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a b s t r a c t 

Background and objectives: Recent advances in Automated Insulin Delivery systems have been shown to 

dramatically improve glycaemic control and reduce the risk of hypoglycemia in people with type 1 dia- 

betes. However, they are complex systems that require specific training and are not affordable for most. 

Attempts to reduce the gap with closed-loop therapies using advanced dosing advisors have so far failed, 

mainly because they require too much human intervention. With the advent of smart insulin pens, one 

of the main constraints (having reliable bolus and meal information) disappears and new strategies can 

be employed. This is our starting hypothesis, which we have validated in a very demanding simulator. In 

this paper, we propose an intermittent closed-loop control system specifically intended for multiple daily 

injection therapy to bring the benefits of artificial pancreas to the application of multiple daily injections. 

Methods: The proposed control algorithm is based on model predictive control and integrates two patient- 

driven control actions. Correction insulin boluses are automatically computed and recommended to the 

patient to minimize the duration of hyperglycemia. Rescue carbohydrates are also triggered to avoid hy- 

poglycemia episodes. The algorithm can adapt to different patient lifestyles with customizable triggering 

conditions, closing the gap between practicality and performance. The proposed algorithm is compared 

with conventional open-loop therapy, and its superiority is demonstrated through extensive in silico eval- 

uations using realistic cohorts and scenarios. The evaluations were conducted in a cohort of 47 virtual 

patients. We also provide detailed explanations of the implementation, imposed constraints, triggering 

conditions, cost functions, and penalties for the algorithm. 

Results: The in-silico outcomes combining the proposed closed-loop strategy with slow-acting insulin ana- 

log injections at 09:00 h resulted in percentages of time in range (TIR) (70–180 mg/dL) of 69.5%, 70.6%, 

and 70.4% for glargine-100, glargine-300, and degludec-100, respectively, and injections at 20:00 h re- 

sulted in percentages of TIR of 70.5%, 70.3%, and 71.6%, respectively. In all the cases, the percentages of 

TIR were considerably higher than those obtained from the open-loop strategy, being only 50.7%, 53.9%, 

and 52.2% for daytime injection and 55.5%, 54.1%, and 56.9% for nighttime injection. Overall, the occur- 

rence of hypoglycemia and hyperglycemia was notably reduced using our approach. 

Conclusions: Event-triggering model predictive control in the proposed algorithm is feasible and may meet 

clinical targets for people with type 1 diabetes. 

© 2023 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Type 1 diabetes (T1D) is a chronic disease in which the beta 

ells of the pancreas fail to produce enough insulin. Insulin is 
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 hormone that helps glucose enter cells as a supply of energy. 

ithout sufficient insulin, excess glucose remains in the blood, 

ausing high blood glucose (BG) levels (i.e., hyperglycemia). If this 

isease is not treated correctly, it derives in acute complications 

uch as retinopathy, neuropathy, nephropathy, coronary heart dis- 

ase, and cerebrovascular disease [1,2] . Therefore, the lack of in- 

ulin should be compensated by the administration of exogenous 

nsulin to maintain healthy BG levels. To this end, multiple daily 

njection (MDI) therapy and continuous subcutaneous insulin infu- 
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ion, or insulin pump therapy, are commonly used for a patient to 

tay in normoglycemia (i.e., BG levels of 70–180 mg/dL). 

Over the last years, insulin pumps have attracted interest, 

specially with the development of artificial pancreas (AP) and 

losed-loop (CL) insulin technology [3] . Nevertheless, MDI therapy 

emains the most widely used treatment for people with T1D to 

atisfy their daily insulin needs [4] . The MDI therapy usually in- 

olves the subcutaneous administration of long-acting insulin to 

nsure basal insulin requirements along with the infusion of rapid- 

cting insulin boluses to minimize postprandial hyperglycemia [5] . 

he physician adjusts the therapy regularly according to the char- 

cteristics of the patient, who should execute it daily. The benefits 

f MDI therapy over other approaches, such as AP, are the free- 

om for patients from wearing insulin pumps or needing an exter- 

al device permanently attached to the body [6] . In MDI therapy, 

he patient is the controller and should make many daily decisions 

epending on their lifestyle. Consequently, there is a high risk of 

orgetting or miscalculating an insulin dose. 

The control performance is evaluated following current clini- 

al targets for continuous glucose monitoring (CGM). The consen- 

us guidelines define good performance being when the BG levels 

re below 54 mg/dL < 1% , below 70 mg/dL < 4% , time in range

TIR) 70 − 180 mg/dL > 70% , above 180 mg/dL < 25% , and above

50 mg/dL < 5% [7] . Therefore, people with T1D aim to maximize 

he TIR. However, the performance is often exchanged to ensure 

ero low BG levels (i.e., hypoglycemia) [8] . Hypoglycemia can oc- 

ur due to an imbalance between the administered insulin doses, 

xercise, diet, or other physiological phenomena [9] . Failure to cor- 

ectly manage hypoglycemia can lead to severe complications [10] , 

hus motivating more conservative control strategies. People with 

1D only have a handful of options to treat hypoglycemia symp- 

oms in free-living conditions to increase the BG concentrations 

o the normal level: 1) administration of exogenous glucagon or 

) consumption of fast-acting rescue carbohydrates (CHO). Regard- 

ng hyperglycemia, the most effective treatment is giving insulin 

oluses to correct the excess glucose in blood. 

