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A B S T R A C T   

We report here a transition metal-free synthesis of quinazoline derivatives starting from 2-aminobenzyl alcohols 
and aryl amides via an alcohol dehydrogenation strategy promoted by potassium tertiary butoxide. The control 
experiments are carried out to identify the reaction intermediates and the role of the K+ ion in the reaction. The 
DFT calculations unveil the reaction mechanism, with special focus on the rate determining state. The present 
method tolerates a variety of functional groups providing easy access to diversely substituted quinazolines.   

1. Introduction 

Quinazolines are a class of nitrogen-containing heterocyclic com-
pounds [1], that are widely found in natural products [2] and used in 
pharmaceutical industries (Fig. 1), particularly as anti-bacterial [3], 
anti-fungal [4], anti-inflammatory [5], antimalarial [6], anti-tumor [7], 
anti-viral [8], anti-tuberculosis [9], anti-hypertension [10], anti-obesity 
[11], anti-psychotic [12], anti-diabetic [13] agent. Additionally, their 
inhibitory effects on thymidylate synthase [14], poly-(ADP-ribose) po-
lymerase (PARP) [15], and tyrosine kinase [16] are well documented. 
Several quinazoline derivatives are used as approved drugs, for instance, 
prazosin hydrochloride, doxazosin mesylate, and terazosin hydrochlo-
ride [17]. Thus, with significant biological activities, quinazoline de-
rivatives have received the utmost importance in organic synthesis and 
medicinal chemistry research. 

In recent years, several procedures have been developed for the 
synthesis of quinazoline derivatives. Most of the methods are based on 
either oxidative condensation or coupling reactions [18–27]. However, 
they are associated with severe drawbacks, such as the use of chemically 
unstable o-aminobenzaldehyde as the reactant [28], more than stoi-
chiometric amounts of hazardous oxidants [29], generation of a large 
quantity of hazardous waste [30], etc. Thus, an efficient method, using 
benign chemicals under eco-friendly mild reaction conditions and 
without producing much waste, is well appreciated. 

In this context, acceptorless dehydrogenative coupling (ADC) re-
actions have emerged as an efficient tool for synthesizing diverse 

heterocyclic compounds [31,32], from relatively inexpensive and 
readily available starting materials [33,34]. The only by-products 
generated in this type of reaction are hydrogen and water [35–37], 
which makes the strategy environmentally benign. One prominent 
example in this category is the dehydrogenation of alcohols followed by 
coupling with a suitable reagent [38]. The above strategy has been 
extended for the synthesis of substituted quinazoline derivatives (see 
Scheme 1) by several research groups. For example, Paul and coworkers 
disclosed the synthesis of aryl quinazoline by nickel-catalyzed alcohol 
dehydrogenation followed by condensation with 2-aminobenzylamine 
[39]. In similar reports, Balaraman and co-workers revealed the syn-
thesis of quinazoline using 2-aminobenzyl alcohol and amides as re-
actants and the manganese pincer complex as a catalyst in the presence 
of 0.4 equivalents of potassium‑tert-butoxide (KOtBu) [40]. 

In general, 2-aminobenzyl alcohols are found to undergo alcohol 
dehydrogenation to form 2-amino benzaldehyde as an intermediate that 
coupled with amide [40] or nitrile [41–43], resulting in the formation of 
quinazoline derivatives. In another report, Li and coworkers showed 
that iron and phenanthroline catalyst systems combined with CsOH⋅H2O 
as a base could be used for the same transformation [44]. 

