quantification
In Chapter 6, we presented a novel unsupervised deep learning method for
segmentation-based longitudinal brain atrophy quantification in which we learn
from the outputs of an automated reference method while regularizing the
training using data priors to avoid learning its errors and biases. Typically,
short interval scan pairs are used for evaluating the quantification error of
brain atrophy approaches based on the assumption that an ideal method would
measure zero volume change between them. In our approach, we use the zero
change assumption to propose a tissue similarity regularization which penalizes
volume differences between pairs of patches from short interval scan pairs during
training. A key element of our method is that it segments only one patch at a
time, which means that the network cannot extract features jointly considering
the intensities from both short interval scans to reduce the volume differences.
Thus, the regularization can only rely on features extracted from a single scan to
reduce the influence of intensity variations, such as those from noise or movement
artifacts, and provide more consistent tissue volumes between the two short
interval scans. For training, we co-register the two short interval scans into a
halfway space to obtain the voxel-wise spatial alignment needed to apply the
tissue similarity regularization. However, since the network is trained to segment
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only one patch at a time, inference can be directly performed on a single scan
at a time and without having to perform any kind of image registration or
interpolation.

By penalizing volume differences between short interval scans during training,
we obtain a tissue segmentation and partial volume estimation which is more
robust to noise and image artifacts. The improvements imprinted on the model
during training translate directly to the inference of longitudinal imaging and
provide a huge improvement on brain atrophy evaluation metrics. The most
clinically relevant is the increase in sensitivity to differences in atrophy rates
between healthy and AD patients, where the Cohen’s d effect size of the reference
method is improved from d=1.01 to d=1.89 in the MIRIAD dataset and from
d=0.8 to d=1.39 in the ADNI1 dataset. It is worth noting that the only
segmentations that the network has ever seen are those from the reference
method, and that the observed improvements are achieved solely by the proposed
tissue similarity regularization applied during training. At a qualitative level,
our approach produces a smoother and less noisy segmentation that seems
to correlate better with the expected brain morphology. Compared with the
reference method, the improvement is mainly achieved by differences in the
segmentation of subcortical structure borders, the cortex and outer brain border.

We also observed other relevant improvements of our approach with respect
to the segmentation of the distinct GM and WM components that form the
brain parenchyma. In our experiments, the short interval error of the reference
method was three times as high for the GM and WM than for the parenchyma.
This suggests that the reference method is very inconsistent in estimating the
internal mixture of GM and WM components of the parenchyma and measures
differing volumes from each of the short interval scans. In contrast, our approach
has more similar levels of errors for the GM and WM components than for the
parenchyma, which suggests a much more consistent volume of the internal
GM/WM components from the parenchyma between short interval scans. We
also observed a remarkable WM atrophy rate correction effect due to the tissue
similarity regularization. In both of the considered datasets, the reference
method measured slightly higher levels of WM atrophy for the healthy controls
(HC) than for the AD patients, which does not make intuitive sense within
a generalized brain atrophy process. In contrast, we show that our proposed
regularized approach reverts this trend from the reference segmentations and
produces much more coherent rates of WM atrophy which are much higher for
the AD patients than for the HC controls. These two results suggest that the
regularization directly improves the segmentation and partial volume estimation
of the GM and WM tissues.

The main limitation of our approach is that we do not really control where or
how the regularization is affecting the tissue segmentation model. For instance,
we observed that, in some cases, nearby subcortical structures were merged by
our approach, which removed the WM interface between them. Most likely,
these thin WM channels were a large source of volume differences between short
interval scans and the regularization ended compromising the segmentation
accuracy to reduce volume variability.
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Chapter 8

Conclusions

In this chapter, we summarize the work accomplished and outline the main
contributions of this PhD thesis. We also discuss on future research that could
extend upon the novel ideas that have been explored in this thesis.

8.1 Contributions
The work done in this PhD has explored techniques and methods to extract
neuroimage markers relevant for prognosis and outcome prediction of brain
pathologies. In the following paragraphs, we provide the main conclusions and
contributions of this thesis.