Multiple control schemes and strategies have been utilized for 

esigning artificial pancreas systems for diabetes management, 

ith the primary ones being proportional-integral-derivative con- 

rol [11–13] and model predictive control (MPC), [14–17] . These 

tudies not only explore the pure form of the strategy but also its 

ultiple variants such as PD, zone MPC, adaptive MPC, etc. This as- 

ertion is supported by examining some of the leading AP systems 

n the market. For instance, the Minimed 770G system uses a PID 

lgorithm with insulin feedback and adaptive insulin restrictions, 

hile the 780G combines this strategy with an adaptive MPC. On 

he other hand, the CamAPS FX, Control IQ, Diabeloop, and Omni- 

od 5 systems use adaptive MPC algorithms [18–20] . 

These strategies have not been applied to conventional MDI 

herapy owing to the inherent therapy limitations: 1) a fully CL 

ystem is unreachable owing to a lack of a commanded actuator; 

nd 2) appropriate sensors and actuators for the therapy are un- 

vailable. In the last few years, smart insulin pens have been devel- 

ped, and CGM approaches have become readily available to most 

eople with T1D regardless of the adopted therapy. Compared with 

raditional syringes and vials, smart pens are more convenient, dis- 

reet in use, accurate for dosing, and suitably adherent [21] . Many 

f these marketed devices allow to keep track of the actions per- 

ormed by the patient because they communicate in real time with 

xternal devices that obtain information from CGM. These devel- 

pments have motivated the transition from AP algorithms to MDI 

herapies, which may enhance the glycemic performance by using 

ewly available information in controllers and supervision tools. 

In this study, we aimed to minimize hypoglycemic and hyper- 

lycemic episodes in patients with T1D receiving MDI therapy. For 

his purpose, we designed a CL system with two event-triggered 
2 
PC schemes. By introducing a CL strategy, the proposed system 

an dramatically reduce the daily decisions that people with T1D 

ake while increasing the TIR. The first controller is responsible 

or suggesting CHO intake to minimize the occurrence of hypo- 

lycemia. The second controller suggests corrective insulin boluses 

o decrease hyperglycemic exposure. The user can customize the 

ontroller constraints and values defined as hypoglycemic and hy- 

erglycemic limits according to their lifestyle and the number of 

aily control actions they are willing to handle. The controllers do 

ot run continuously but are triggered by conditions that can be 

onfigured by a physician based on the therapy goals and cost–

enefit to the patient. 

To validate the designed therapy, a cohort of 47 virtual patients 

nd the simulation scenario presented in [22] were used to com- 

are the reported open-loop (OL) results with the CL results ob- 

ained with the proposed MPC approach. By analyzing the in silico 

esults, the proposed therapy obtained a notable decrease in hy- 

erglycemic and hypoglycemic events and considerable increase in 

IR. A reduction in the coefficient of variation (CV) was also a re- 

arkable result when few control actions were performed daily. 

he proposed MDI therapy may meet the clinical targets estab- 

ished in [7] most of the time. 

. MPC schemes 

.1. Preliminaries 

We designed two event-triggered MPC schemes. Both con- 

rollers use an autoregressive model with exogenous input and 

ampling period t s = 5 min (see Section 2.2 ). The first controller 

see Section 2.3 ) is aimed at suggesting rescue CHO to minimize 

ypoglycemic events. To this end, we penalize BG levels below a 

ypoglycemic threshold and the BG level derivative. The second 

ontroller (see Section 2.4 ) determines insulin boluses to minimize 

yperglycemic excursions. Similarly, we penalize BG levels above 

 hyperglycemic threshold and BG variations. The controllers also 

mpose constraints on control signals u cho and u bolus : they cannot 

e negative because insulin or CHO removal from the system is 

nfeasible. Figure 1 shows the CL scheme implemented with the 

ontrollers. 

CL MPC is achieved by applying the first element, U 

opt 
1 

, of the 

ptimal and predicted control input trajectory { U 

opt 
1 

, . . . , U 

opt 
M 

} at 

imestep k . The elements are determined by solving the following 

ost function J: 

 U 

opt 
1 

, . . . , U 

opt 
M 

} := arg min J(y k , { U 1 , . . . , U M 

} ) (1)

.2. Prediction model 

An autoregressive model with exogenous input for BG level pre- 

iction is used for both controllers using MPC, as expressed in 

q. (2) [23] . 