Despite economic, environmental, and operational benefits, accept-
orless dehydrogenative coupling reactions mainly depend on the use of 
transition metals e.g., Mn [45–49], Fe [50,51], Ni [52–54], Co [55–59], 
Ir [60–63], Ag [64], Rh [65], Ru [66,67], Os [68], or Pt [69], as the 
catalysts. In addition to that, the requirement of an expensive and 
hazardous ligand system [70], prolonged reaction time, and low yield of 
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products are the other limitations [71]. 
The use of heavy transition metals in organic reactions have posed 

some serious limitations as many of these metals are in general haz-
ardous to the environment, expensive, and scarce in nature [72,73]. 
Similarly, the ligands used in these reactions are generally difficult to 
prepare and expensive. Moreover, metal and ligand contamination 
especially in pharmaceutical products are closely regulated. Hence, 
transition metal-free protocols are gaining tremendous importance in 
overcoming these challenges [74–76]. The base-mediated β-alkylation 
of alcohols in aerobic conditions is well known [77]. In line with het-
erogeneous bases have been demonstrated as catalysts for dehydro-
genative processes [78–81], the use of potassium‑tert-butoxide in 
dehydrogenation is not new and was reported by Grubbs and coworkers 
in the silylation of C–H bonds in aromatic heterocycles [82]. Later Yu 
and his group disclosed potassium tert‑butoxide-promoted acceptorless 
dehydrogenation of N-heterocycles [83]. Recently potassium‑tert-but-
oxide mediated direct synthesis of amides from alcohol was reported by 
Fang and co-workers via an MPV-type hydrogen transfer process [84]. 
Thus, to overcome the aforementioned challenges involved in transition 
metal catalysis and to meet the requirement of improved transition 
metal free protocols in heterocyclic chemistry [85–94], we report here a 
simple and straightforward method for synthesizing 2-arylquinazoline 
derivatives by dehydrogenative coupling between 2-aminobenzyl 
alcohol and an amide in the presence of KtOBu. The experimental pro-
cedure is very simple and straightforward, does not involve any transi-
tion metal catalyst [95]. A mixture of 2-aminobenzyl alcohol and 
benzamide in t-amyl alcohol was stirred at 100 ◦C in the presence of 
KtOBu for a required period of time (TLC). Standard workup and 

purification by column chromatography afforded the product. 

2. Experimental section 

General procedures for the synthesis of quinazoline. A mixture of 
aryl amide (0.5 mmol), 2-aminobenzyl alcohol (0.75 mmol), and KOtBu 
(1.0 mmol) in 2 mL t-amyl alcohol was heated at 100 ◦C under argon 
atmosphere for 16 h in a preheated heating block. After completion of 
the reaction, the reaction vessel was cooled to room temperature and 
diluted with 10 mL ethyl acetate. The reaction mixture was then filtered 
using celite. The filtrate was dried using a rotary evaporator, volatile 
impurities were removed under vacuum, and further purification of the 
product had been carried out by column chromatography using silica gel 
as stationary phase and hexane and ethyl acetate as eluent. The purified 
products are characterized by IR and 1H NMR and 13C NMR 
spectroscopy. 

2-(p-tolyl)quinazoline (3a, Table 2). Eluent: Hexane/Ethyl acetate 
(25:1), Yellow solid (91%); IR (KBr) 1548, 1557, 1480, 1382, 1012, 833, 
790, 729 cm− 1; 1H NMR (500 MHz, CDCl3) δ 9.34 (s, 1H), 8.43 (d, J =
8.2 Hz, 2H), 7.99 (d, J = 8.4 Hz, 1H), 7.80–7.77 (m, 2H), 7.48 (t, J = 7.4 
Hz, 1H), 7.26–7.16 (m, 2H), 2.35 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 
161.2, 160.6, 150.8, 141.0, 135.3, 134.2, 129.5, 128.7, 128.6, 127.2, 
127.3, 123.6, 21.6. 

2-(4-chlorophenyl)quinazoline (3b, Table 2). Eluent: Hexane/Ethyl 
acetate (20:1), Yellow solid (83%); IR (KBr) 1549, 1494, 1411, 1087, 
1005, 853, 792, 722, 457 cm− 1; 1H NMR (500 MHz, CDCl3) δ 9.36 (s, 
1H), 8.49 (dt, J = 9.0, 2.2 Hz, 2H), 8.01–7.99 (m, 1H), 7.85–7.81 (m, 
2H), 7.55–7.52 (m, 1H), 7.41 (dt, J = 9.1, 2.1 Hz, 2H); 13C NMR (125 

Fig. 1. Selected Examples of Pharmaceutically Important Quinazoline Containing Molecules.  