• We have proposed two patch-based deep learning methods for stroke lesion
segmentation from MRI and CT imaging. In both of these approaches, we
have achieved state-of-the-art results by proposing novel ways to mitigate
the class imbalance, exploit brain symmetry features and post-process
the segmentation results. In our patch-based framework, we tackled the
class imbalance issue with a balanced training patch sampling along with
class balancing functions that improved the overall lesion segmentation
accuracy. We also proposed a way to utilize brain symmetry features for
stroke lesion segmentation within U-Net based architectures by using early
fusion of symmetrically augmented modalities. Within our implementation,
we can exploit distant symmetry features while using small patches and
also use a standard single-path U-Net architecture that avoids increasing
the number of trainable parameters. To adjust the model confidence,
variable thresholding combined with morphological post-processing allows
for improved sensitivity without a significant increase of false positives.
Furthermore, the use of uncertainty based filtering has refined lesion
borders and reduced the number of false positives.
The proposed 2D patch-based deep learning method for stroke core lesion
segmentation from CT perfusion is an improved version of the approach
we submitted to the ISLES 2018 challenge and that was among the onsite
challenge finalists. The approach presented in this thesis is an updated
version that is currently ranked 2nd in the ongoing testing leaderboard of
the ISLES 2018 challenge online platform and was published at Computers
in Biology and Medicine [JCR MCB IF 3.434, Q1(8/59)].
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The proposed 3D patch-based deep learning approach for stroke lesion
segmentation from multimodal MRI is currently ranked 1st in both of
the ongoing testing leaderboards for the SISS and SPES sub-tasks from
the ISLES 2015 challenge online platform and was published at Computer
Methods and Programs in Biomedicine [JCR CSTM IF 3.424, Q1(15/104)].

• We have analyzed the effect of WM lesions on a patch-based deep learning
method for brain tissue segmentation. In the reference method from which
we trained, the lesion had a global effect and shifted the partial volume
estimation for the whole image, producing large errors in the measured
volumes. Within our patch-based deep learning framework, we observed
that the lesion has both a global and local effect. The global effect is
introduced through changes on the input normalization parameters which
shift the input intensities of the whole image. The local effect is introduced
through changes in the segmentation probabilities of patches where the
WM lesion appears. To mitigate these, we have proposed the use of a
minmax normalization based on intensity percentiles to reduce the global
effect and the use of small patches to limit the spatial extent of the local
effect. Our deep learning approach shows a much smaller influence from
WM lesions on the measured volumes than the reference method used for
training.

• In addition, we have proposed a novel data-driven technique to minimize
the effect of WM lesions on deep learning based brain volumetry. The
use of a separate preprocessing step doing lesion filling or inpainting is
currently the gold standard technique to reduce the error introduced by
WM lesions. However, recently proposed state-of-the-art deep learning
techniques optimize inpainting through appearance or intensity based
metrics which do not consider the downstream segmentation task. In
our approach, we train the inpainting and tissue segmentation tasks in
an end-to-end fashion. By jointly optimizing both tasks, we obtain an
inpainting model that is also trained to aid in the segmentation task
through the gradients coming from the segmentation loss term. This
data-driven technique can adapt to the WM intensity profiles of the target
images and to the morphology and locations of WM lesions of the training
set. The error from WM lesions is reduced to almost negligible levels by
combining the use of small patches, the proposed input normalization and
the end-to-end multi-task training. This work is currently under a second
revision at Computerized Medical Imaging and Graphics [JCR RNMMI IF
4.790, Q1(27/314)]

• We have proposed a novel unsupervised segmentation-based deep learning
method for longitudinal brain atrophy quantification. In our patch-based
approach, we learn from a reference tissue segmentation method while
using data priors to regularize the training and avoid learning its errors
and biases. For this, we proposed a tissue similarity regularization which
penalizes volume differences between short interval scans during training.
The training data is generated in an unsupervised manner by using a
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fully automated tissue segmentation pipeline on unlabeled pairs of co-
registered short interval scans. In inference, the model segments one
image at a time in its native space, i.e. without any kind of image
interpolation. For longitudinal evaluation, the baseline and followup
images are independently segmented and then measures of change are
derived from the tissue volumes. The improvements in tissue segmentation
and partial volume estimation imprinted during training thanks to the
regularization translate to the longitudinal case and improve brain atrophy
quantification metrics. Despite being exclusively trained on the reference
method segmentations, we achieve much lower short interval error and
higher sensitivity to differences between healthy and AD patients thanks
to the tissue similarity regularization. The proposed approach achieves
state-of-the-art results and is the first unsupervised deep learning method
purposefully built for longitudinal brain atrophy quantification. This
work has been submitted to Medical Image Analysis [JCR CSAI IF 8.880,
Q1(5/133)].