 (q ) y (t) = B (q ) u (t) (2) 

here A (q ) and B (q ) are model polynomials. To identify the val-

es of the parameter vector in Eq. (2) , we use the recursive least 

quares algorithm [23] . For the controllers, we use a fourth-order 

utoregressive model with exogenous input (i.e., n a = 4 and n b = 

). We use the following exogenous inputs (see Eq. (3) ): basal in- 

ulin ( u basal ), bolus insulin ( u bolus ), and CHO on board ( COB ). 

(k ) = [ −y (k − 1) . . . − y (k − n a ) u basal (k − 1) 

 bolus (k − 1) COB (k − 1)] T 
(3) 

The initial values of ϕ, H p , and 

̂ θ are defined as indicated in 

13] . ̂ θ is not recalculated for the prediction horizon, that is, at 



E. Estremera, A. Beneyto, A. Cabrera et al. Computer Methods and Programs in Biomedicine 236 (2023) 107568 

Fig. 1. Diagram of closed loop control scheme. 
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ach timestep k after calculating ̂ θ , it does not vary within the pre- 

iction loop (see Eq. (4) ). 

 (k + i | k ) = ̂

 θ (k ) f or i = 1 , 2 , . . . , H p (4)

.3. MPC for CHO rescue 

MPC for recue CHO uses cost function J CHO given by 

 CHO = 

P ∑ 

k =1 

[
Q 1 (y k ) ̂  Z k 

2 + Q 2 

(
dy k 
dt 

)̂ V k 

2 

]
+ 

M ∑ 

k =1 

R u cho 
2 (5) 

ubject to 

̂ 

 k := min (y k − Z min , 0) ̂ 

 k := min (V k , 0) 

 cho = 

{
u cho ≤ u cho ≤ u cho if y ≤54 || y ≤70&[ ̂  y k +1 , · · · , ̂  y k +4 ] ≤ 54 

0 ≤ u cho ≤ u cho o therwise 

(6) 

here ̂ Z k is the glucose excursion below Z min (by default, Z min = 70 

g/dL), ̂ V k is the negative glucose derivative at timestep k , and 

 1 , Q 2 , and R are weights for optimization. Like in [15] , we set

he weights of Eq. (5) . Weight Q 1 (y ) applies to ̂ Z k and depends

n the BG level at timestep k (see Eq. (7) ). A level closer to Z min 

mplies a higher weight. On the other hand, weight Q 2 applies to ̂ 

 k and depends on glucose change rate at timestep k , as shown in 

q. (8) (see Fig. 2 ). In addition, R := 1 is the weight of the control

ction, and H p = 30 min and H c = 25 min. 

 1 (y ) = 

{ 

60 if y < 80 mg/dL 
20 if y > 120 mg/dL 

20 ∗ sin 

(
π
40 

(y + 20) 
)

+ 40 o therwise 
(7) 

 2 ( 
dy 
dt 

) = 

⎧ ⎨ ⎩ 

20 if dy 
dt 

< −1 mg/dL/min 

0 if dy 
dt 

> 0 mg/dL/min 

5 ∗ sin 

(
π
5 
(� y − 2 . 5) 

)
+ 15 o therwise 

(8) 
3 
Equation (6) includes constraints on control action u cho . Specif- 

cally, the suggested amount (in grams) of CHO cannot be neg- 

tive. Variables u cho and u cho represent the minimum amount of 

HO to suggest if severe hypoglycemia is present or expected in 

he next 20 min and the maximum amount accepted by the pa- 

ient, respectively. Both parameters can be customized to the pa- 

ient. 

Once the optimization problem is solved, the CHO control ac- 

ion is penalized by subtracting the CHO on board ( COB ), as shown

n Eq. (9) . Finally, u cho is quantified as shown in Eq. (10) . 

 = max (0 , u − COB ) (9) 
cho cho 
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Table 1 

Controller suggestion for 20 g of CHO 2 h after last meal and at BG level 

of 69 mg/dL. 

Type of food Usual portion Recommended serving 

Glucose Sport gel (40 g) 1/2 portion 

Tonic Glass (200 cm 

3 ) 1 portion 

Dried date Unit (10 g) 3 portions 

Drink cola or flavors Glass (200 cm 

3 ) 1 portion 

Maria cookie type Cookie (7 g) 4 portions 

Prince cookie type Cookie (15 g) 2 portions 

White bread Muffin (60 g) 2/3 portion 

Toast Unit (10 g) 3 portions 

Bread stick Unit (5 g) 6 portions 
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 cho = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 if u cho < 7 . 5 g 
10 g if 7 . 5 g ≤ u cho < 12 . 5 g 
15 g if 12 . 5 g ≤ u cho < 17 . 5 g 
20 g if 17 . 5 g ≤ u cho < 22 . 5 g 
25 g if 22 . 5 g ≤ u cho < 27 . 5 g 
30 g o therwise 

(10) 

ood library for rescue CHO 

The MPC scheme suggests the amount (in grams) of CHO that 

he patient should ingest to minimize the risk of hypoglycemia. For 

ractical control, the patient should receive notifications indicating 

ifferent rescue CHO options and the recommended servings. To 

his end, we provide a food library constructed with data retrieved 

rom [24] , which contains information on the glycemic index (GI) 

f multiple foods along with their usual servings and CHO con- 

ents. 