Scheme 1. Synthesis of Quinazoline Using Alcohol Dehydrogenation Method.  
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MHz, CDCl3) δ 160.4, 159.9, 150.5, 136.8, 136.4, 134.2, 129.8, 128.7, 
128.5, 127.4, 127.1, 123.5. 

2-(2,4-dichlorophenyl)quinazoline (3c, Table 2). Eluent: Hexane/ 
Ethyl acetate (10:1), Yellow solid (72%); IR (KBr) 1531, 1491, 1409, 
1376, 840, 772, 451 cm− 1; 1H NMR (500 MHz, CDCl3) δ 9.45 (s, 1H), 
8.05 (d, J = 8.4 Hz, 1H), 7.91 (t, J = 8.5 Hz, 2H), 7.74 (d, J = 8.4 Hz, 
1H), 7.64 (s, 1H), 7.49 (d, J = 1.7 Hz, 1H), 7.33 (dd, J = 8.2, 1.7 Hz, 1H); 
13C NMR (125 MHz, CDCl3) δ 160.7, 160.3, 150.2, 135.8, 135.7, 134.7, 
133.9, 132.8, 130.4, 128.5, 128.4, 127.2, 127.1, 123.2, 77.2, 77.0, 76.7. 

2-(2-chlorophenyl)quinazoline (3d, Table 2). Eluent: Hexane/Ethyl 
acetate (20:1), Yellow solid (72%); IR(KBr) 1535, 1385, 1035, 948, 764, 
719 cm− 1; 1H NMR (500 MHz, CDCl3) δ 9.50 (s, 1H), 8.10 (d, J = 8.6 Hz, 
1H), 7.96–7.91 (m, 2H), 7.78–7.76 (m, 1H), 7.68–7.64 (m, 1H), 
7.49–7.47 (m, 1H), 7.35 (dt, J = 4.8, 2.2 Hz, 2H); 13C NMR (125 MHz, 
CDCl3) δ 161.9, 160.2, 150.2, 138.2, 134.3, 132.8, 131.7, 130.5, 130.3, 
128.5, 128.0, 127.1, 126.8, 123.2. 

2-(3-bromophenyl)quinazoline (3e, Table 2). Eluent: Hexane/Ethyl 
acetate (20:1), Yellow solid (86%); IR (KBr) 1549, 1494, 1100, 1005, 
849, 792, 722 cm− 1; 1H NMR (500 MHz, CDCl3) δ 9.40 (s, 1H), 8.73 (t, J 
= 1.8 Hz, 1H), 8.49 (dd, J = 7.8, 1.1 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 

7.89–7.86 (m, 2H), 7.59–7.55 (m, 2H), 7.34 (t, J = 7.8 Hz, 1H); 13C NMR 
(125 MHz, CDCl3) δ 160.6, 159.6, 150.7, 140.1, 134.3, 133.5, 131.6, 
130.1, 128.7, 127.7, 127.2, 127.1, 123.7, 122.9. 

2-(4-bromophenyl)quinazoline (3f, Table 2). Eluent: Hexane/Ethyl 
acetate (20:1), Yellow solid (81%); IR (KBr) 1555, 1549, 1489, 1100, 
1005, 849, 790 cm− 1; 1H NMR (500 MHz, CDCl3) δ 9.37 (s, 1H), 8.43 
(dd, J = 6.8, 2.0 Hz, 2H), 8.00 (dd, J = 8.4, 1.0 Hz, 1H), 7.86–7.83 (m, 
2H), 7.60–7.55 (m, 3H); 13C NMR (125 MHz, CDCl3) δ 160.5, 160.1, 
150.7, 137.0, 134.3, 131.8, 130.1, 128.6, 127.5, 127.2, 125.4, 123.6 

2-phenylquinazoline (3g, Table 2). Eluent: Hexane/Ethyl acetate 
(25:1), Yellow solid (93%); IR (KBr), 1617, 1578, 1546, 1480, 1442, 
1382, 778, 701 cm− 1 .1H NMR (500 MHz, CDCl3) δ 9.39 (s, 1H), 
8.55–8.53 (m, 2H), 8.02 (d, J = 8.6 Hz, 1H), 7.85–7.81 (m, 2H), 7.53 (t, 
J = 7.4 Hz, 1H), 7.48–7.41 (m, 3H). 13C NMR (125 MHz, CDCl3) δ 161.0, 
160.6, 150.8, 138.0, 134.3, 130.8, 128.7, 128.8, 127.4, 127.2, 123.6. 