During this PhD thesis, various collaborations have taken place with other
researchers of the VICOROB group. In particular, a deep learning approach for
hematoma segmentation in hemorrhagic stroke [58] which stemmed from the
project carried out with Dra. Yolanda Silva from Hospital Dr. Josep Trueta.
Other relevant collaborations include a study on the use of synthetic images
for MS lesion segmentation [59] and a contribution to a book chapter on deep
learning applications for medical image analysis [60]. Moreover, contributions to
on-site international MICCAI challenges were done for stroke lesion segmentation
in 2018 and 2022. In the ISLES 2018 challenge, the proposed method was among
the finalists and was presented on-site in the workshop.

8.2 Future work
Throughout the realization of this PhD thesis, some limitations and aspects of
our research were not fully developed or reaching out of scope and are left as
future work.

For instance, the symmetric modality augmentation proposed to exploit
brain symmetry features in stroke could also be considered for the segmentation
of brain lesions from other pathologies. In the literature, an assumption is
made that symmetry features are only useful on pathologies which mainly affect
one of the brain hemispheres, such as stroke. However, we believe that deep
learning methods can still take advantage from brain symmetry features even if
the opposing hemisphere contains pathological intensities, since these kind of
approaches can learn to ignore these during training.

Our deep learning framework for brain tissue segmentation has shown much
less influence from WM lesions than classical state-of-the-art approaches. More-
over, the proposed data-driven technique to further reduce the effect of WM
lesions on brain tissue segmentation achieves an almost negligible error on the
measured volumes. However, both of these studies have been performed with
artificial lesions made from registered binary lesion masks and with intensities
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sampled from a normal intensity distribution. To obtain more meaningful and
clinically relevant results, a more sophisticated and realistic way to generate
artificial WM lesions should be developed. For this, recent generative deep
learning techniques could be used such as conditional variational autoencoders
(VAEs) or generative adversarial networks (GANs). Moreover, inaccurate lesion
masks could be used during training to increase robustness to noisy ground
truth labels and to the pathological effects of lesions on surrounding tissue, such
as edema or mass effect.

In the presented longitudinal brain atrophy quantification method, we ap-
plied the tissue similarity regularization on the typically available short interval
scans which are used to evaluate the atrophy quantification error. These are
always acquired back-to-back with the same scanning parameters and without
repositioning of the patient. We believe that the tissue similarity regularization
could also be used to improve the robustness to changes of scanner, acquisition
protocol or patient repositioning. For this, the regularization would be applied
between multi-domain short interval scans, i.e. made using different scanners,
with diverse acquisition parameters and with inaccurate repositioning of the
patient. Multi-domain short interval scans performed in this way would still
hold the tissue similarity prior and could in theory be used to train the model
to measure more consistent tissue volumes across a diverse range of scanning
conditions. However, to the best of our knowledge, there are no readily available
datasets having multi-domain short interval scans made in this way. A possible
way to overcome the lack of this kind of data would be to explore the use of
artificially generated or interpolated data. However, since brain atrophy quan-
tification relies on very fine and accurate analysis of intensities, the usefulness
of synthesized or generated data should be carefully validated in real images.

Furthermore, we believe that the proposed data-driven technique to minimize
the effect of WM lesions could be combined within our longitudinal brain
atrophy quantification method to provide accurate atrophy measures even on
pathological cases with WM lesions. In this case, the multi-task double U-Net
architecture would be used along with the tissue similarity regularization acting
on pairs of short interval scans from healthy subjects with artificially added
WM lesions. However, training and evaluation of such a method would require
an extensive and diverse set of imaging data. For training, this method would
require unlabeled pairs of short interval scans from healthy subjects and also
from pathological ones having manually delineated WM lesion masks. Evaluation
would then be performed on short interval and longitudinal imaging of both
healthy and pathological subjects, with manually labeled WM lesion masks,
from a similar image domain as the training one.

Ultimately, the purpose of these image markers is to be used within prognostic
and functional outcome prediction tasks. We believe that future research should
focus on development of models trained and optimized to directly provide the
final predictive marker from a combination of these imaging markers along
with relevant clinical and patient data. Within these models, much higher
robustness and accuracy could be obtained through the use of end-to-end multi-
task optimization which would be explicitly trained to extract several image
markers as intermediate features within the predictive model. In this way, the
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extraction of different imaging markers would be coupled and directly optimized
towards improvement of the final prediction task. Moreover, higher levels of
interpretability could be achieved since the intermediate image markers can be
obtained as an additional output of the model and reviewed by physicians to
provide insights on what the model is taking into account to make its prediction.