The GI is a measure of how quickly a food can raise the BG 

evels. Foods with a high GI tend to increase the BG level faster 

han those with a low value. The food library is classified according 

o high, medium, and low GIs, as listed in Table A.1 in Appendix A .

onsidering the dynamics of the GI, Eq. (11) is proposed for rescue 

HO selection from the food library. 

I = 

{ 

High if y ≤ 80 || 80 < y ≤ 85& � y ≤ −3 
Medium if 80 < y ≤ 85& � y > −3 || 85 < y ≤ 95& � y ≤ −4 
Low otherwise 

(11) 

Once the controller determines a CHO suggestion, various types 

f foods are available from the CHO MPC. First, the GI value is de- 

ermined according to Eq. (11) , and foods with similar GI are se- 

ected from the library ( Table A.1 ). Second, the serving of each se-

ected food is calculated according to the CHO control action. Fi- 

ally, the timespan from the previous meal is considered. Table 1 

llustrates a result received by a user after the controller is trig- 

ered and a CHO control action is generated. In this example, the 

ontroller recommends 20 g of CHO, the BG level is 69 mg/dL, and 

ore than 2 h have passed since the last meal of the user. 

.4. MPC for hyperglycemia minimization 

MPC for corrector insulin boluses uses cost function J CB given 

y 

 CB = 

H p ∑ 

k =1 

[ 
Q 3 Ž k 

2 + Q 4 V̌ k 

2 
] 

+ 

H c ∑ 

k =1 

R 1 u bolus 
2 (12) 

ubject to 

 ̌k := max (y k − Z max , 0) 

 ̌k := max (V k , 0) 
 ≤ [ u bolus ] ≤ u bolus 

� u ≤ � u bolus ≤ � u 

 

 (45 min ) ≥ ȳ 

(13) 
4 
here Ž k is the glucose excursion above Z max (by default, Z max = 

80 mg/dL), V̌ k is the positive glucose derivative at timestep k , and 

 3 , Q 4 , and R 1 are weights for optimization set to 40, 20, and 1,

espectively. We also set H p = 45 min and H c = 25 min. 

This controller can be customized by setting u bolus and ȳ , which 

re part of the imposed constraints and allow users to define a 

ess aggressive strategy when the risk of hypoglycemia increases. 

nce the optimization problem is solved, the correction bolus con- 

rol action is penalized by the currently estimated insulin on board 

 IOB ) (see Eq. (14) ). 

 bolus = max (0 , u bolus − IOB ) (14) 

. Event-triggered MPC 

In this section, we address the design of the event-triggering 

onditions for aperiodic MPC. The events are compliant with phys- 

ological responses and clinical safety. Each MPC scheme is trig- 

ered by different events, enabling the independent execution of 

oth control actions. The designed physiological conditions and 

vents for triggering control can be applied to any other control 

lgorithm for MDI therapy. 

Event E is defined as a conditional statement of the form 

f . . . , Then . . . , where the activation of the if statement may trig- 

er the solving of the MPC problem. We implement six types of 

vents according to the daytime and occurrence of hypoglycemia 

r hyperglycemia. 

 1 : if daytime & y k ≤ BG 

day 
CHO 

& r > 0 then u cho ← − U 

opt 

1 | k 
 2 : if nighttime & y k ≤ BG 

night 
CHO 

& � y ≤ BG 

change 
CHO 

then u cho ← − U 

opt 

1 | k 
 3 : if y k ≤ BG hypo then u cho ← − U 

opt 

1 | k 
 4 : if daytime & y k ≥ BG 

day 

bolus 
& s > 0 then u bolus ← − U 

opt 

1 | k 
 5 : if nighttime & y k ≥ BG 

night 

bolus 
& � y ≥BG 

change 

bolus 
then u bolus ← − U 

opt 

1 | k 
 6 : if y k ≥ BG hyper then u bolus ← − U 

opt 

1 | k 
 7 : if ! E 1 &! E 2 &! E 3 then u cho ← − 0 

 8 : if ! E 4 &! E 5 &! E 6 then u bolus ← − 0 

here BG 

day 
CHO 

, BG 

night 
CHO 

, BG 

change 
CHO 

, BG hypo , BG 

day 

bolus 
, BG 

night 

bolus 
, BG 

change 

bolus 
, and

G hyper are tuning parameters, and r and s are given by: 

 = 

H p +1 ∑ 

j=2 

I{ Y j − Y j−1 < 0 } (15) 

 = 

H p +1 ∑ 

j=2 

I{ Y j − Y j−1 > 0 } (16) 

ith Y = y k ∪ ̂

 Y = 

[
y k ˆ y k +1 · · · ˆ y k + H p 

]
being the measured 

nd predicted glucose values at timestep k . r and s are defined 

sing the notation I{} which refers to the indicator function. This 

athematical function takes the value of 1 when its argument sat- 

sfies a certain condition and 0 otherwise. Basically, r and s mon- 

tor the predicted glucose trend and will be greater than one if 

t least one increase in the prediction horizon is negative or posi- 

ive, respectively. Events 1–3 are designed to trigger MPC for CHO 

ngestion, whereas events 4–6 are designed to trigger MPC for cor- 

ection bolus. Events 7 and 8 represent cases where MPC is not 

riggered. Figure 3 shows the flowchart of event-triggered MPC. 