2-(p-methoxyphenyl)quinazoline (3h, Table 2). Eluent: Hexane/Ethyl 
acetate (10:1), Yellow solid (91%); IR (KBr) 1549, 1407, 1327, 1242, 
1046, 805, 788 cm− 1; 1H NMR (500 MHz, CDCl3) δ 9.33 (s, 1H), 8.50 
(dd, J = 6.9, 2.1 Hz, 2H), 7.96 (dd, J = 8.4, 0.8 Hz, 1H), 7.81–7.77 (m, 
2H), 7.50–7.47 (m, 1H), 6.97 (dd, J = 6.9, 2.1 Hz, 2H), 3.82 (s, 3H); 13C 

Table 1 
Optimization of the Reaction Conditions.  

a Reaction conditions: 2-aminobenzyl alcohol (0.75 mmol), amide (0.5 mmol), base (1 mmol), solvent (2 
mL), under Ar. b Yield was calculated by NMR spectroscopy using 1,4 dimethoxybenzene as the internal 
standard. 
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NMR (125 MHz, CDCl3) δ 161.8, 160.9, 160.4, 150.8, 134.0, 130.7, 
130.2, 128.4, 127.1, 126.8, 123.3, 114.0, 55.4. 

2-(3-methoxyphenyl)quinazoline (3i, Table 2). Eluent: Hexane/Ethyl 
acetate (10:1), White solid (87%); IR(KBr) 1546, 1407, 1328, 1242, 
1046, 805 cm− 1; 1H NMR (500 MHz, CDCl3) δ 9.33 (s, 1H), 8.51–8.48 
(m, 2H), 7.96 (dd, J = 8.4, 0.8 Hz, 1H), 7.81–7.77 (m, 2H), 7.50–7.47 
(m, 1H), 6.98–6.95 (m, 2H), 3.82 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 
160.5, 160.3, 159.9, 150.4, 139.1, 134.2, 129.5, 128.4, 127.3, 127.0, 
123.5, 121.1, 117.2, 112.9, 55.3. 

2-(3-nitrophenyl)quinazoline (3j, Table 2). Eluent: Hexane/Ethyl ac-
etate (5:1), Yellow solid (70%); IR (KBr) 1554, 1390, 1199, 1046, 722 
cm− 1; 1H NMR (500 MHz, CDCl3) δ 9.44 (t, J = 2.1 Hz, 2H), 8.92–8.90 
(m, 1H), 8.28 (dq, J = 8.2, 1.1 Hz, 1H), 8.07 (d, J = 8.4 Hz, 1H), 
7.92–7.89 (m, 2H), 7.65–7.61 (m, 2H); 13C NMR (125 MHz, CDCl3) δ 
175.8, 175.3, 159.8, 157.7, 149.6, 147.9, 138.9, 133.6, 133.2, 128.5, 
127.8, 127.1, 126.2, 124.0, 123.0, 122.6. 

2-(pyridin-3-yl)quinazoline (3k, Table 2). Eluent: Hexane/Ethyl ace-
tate (4:1), Orange solid (90%); IR (KBr) 3277, 1614, 1569, 1484, 805, 
694 cm− 1; 1H NMR (500 MHz, CDCl3) δ 9.70 (s, 1H), 9.33 (s, 1H), 8.75 
(d, J = 7.8 Hz, 1H), 8.62 (d, J = 3.8 Hz, 1H), 7.96 (d, J = 8.8 Hz, 1H), 
7.82–7.79 (m, 2H), 7.52 (t, J = 7.4 Hz, 1H), 7.35 (dd, J = 7.6, 4.8 Hz, 
1H); 13C NMR (125 MHz, CDCl3) δ 159.6, 157.9, 149.7, 149.5, 148.8, 