93

Bibliography

[1] J. Redon et al. “Stroke mortality and trends from 1990 to 2006 in 39
countries from Europe and Central Asia: implications for control of high
blood pressure”. In: European Heart Journal 32.11 (2011), pp. 1424–1431.

[2] Bernd F. Tomandl et al. “Comprehensive Imaging of Ischemic Stroke with
Multisection CT”. In: RadioGraphics 23.3 (2003), pp. 565–592.

[3] Sunil A. Sheth et al. “Time to endovascular reperfusion and degree of
disability in acute stroke”. In: Annals of Neurology 78.4 (2015), pp. 584–
593.

[4] W. Serles et al. “Endovascular stroke therapy in Austria: a nationwide
1-year experience”. In: European Journal of Neurology 23.5 (2016), pp. 906–
911.

[5] Rakeshsingh K Singh et al. “Acute Ischemic Stroke Treatment Using
Mechanical Thrombectomy: A Study of 137 Patients.” In: Annals of
Indian Academy of Neurology 20.3 (2017), pp. 211–216.

[6] Jo Lane et al. “Multiple sclerosis incidence: A systematic review of change
over time by geographical region”. In: Multiple Sclerosis and Related
Disorders 63 (2022), p. 103932.

[7] Alan J Thompson et al. “Multiple sclerosis”. In: The Lancet 391.10130
(2018), pp. 1622–1636.

[8] Claudio Gasperini et al. “Unraveling treatment response in multiple scle-
rosis: a clinical and MRI challenge”. In: Neurology 92.4 (2019), pp. 180–
192.

[9] Zeinab Breijyeh and Rafik Karaman. “Comprehensive Review on Alzheimer’s
Disease: Causes and Treatment”. In: Molecules 25.24 (2020).

[10] Samaneh A. Mofrad et al. “Cognitive and MRI trajectories for prediction
of Alzheimer’s disease”. In: Scientific Reports 2021 11:1 11 (1 Jan. 2021),
pp. 1–10.

[11] Rahul S. Desikan et al. “Automated MRI measures predict progression to
Alzheimer’s disease”. In: Neurobiology of Aging 31 (8 Aug. 2010), pp. 1364–
1374.

[12] Yann Lecun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In:
Nature 521.7553 (2015), pp. 436–444.

[13] Y. LeCun et al. “Backpropagation Applied to Handwritten Zip Code
Recognition”. In: Neural Computation 1.4 (1989), pp. 541–551.



94 Bibliography

[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet clas-
sification with deep convolutional neural networks”. In: Communications
of the ACM 60.6 (2017), pp. 84–90.

[15] Di Lin et al. “Neural networks for computer-aided diagnosis in medicine:
A review”. In: Neurocomputing 216 (2016), pp. 700–708.

[16] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolu-
tional Networks for Biomedical Image Segmentation”. In: Medical Image
Computing and Computer-Assisted Intervention (MICCAI). 2015, pp. 234–
241.

[17] C Oppenheim et al. “Is there an apparent diffusion coefficient threshold in
predicting tissue viability in hyperacute stroke?” In: Stroke 32.11 (2001),
pp. 2486–91.

[18] Juan F Arenillas et al. “Prediction of early neurological deterioration using
diffusion- and perfusion-weighted imaging in hyperacute middle cerebral
artery ischemic stroke.” In: Stroke 33.9 (2002), pp. 2197–203.

[19] S. B. Coutts et al. “Reliability of Assessing Percentage of Diffusion-
Perfusion Mismatch”. In: Stroke 34.7 (2003), pp. 1681–1683.

[20] Carly S. Rivers et al. “Acute Ischemic Stroke Lesion Measurement on
Diffusion-weighted Imaging–Important Considerations in Designing Acute
Stroke Trials With Magnetic Resonance Imaging”. In: Journal of Stroke
and Cerebrovascular Diseases 16.2 (2007), pp. 64–70.

[21] Oskar Maier et al. “ISLES 2015 - A public evaluation benchmark for
ischemic stroke lesion segmentation from multispectral MRI”. In: Medical
Image Analysis 35 (2017), pp. 250–269.

[22] Chaolu Feng, Dazhe Zhao, and Min Huang. “Segmentation of Stroke
Lesions in Multi-spectral MR Images Using Bias Correction Embedded
FCM and Three Phase Level Set”. In: Proceedings of ISLES (SISS and
SPES) challenge. 2015.