The conditions with the highest priority in terms of perfor- 

ance and clinical and patient safety are aimed to prevent pro- 

onged hypoglycemia. We impose a terminal condition for the hy- 

oglycemia trigger as E 3 . The events E 4 and E 5 must also be 

esigned to mitigate the aggressiveness of the strategy, for this, 

t is important to carefully assess the selection of the thresholds 

ecause the lower these are, the more risk of there will be hypo- 
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Fig. 3. Flowchart of event-triggered MPC. 
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Table 2 

Parameters used for in silico simulation. 

Controller Parameter Value 

Hypoglycemia MPC u cho 30 g 

u cho 20 g 

BG day 
CHO 

110 mg/dL 

BG night 
CHO 

85 mg/dL 

BG change 
CHO 

-1 mg/dL/min 

BG 
hypo 

70 mg/dL 

u bolus 4 u 

� U 0.5 u 

Hyperglycemia MPC BG day 

bolus 
165 mg/dL 

BG night 

bolus 
200 mg/dL 

BG change 

bolus 
1 mg/dL/min 

BG hyper 220 mg/dL 
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lycemia after a corrective bolus. Specific events for day and night 

re also defined owing to the nature of the control problem. Hence, 

he user can customize the triggering of events by setting different 

G thresholds according to their specific needs or willingness to 

eceive recommendations for tight control. 

. Scenario 

Different simulation environments for T1D have been reported 

25–28] . However, they are mainly intended to test continuous 

ubcutaneous insulin infusion instead of MDI. In [22] , a simula- 

or was presented with realistic and challenging scenarios for vir- 

ual patients with T1D undergoing continuous subcutaneous in- 

ulin infusion and MDI therapies. This simulator includes virtual 

atient generation and long-acting insulin analog models includ- 

ng glargine 100 U/mL (Gla-100), glargine 300 U/mL (Gla-300), and 

egludec 100 U/mL (Deg-100). In this study, we used the virtual 

ohort and simulated scenario from Estremera et al. [22] . 

The scenario in this study, different for each patient, consists 

f a 60-day simulation protocol with 3 daily meals of between 

0 and 60 g of CHO administered randomly between 06:30-11:30, 

1:30-16:30 and 16:30-21:30 h, respectively. A random misestima- 

ion in the CHO count is included in the range of ± 20% at all

eals. For the MDI simulation, we adjusted the therapy settings 

rom [22] (CHO ratios and basal slow-acting insulin for injections 

t 09:00 and 20:00 h). Table 2 lists the parameters defined in each 

ontroller for the in silico test. 

The implementation of the controllers and in silico tests were 

arried out in MathWorks MATLAB R2021a running in a computer 

quipped with an Intel(R) Core(TM) i7-4770 CPU at 3.40 GHz with 

6 GB of RAM. The YALMIP MATLAB Toolbox [29] was used along 

ith the Gurobi solver [30] for MPC execution. 
5 
. Results 

The proposed CL MDI therapy was simulated using three of the 

ost used slow-acting insulin analogs (i.e., Gla-10 0, Gla-30 0, and 

eg-100) and compared with the OL therapy presented in [22] . 

ables 3 , 4 , and 5 show the standardized CGM metrics [7] as the

edian (25th–75th percentiles). 

Tables 3 and 4 list the results for the three analogs with injec- 

ion times of 09:00 h and 20:00 h, respectively. Table 5 shows per- 

ormance data for both controllers. In addition, instances of rescue 

HO and correction boluses are detailed for all simulated cases. 

ombining the proposed CL strategy with slow-acting insulin ana- 

og injections at 09:00 h resulted in TIRs of 69.5%, 70.6%, and 70.4% 

or Gla-10 0, Gla-30 0, and Deg-10 0, respectively, and injections at 

0:00 h resulted in TIRs of 70.5%, 70.3%, and 71.6%, respectively. 

n all cases, the TIRs were considerably higher than those obtained 

rom the OL strategy of 50.7%, 53.9%, and 52.2% for daytime in- 

ection and 55.5%, 54.1%, and 56.9% for nighttime injection. Hypo- 

lycemia occurrence was minimized after the introduction of MPC 

or rescue CHO, as listed in Tables 3 and 4 . In most cases, the re-

orted performance satisfied the clinical targets. The reduction of 

ypoglycemia by the CHO MPC stands out. Glycemic variability was 

lso reduced with the introduction of the CL controllers compared 

o the OL sham results. 