135.0, 133.4, 132.6, 127.5, 126.8, 126.1, 122.7, 122.5. 
2-isopropylquinazoline (3l, Table 2). Eluent: Hexane/Ethyl acetate 

(20:1), Yellow viscous liquid (88%); IR (KBr) 2954, 1614, 1580, 1494, 
1415, 764, 609 cm-1; 1H NMR (500 MHz, CDCl3) δ 9.29 (s, 1H), 7.93 (d, 
J = 8.6 Hz, 1H), 7.80 (t, J = 8.3 Hz, 2H), 7.51 (t, J = 7.4 Hz, 1H), 
3.35–3.30 (m, 1H), 1.38–1.33 (m, 6H); 13C NMR (125 MHz, CDCl3) δ 
171.7, 160.6, 150.3, 134.1, 128.0, 127.2, 127.0, 123.3, 38.0, 21.9. 

2-phenylpyrido[2,3-d] pyrimidine (3m, Table 2). Eluent: Hexane/ 
Ethyl acetate (4:1), Yellow solid (79%); IR (KBr) 1614, 1569, 1484, 
1478, 800, 708 cm− 1; 1H NMR (500 MHz, CDCl3) δ 9.47 (s, 1H), 9.21 (d, 
J = 2.1 Hz, 1H), 8.68–8.66 (m, 2H), 8.26 (dd, J = 8.0, 1.9 Hz, 1H), 
7.76–7.74 (m, 1H), 7.48–7.44 (m, 3H), 7.37 (t, J = 7.8 Hz, 1H); 13C NMR 
(125 MHz, CDCl3) δ 157.2, 148.1, 139.5, 136.7, 129.6, 129.2, 128.7, 
127.5, 127.4, 126.2, 118.9. 

6,7-dimethoxy-2-phenylquinazoline (3n, Table 2). Eluent: Hexane/ 
Ethyl acetate (10:1), Yellow solid (79%); IR (KBr) 1545, 1409, 1325, 
1239, 1046, 805 cm− 1; 1H NMR (500 MHz, CDCl3) δ 9.08 (s, 1H), 
8.40–8.38 (m, 2H), 7.36–7.32 (m, 3H), 7.26 (s, 1H), 6.97 (s, 1H), 3.93 (s, 
3H), 3.89 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 159.9, 156.9, 156.8, 
150.7, 149.1, 137.6, 130.6, 128.7, 128.3, 119.3, 106.6, 104.0. 

2-(3-bromophenyl)− 6,7-dimethoxypyrido[2,3-d] pyrimidine (3o, 
Table 2). Eluent: Hexane/Ethyl acetate (10:1), Yellow solid (71%); IR 

Table 2 
Substrate Scope.  

aReaction conditions: 2-aminobenzyl alcohol (0.75 mmol), amide (0.5 mmol), base (1 mmol), solvent (2 
ml), at 100 ◦C under Ar for 16 h. b Yields refer to those of pure products characterized by IR. 
1H NMR, and 13C NMR spectroscopic data. 
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(KBr) 1545, 1414, 1325, 1236, 1046, 805, 722 cm-1; 1H NMR (500 MHz, 
CDCl3) δ 9.13 (s, 1H), 8.65 (t, J = 1.7 Hz, 1H), 8.40 (dt, J = 7.8, 1.2 Hz, 
1H), 7.52 (dq, J = 7.8, 1.0 Hz, 1H), 7.32–7.29 (m, 2H), 7.04 (s, 1H), 4.02 
(s, 3H), 3.97 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 157.4, 156.1, 155.4, 
149.7, 147.6, 139.4, 131.9, 130.1, 129.0, 125.6, 121.9, 118.6, 105.8, 
102.9, 55.5, 55.3. 