[23] Halla-Leena Halme, Antti Korvenoja, and Eero Salli. “ISLES (SISS) chal-
lenge 2015: Segmentation of stroke lesions using spatial normalization,
Random Forest classification and contextual clustering”. In: Proceedings
of ISLES (SISS) challenge (2015), pp. 31–34.

[24] Oskar Maier, Matthias Wilms, and Heinz Handels. “Random forests for
acute stroke penumbra estimation”. In: Proceedings of ISLES (SPES)
challenge. 2015.

[25] Richard Mckinley et al. “Segmenting the ischemic penumbra: a spatial
Random Forest approach with automatic threshold finding”. In: Proceedings
of ISLES (SPES) challenge. 2015.

[26] Konstantinos Kamnitsas et al. “Multi-scale 3D convolutional neural net-
works for lesion segmentation in brain MRI”. In: Ischemic stroke lesion
segmentation 13 (2015), p. 46.

[27] Matthew Bobinski et al. “The histological validation of post mortem mag-
netic resonance imaging-determined hippocampal volume in Alzheimer’s
disease”. In: Neuroscience 95.3 (1999), pp. 721–725.



Bibliography 95

[28] Jennifer L Whitwell et al. “Neuroimaging correlates of pathologically
defined subtypes of Alzheimer’s disease: a case-control study”. In: The
Lancet Neurology 11.10 (2012), pp. 868–877.

[29] N. De Stefano et al. “Evidence of early cortical atrophy in MS”. In:
Neurology 60 (7 Apr. 2003), pp. 1157–1162.

[30] Katrin Morgen et al. “Evidence for a direct association between corti-
cal atrophy and cognitive impairment in relapsing–remitting MS”. In:
NeuroImage 30 (3 Apr. 2006), pp. 891–898.

[31] Richard A. Rudick et al. “Gray matter atrophy correlates with MS disability
progression measured with MSFC but not EDSS”. In: Journal of the
Neurological Sciences 282 (1-2 July 2009), pp. 106–111.

[32] Maria A. Rocca et al. “Brain MRI atrophy quantification in MS”. In:
Neurology 88 (4 Jan. 2017), pp. 403–413.

[33] Jaume Sastre-Garriga, Deborah Pareto, and Àlex Rovira. “Brain Atro-
phy in Multiple Sclerosis: Clinical Relevance and Technical Aspects”. In:
Neuroimaging Clinics 27 (2 May 2017), pp. 289–300.

[34] Hákon Gudbjartsson and Samuel Patz. “The Rician distribution of noisy
MRI data”. In: Magnetic resonance in medicine 34.6 (1995), pp. 910–914.

[35] Zografos Caramanos et al. “Gradient distortions in MRI: Characterizing
and correcting for their effects on SIENA-generated measures of brain
volume change”. In: NeuroImage 49.2 (2010), pp. 1601–1611.

[36] Kunio Nakamura et al. “Diurnal fluctuations in brain volume: statistical
analyses of MRI from large populations”. In: Neuroimage 118 (2015),
pp. 126–132.

[37] Daniel-Paolo Streitbürger et al. “Investigating structural brain changes of
dehydration using voxel-based morphometry”. In: (2012).

[38] Emma R. Mulder et al. “Hippocampal volume change measurement: Quan-
titative assessment of the reproducibility of expert manual outlining and
the automated methods FreeSurfer and FIRST”. In: NeuroImage 92 (2014),
pp. 169–181.

[39] Marco Battaglini, Mark Jenkinson, and Nicola De Stefano. “SIENA-XL
for improving the assessment of gray and white matter volume changes on
brain MRI”. In: Human Brain Mapping 39 (3 Mar. 2018), p. 1063.

[40] Stephen M. Smith et al. “Accurate, Robust, and Automated Longitudinal
and Cross-Sectional Brain Change Analysis”. In: NeuroImage 17 (1 Sept.
2002), pp. 479–489.

[41] Peter A. Freeborough and Nick C. Fox. “The boundary shift integral: An
accurate and robust measure of cerebral volume changes from registered
repeat MRI”. In: IEEE Transactions on Medical Imaging 16 (5 1997),
pp. 623–629.



96 Bibliography

[42] Yongyue Zhang, Michael Brady, and Stephen Smith. “Segmentation of
brain MR images through a hidden Markov random field model and the
expectation-maximization algorithm”. In: IEEE Transactions on Medical
Imaging 20 (1 Jan. 2001), pp. 45–57.