Tables 3 and 4 also present the glycemic risk index (GRI) [31] . 

he GRI for the CL scheme is lower than that for the conventional 

L scheme. In most cases, the 75th percentile of therapy with CL 

ontrol is lower than the 25th percentile of therapy with OL con- 

rol. Figure 4 show GRI grids of hyperglycemia and hypoglycemia 

omponents for the cohort, OL, and CL CGM profiles. 

Figure 5 shows representative CGM trajectories, injection times, 

nd meals for 2 days of the cohort for one of the three analogs and

oth OL control and CL MPC. The figures indicate the physiological 

lausibility of the glucose trajectories and allow visual comparison 

f the control effects. 

. Discussion 

We introduce an event-triggered CL control strategy for MDI 

herapy comprising two MPC schemes, one for triggering sugges- 

ions of rescue CHO and the other for correction insulin boluses. 

he goal of this approach is minimizing the occurrence of hypo- 

lycemia and hyperglycemia while overcoming inherent burdens of 

DI therapy. 

Despite their limitations, in silico simulations are necessary 

hen testing algorithms before their deployment to patients in 

ree-living conditions. To perform realistic simulations, we used 

n existing simulator developed by our group with highly realis- 

ic scenarios and virtual patient dynamics [22] . For a comprehen- 

ive comparison, we used the same cohort and scenario from [22] . 
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Table 3 

In silico OL and CL control results for MDI therapy with long-acting insulin Gla-10 0, Gla-30 0, and Deg-10 0 injected at 

09:00 h. 

Indicator Gla-100 Gla-300 Deg-100 

OL CL OL CL OL CL 

Median CGM (mg/dL) 168 154 166 158 157 152 

(146–187) (146–169) ∗ (143–192) (145–167) ∗ (142–185) (141–168) 

CV (%) 46.4 35.9 43.8 34 46.7 35.2 

(41.9–52.2) (31.8–39.7) ∗ (38.6–49.9) (31.2–38.8) ∗ (40.7–52.2) (32.4–39.9) ∗

TAB > 250 (%) 13.7 4.2 10.9 3.9 10 4.2 

(7.2–21.3) (2.4–8.8) ∗ (5.1–23.3) (2.6–8.4) ∗ (5.4–20.4) (2.1–8.2) ∗

180 < TAB < 250 (%) 23.7 24.3 24 23.1 23.3 22.3 

(18.7–27.5) (18.6–26.5) (19.1–29.7) (17.4–27.1) (14.8–27.1) (15.2–29.1) 

70 < TIR < 180 (%) 50.7 70.2 53.9 70.6 52.2 70.4 

(42.7–59.5) (61.1–76.9) ∗ (42.1–63.4) (61.6–77.2) ∗ (42.4–62.3) (58.8–78.4) ∗

54 < TBR < 70 (%) 4.2 1.2 3.8 0.9 4.6 1.3 

(3.1–6) (0.8-1.9) ∗ (2.5-5.6) (0.7-1.4) ∗ (3.4–7.1) (0.7-1.9) ∗

TBR < 54 (%) 4.4 0.2 2.9 0.1 5.1 0.2 

(2.3–7) (0-0.8) ∗ (2–6.2) (0-0.6) ∗ (2.5–7.8) (0-0.8) ∗

GRI 68.2 30.5 60.9 29.6 71.4 31.9 

(57.9–81.5) (24.7–43.2) ∗ (48.6–76.8) (23.1–39.9) ∗ (51.8–85.8) (21.3–43) ∗

Values are reported as median, interquartile range (25th–75th percentile). ∗P < 0,05 (Wilcoxon signed-rank test). 

Table 4 

In silico OL and CL control results for MDI therapy with long-acting insulin Gla-10 0, Gla-30 0, and Deg-10 0 injected at 

20:00 h. 

Indicator Gla-100 Gla-300 Deg-100 

OL CL OL CL OL CL 

Median CGM (mg/dL) 171 159 165 158 164 159 

(148–187) (147–177) ∗ (155–188) (150–175) ∗ (150–197) (149–176) ∗

CV (%) 41.1 34.2 43.8 35.2 39.8 34.3 

(35.6–48.6) (30.4–39.3) ∗ (37.1–48.9) (30.7–39.2) ∗ (35.8–47.5) (30.8–37.9) ∗

TAB > 250 (%) 11.2 5 11.1 4.7 9.7 4.2 

(6.2–22.1) (3.2–11.1) ∗ (6.2–21.1) (2.8–10.2) ∗ (5–19.9) (2.7–10.6) ∗

180 < TAB < 250 (%) 24.7 22.7 25 24.4 24.7 22.6 

(18.7–31.1) (18.5–28.5) (21.2–31.3) (19.8–28.7) (17–32.2) (17.8–31.2) 