6,7-dimethoxy-2-(3-methoxyphenyl) pyrido[2,3-d] pyrimidine (3p, 
Table 2). Eluent: Hexane/Ethyl acetate (5:1), Yellow solid (73%); IR 
(KBr) 1554, 1544, 1325, 1240, 1046, 799 cm− 1; 1H NMR (500 MHz, 
CDCl3) δ 9.12 (s, 1H), 8.07 (dd, J = 7.6, 1.1 Hz, 1H), 8.04 (q, J = 1.3 Hz, 
1H), 7.34 (t, J = 7.9 Hz, 1H), 7.29 (s, 1H), 7.01 (s, 1H), 6.96 (d, J = 1.7 
Hz, 1H), 4.00 (s, 3H), 3.95 (s, 3H), 3.86 (s, 3H); 13C NMR (125 MHz, 
CDCl3) δ 159.0, 158.7, 156.0, 155.2, 149.4, 147.6, 138.8, 128.5, 119.7, 
118.4, 115.8, 111.6, 105.9, 102.9, 55.4, 55.2, 54.4. 

Computational Details: DFT static calculations were performed with 
the Gaussian16 set of programs [96], using the BP86 functional of Becke 
and Perdew [97–99], including corrections due to dispersion through 
the Grimme’s method (GD3 keyword in Gaussian16) [100,101]. The 
electronic configuration of the molecular systems was described with 
the double-ζ basis set with the polarization of Ahlrichs for main-group 
atoms (def2-SVP keyword in Gaussian) [102]. The geometry optimiza-
tions were performed without symmetry constraints, and analytical 
frequency calculations confirmed the character of the located stationary 
points. These frequencies were used to calculate unscaled zero-point 
energies (ZPEs) as well. Energies at 373.15 K were obtained by 
single-point calculations on the optimized geometries with the M06-D3 
functional [103,104]. and the triple-ζ basis set def2-TZVPP and by 
estimating solvent effects with and estimation of solvent effects with the 
universal solvation model SMD of Cramer and Truhlar for amyl alcohol 
[105]. The reported Gibbs energies in this work include electronic 

energies obtained at the M06-D3/def2-TZVPP 
(smd)//BP86-D3/def2-SVP level of theory corrected with zero-point 
energies, thermal corrections and entropy effects computed with the 
BP86-D3/def2-SVP level. 

3. Results and discussion 

To optimize the reaction conditions, the reaction was studied with 
various reaction parameters such as reaction temperature, time, sol-
vents, and the amount of base used, and the results are summarized in 
Table 1. Similarly, the ratio of the reactant was also standardized and 
reported in the supporting information. It was found that the maximum 
yield of the product was obtained with one equivalent of benzamide, 1.5 
equivalents of 2-aminobenzyl alcohol, and two equivalents of KOtBu as a 
base in t-amyl alcohol at 100 ◦C for 16 h (entry 2, Table 1). 

The solvent screening showed that toluene was slightly less effective 
than t-amyl alcohol and provided a relatively low yield (entries 1 and 2, 
Table 1). The conversion was dramatically influenced by polar aprotic 
solvents like DMF (entry 5, Table 1) and a more polar solvent like water 
(entry 6, Table 1). Time vs conversion plot (Fig. S2, SI) showed a min-
imum of 16 h reaction period was required for the completion of the 
reaction (entry 2, Table 1). Additionally, it had also been observed that 
to consume the limiting reagent (benzamide) completely, an excess (1.5 
equivalents) of 2-aminobenzyl alcohol is required (Table 4, SI). 

Furthermore, the reaction yield was significantly reduced when 
KOtBu was replaced by a weaker base (entries 9–12, Table 1). The re-
action was not initiated with potassium carbonate as a base (entry 11, 
Table 1). Interestingly, during the optimization, we noticed that tem-
perature plays a crucial role in this reaction. By decreasing the tem-
perature to 80 ◦C, the conversion decreased drastically (entry 8, 

Table 3 
Control Experiments.  

a Standard condition: 2-aminobenzyl alcohol (0.75 mmol), amide (0.5 mmol), base (1 mmol), solvent (2 ml), at 
100 ◦C under Ar for 16 h. b Yield is determined by 1H NMR spectroscopy using 1,4 dimethoxybenzene as the internal 
standard. c Yield refers to that of a pure product characterized by 1H NMR. 
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Table 1). At room temperature, the response was futile (entry 7, 
Table 1). Several structurally varied substituted aryl and aliphatic amide 
underwent couplings with reaction intermediate generated in-situ from 
2-aminobenzyl alcohol by this procedure to produce the corresponding 
quinazolines derivatives. The results are reported in Table 2. 