[43] Kunio Nakamura et al. “Jacobian integration method increases the sta-
tistical power to measure gray matter atrophy in multiple sclerosis”. In:
NeuroImage: Clinical 4 (Jan. 2014), pp. 10–17.

[44] Marco Battaglini, Mark Jenkinson, and Nicola De Stefano. “Evaluating
and reducing the impact of white matter lesions on brain volume measure-
ments”. In: Human Brain Mapping 33 (9 Sept. 2012), pp. 2062–2071.

[45] Michael Kistler et al. “The virtual skeleton database: an open access repos-
itory for biomedical research and collaboration.” In: Journal of medical
Internet research 15.11 (2013), e245.

[46] Roberto Souza et al. “An open, multi-vendor, multi-field-strength brain
MR dataset and analysis of publicly available skull stripping methods
agreement”. In: NeuroImage 170 (Apr. 2018), pp. 482–494.

[47] Olivier Commowick et al. “Objective Evaluation of Multiple Sclerosis
Lesion Segmentation using a Data Management and Processing Infrastruc-
ture”. In: Scientific Reports 8 (1 Dec. 2018), p. 13650.

[48] Aaron Carass et al. “Longitudinal multiple sclerosis lesion segmentation
data resource”. In: Data in Brief 12 (June 2017), pp. 346–350.

[49] Hugo J. Kuijf et al. “Standardized Assessment of Automatic Segmentation
of White Matter Hyperintensities and Results of the WMH Segmentation
Challenge”. In: IEEE Transactions on Medical Imaging 38 (11 Nov. 2019),
pp. 2556–2568.

[50] Ian B. Malone et al. “MIRIAD—Public release of a multiple time point
Alzheimer’s MR imaging dataset”. In: NeuroImage 70 (Apr. 2013), pp. 33–
36.

[51] R. Guerrero et al. “White matter hyperintensity and stroke lesion seg-
mentation and differentiation using convolutional neural networks”. In:
NeuroImage: Clinical 17 (2018), pp. 918–934.

[52] Tsung-Yi Lin et al. “Focal loss for dense object detection”. In: Proceedings
of the IEEE international conference on computer vision (2017), pp. 2980–
2988.

[53] Carole H. Sudre et al. “Generalised Dice overlap as a deep learning loss
function for highly unbalanced segmentations”. In: Deep Learning in
Medical Image Analysis and Multimodal Learning for Clinical Decision
Support (2017), pp. 240–248.

[54] Tanya Nair et al. “Exploring uncertainty measures in deep networks for
multiple sclerosis lesion detection and segmentation”. In: Medical image
analysis 59 (2020), p. 101557.



Bibliography 97

[55] Ewelina Marciniewicz et al. “The role of MR volumetry in brain atrophy
assessment in multiple sclerosis: A review of the literature.” In: Advances
in Clinical and Experimental Medicine: Official Organ Wroclaw Medical
University 28.7 (2019), pp. 989–999.

[56] Martin Rajchl et al. “NeuroNet: Fast and Robust Reproduction of Multiple
Brain Image Segmentation Pipelines”. In: arXiv preprint arXiv:1806.04224
(2018).

[57] Leonie Henschel et al. “FastSurfer - A fast and accurate deep learning
based neuroimaging pipeline”. In: NeuroImage 219 (Oct. 2020), p. 117012.

[58] Valeriia Abramova et al. “Hemorrhagic stroke lesion segmentation using a
3D U-Net with squeeze-and-excitation blocks”. In: Computerized Medical
Imaging and Graphics 90 (2021), p. 101908.

[59] Liliana Valencia et al. “Evaluating the use of synthetic T1-w images in new
T2 lesion detection in multiple sclerosis”. In: Frontiers in Neuroscience 16
(2022).

[60] Davide Bacciu, Paulo JG Lisboa, and Alfredo Vellido. Deep Learning In
Biology And Medicine. World Scientific, 2022.


	Acknowledgments
	Publications
	Contents
	Abstract. Resum. Resumen
	Chapter 1. Introduction
	Chapter 2. Thesis Context
	Chapter 3. Acute ischemic stroke lesion core segmentation in CT perfusion images using fully convolutionalneural networks
	Chapter 4. Acute and sub-acute stroke lesion segmentation from multimodal MRI
	Chapter 5. Minimizing the effect of white matter lesions on deep learning based tissue segmentation for brain volumetry
	Chapter 6. Improving segmentation-based brain atrophy quantification with unsupervised deep learning using tissue similarity regularization
	Chapter 7. Main results and discussion
	Chapter 8. Conclusions
	Bibliography