70 < TIR < 180 (%) 55.5 70.5 54.1 70.3 56.9 71.6 

(41.1–65.1) (58.3–76.2) ∗ (38.2–60.7) (55.8–74) ∗ (39.6–63.8) (58–78.1) ∗

54 < TBR < 70 (%) 2.7 0.7 3.4 0.8 3.4 0.9 

(1.4-4.4) (0.3-1.2) ∗ (2–4.8) (0.4-1.4) ∗ (1.6-5.7) (0.4-1.5) ∗

TBR < 54 (%) 1.4 0.1 2.4 0.2 1.8 0 

(0.6-3.6) (0-0.3) ∗ (1.1–4.2) (0-0.6) ∗ (0.7-4.6) (0-0.2) ∗

GRI 55 30.9 58.7 30.6 57.5 31.9 

(41–75.5) (23.9–45.4) ∗ (47.9–83.6) (25.4–46.1) ∗ (46.3–82.1) (22.4–40.9) ∗

Values are reported as median, interquartile range (25th–75th percentile). ∗P < 0,05 (Wilcoxon signed-rank test). 

Table 5 

Analysis of control action events. 

Indicator Gla-100 Gla-300 Deg-100 

09:00 h 20:00 h 09:00 h 20:00 h 09:00 h 20:00 h 

Instances 3917 1994 3125 2602 4696 2949 

CHO rescue (g/day) 18.9 10.1 15.1 12.7 22.8 15.6 

Rescue CHO (11.4–25) (3.3–13) (8–20.9) (6.5–16.3) (11.7–29.8) (4.7–16.7) 

events Instances per day 1.4 0.7 1.1 0.9 1.4 1 

(0.7-1.8) (0.3-0.9) (0.7-1.5) (0.5-1.2) (0.9-2.2) (0.3-1.2) 

Percentage night (%) 5.2 12.2 6 6.1 9.9 22.2 

Instances 5120 5213 5120 5407 4983 5329 

Insulin (U/day) 4 3.5 3.7 3.9 3.6 3.4 

Correction bolus (3–4.8) (1.9-4.7) (2.5-4.9) (2.5-4.8) (2.6-4.7) (2–4.4) 

events Instances per day 1.8 1.8 1.8 1.9 1.6 1.9 

(1.4-2.2) (1.2-2.5) (1.2-2.3) (1.3-2.5) (1.3-2.2) (1.2-2.2) 

Percentage night (%) 26.8 15 21.6 21.6 23.1 15.5 

Instances per day 3.1 2.6 2.9 2.8 3.2 2.9 

Values are reported as median, interquartile range (25th–75th percentile). 

6 



E. Estremera, A. Beneyto, A. Cabrera et al. Computer Methods and Programs in Biomedicine 236 (2023) 107568 

Fig. 4. GRI grid for cohort and all analogs in OL control and CL MPC. 

Fig. 5. CGM trajectories over 2 days of cohort generated for Deg-100 (median and 

interquartile range) for therapy with OL control and MPC: OL control (blue) and 

MPC (black) at 09:00 h and OL control (magenta) and MPC (red) at 20:00 h. The 

green squares represent meals. The gray rhombuses and triangles represent injec- 

tion times of 09:00 h and 20:00 h, respectively. 
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tatistical tests considering the p-values showed statistical signif- 

cance in most studied metrics when using our new approach. 

ence, the current standard of care under MDI therapy may be 

reatly benefited from the introduction of CL control. 

The proposed control actions led to a notable decrease in hypo- 

lycemia and hyperglycemia occurrence while increasing the TIR. 

ore importantly, the simulation results are in line with recom- 

ended clinical targets [7] . Additionally, Tables 3, 4 , and 5 and 

ig. 4 suggest that the injection time of the slow-acting insulin 

nalog does not considerably affect the outcomes. 

Constraints and cost functions were designed to achieve the 

linical targets by minimizing the number of daily interventions. 

able 5 shows that the median control effort required from the 

atient did not exceed three events per day. Therefore, the re- 

orted performance is achievable without an additional burden to 

he patient, and the patient can adapt the system to their needs. 

epending on each patient’s control goals and willingness to un- 

ergo more intense therapy, the parameters can be customized to 

ncrease the number of daily interventions and thus likely improve 

he CL control performance. 

The sampling time used was 5 min, representing a total of 288 

imes per day to run both controllers. For the following analysis 

he values are reported as median. The CHO controller is activated 
7 
.3% of the time (24 times), suggesting CHO approximately 1.3 

imes daily. The corrective bolus controller is activated 12.1% of the 

ime (35 times) and suggests boluses about 1.5 times daily. When 

he controllers are activated they use an average execution time of 

.4 s to solve the cost function. Given that they are executed about 

9 times in total, this represents an approximate daily computa- 

ional cost of 23.6 s. These data demonstrate that this approach 

mplementation substantially reduces the total computational cost. 

his presents advantages such as: 1) the reduction of energy con- 

umption, which means a decrease in the total energy consump- 

ion of the system since it makes less use of processing resources; 

) makes the controller more accessible for applications with lim- 

ted budgets; 3) makes the controller more easily scalable to larger 

nd more complex systems. 

“In [32] and [33] , a review of studies with AP systems is pre-

ented, which have demonstrated superiority over pump systems 

n OL. Both studies conclude that CL systems were superior to OL 

ystems in terms of glycemic control, particularly during the night, 

here they have proven to be very effective and safe. Nighttime 

eriods are characterized by not disturbing the system much. How- 

ver, there are still significant barriers to achieving daytime glu- 

ose control equal to nighttime while also reducing the burden of 

iabetes management during the day. This is due to the fundamen- 

al limitations of the control problem. A disturbance in the glucose 

evel is much faster than the response to control action, even if 

nticipatory control is used [32,33] . The proposed combination of 

L control with MDI therapy may provide a balanced alternative 

ith similar outcomes. While nighttime performance may decrease 

ompared to that achieved with AP, daytime performance could be 

aintained in similar ranges. Additionally, limitations of AP such 

s cost or the patient being free from devices attached to the body 

ould be addressed by using MDI, which may be attractive to many 

sers, such as athletes.”

To observe the behavior of the presented strategy and compare 

f it resembles what has been observed in the literature for APs 

ystems, we will evaluate its average TIR curve in 24 h. Figure 6 ,

hows the TIR over time of the day for the implemented CL MDI 

herapy, the behavior suggests that the proposed strategy may pro- 

ide a balanced alternative with behavior similar to that observed 

or APs. 

Despite not being a thorough comparison, the above mentioned 

esults encourage further research and testing of CL control for 

DI therapy. Additional clinical trials comparing both approaches 

n free-living conditions are required to assess the practical bene- 

ts of the proposed CL approach and identify the population group 

hat would obtain the maximum benefit. 

The in silico results of this study suggest that the proposed con- 

rollers can improve the outcomes of patients receiving MDI ther- 

py. However, clinical trials on free-living conditions are required 

o validate these results in practice. The main limitations of this 
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tudy include 1) the non-inclusion of physical exercise, 2) non- 

nclusion of a meal bolus calculator to improve the bolus behavior, 

nd 3) limitation on behavioral aspects of the patient as control 

ctuator for administering correction boluses and eating the rec- 

mmended dose of rescue CHO. On this last point, it is important 

o clarify that if the patient does not comply with or delays the 

ontrol actions, the degradation of this therapy will not be affected 

eyond the performance of MDI therapy in OL. 

. Conclusion 

We developed two event-triggered MPC schemes for MDI ther- 

py in people with T1D. The proposed control algorithms trans- 

ate technology from the AP to MDI therapy to exploit its benefits. 

he flexible and general framework provided by MPC allows to in- 

orporate constraints and enables users to seamlessly adjust the 

aily intervention. In silico results indicate that if the control ac- 

ions are followed, an improvement over conventional MDI therapy 

s guaranteed, even attaining clinical targets. Future work will in- 

olve clinical evaluations in free-living conditions of the proposed 

pproach. 
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Apple Medium unit (200 g)

Peach Medium unit (100 g)

Tangerine Medium unit (100 g)

Whole yogurt Unit (125 mL) 

Whole milk Glass or cup (200 mL

Natural yogurt Unit (125 mL) 

Skimmed yogurt or fruit Unit (125 mL) 

Natural or unsweetened fruit juice Glass or brick (200 c

Jam Soup spoon (25 g) 

Biscuit/ladyfingers Individual commercia

Ice Cream Medium ball (100 g)

Condensed milk Soup spoon (20 g) 

Digestive biscuit Unit (11 g) 

Raisin Handful closed hand 

Toasted chestnut Unit (10 g) 

Melon Medium slice(200 g)

Commercial juice Glass or brick(200 cm

Glucose Sport gel (40 g) 

Tonic Glass or bottle (200 

Date Unit (12 g) 

Dried date Unit (10 g) 

Energy drink Can (250 cm 

3 ) 

Soft drink (cola or flavors) Glass (200 cm 

3 ) 

Maria cookie type Cookie (7 g) 

Prince cookie type Cookie (15 g) 

Potato chips Small bag (30 g) 

Isotonic drink Can (330 cm 

3 ) 

Energy bar Unit (20 g) 

Sliced bread Sliced (25 g) 
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Bread sticks Unit (5 g) 
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ppendix A. Rescue CHO food library 
Serving with 5 g of CHO GI 

1/6 Low 

 1/4 Low 

1/4 Low 

 1/2 Low 

 1/4 Low 

 1/2 Low 

 1/2 Low 

1/3 Low 

) 1/2 Low 

1 Low 

1/2 Low 

m 

3 ) 5/8 Low 

2/5 Medium 

l unit (25 g) 2/5 Medium 

 1/4 Medium 

1/2 Medium 

5/7 Medium 

(20 g) 3/8 Medium 

5/4 Medium 

 1/2 Medium 

 

3 ) 5/8 Medium 

1/8 High 

cm 

3 ) 1/4 High 

5/8 High 

3/4 High 

1/6 High 

1/4 High 

1 High 

1/2 High 

1/3 High 

1/5 High 

2/5 High 

2/5 High 

1/6 High 

3/4 High 

3/2 High 
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