Both aromatic and heterocyclic amides (3k, Table 2) participated 
efficiently in this reaction to form 2-substituted quinazolines (Table 2) 
irrespective of the electronic nature of the substituent present. However, 
ortho-substituted benzamides (3c, 3d, Table 2) react sluggishly, and 
even after 24 h of reaction, only 72% of corresponding products are 
isolated. The meta-substituted nitro benzamide also furnished a 
comparatively low yield (3j, Table 2). In general, the substituents at m 
and p position in aryl amides, e.g., 4-Me (3a, Table 2), 4-Cl (3b, Table 2), 
3-Br (3e, Table 2), 4-Br (3f, Table 2), 4-OMe (3 h, Table 2) and 3-OMe 
(3i, Table 2), did not pose any difficulty to produce the corresponding 
quinazoline in high yields. Significantly, the reaction proceeded with 
aliphatic amide (3l, Table 2) without any interference. Moreover, 
substituted 2-aminobenzyl alcohol (3n, 3o, 3p, Table 2) and heteroaryl 
benzyl alcohol (3 m, Table 2) participated in the reaction effectively to 
furnish the corresponding product in good yield. This indicates the 
moderately good substrate scope for this reaction. 

To understand the reaction mechanism and identify the reaction 
intermediate, several control experiments (Table 3) were performed at 
different time intervals and the results were critically analyzed. During 
the control reaction, in the absence of benzamide, we observed the 
formation of 39% of 2-aminobenzyladehyde as the product (entry 2, 
Table 3). 

In another experiment, 4% of 2-aminobenzaldehyde was identified 
when the reaction was quenched at the intermediate stage (entry 4, 
Table 3), clearly indicating the formation of 2-amino benzaldehyde as an 
intermediate. Surprisingly, it has been observed that the NaOtBu was not 
effective in initiating the reaction (entry 5, Table 3). A similar trend was 
also noticed when we used NaOH (entry 12, Table 1) as a base when 
compared to KOH (entry 9, Table 1). we envisaged that the potassium 
ion plays a significant role in this reaction. To unravel this hypothesis, 
metal-ion trapping experiments with 18-crown-6 have been performed. 
In the presence of 18-crown-6, the progress of the reaction was affected 
remarkably (entry 6, Table 3), which undoubtedly indicates the crucial 
role of potassium ions in the reaction pathway. Anyway, it is not ensured 
if it acts catalytically. Furthermore, it has been observed that the pres-
ence of free radical quencher, TEMPO in excess, did not have much 
impact on the overall reaction progress (entry 3, Table 3). Therefore, the 

Fig. 2. Reaction mechanism leading to quinazoline derivatives starting from 2-aminobenzyl alcohol and aryl amide via an alcohol dehydrogenation strategy pro-
moted by potassium tertiary butoxide (relative Gibbs energies in kcal/mol) at the M06-D3/def2-TZVPP(smd)//BP86-D3/def2-SVP level of theory. 
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possibility of the free radical pathway has been discarded. 
Berkessel et al. reported base-catalyzed hydrogenation of aromatic 

ketones and proposed a mechanism in which the reaction proceeds 
through a cyclic transition state involving carbonyl C=O, H–H, and O-K 
in KOtBu [106]. Since dehydrogenation is just the reverse of hydroge-
nation, a similar mechanism may also be operative for this potassium 
tertiary butoxide-promoted alcohol dehydrogenation. Based on the 
literature reports [77,106] and the results of the control experiments in 
Table 3, we believed that density functional theory (DFT) calculations 
could shed light on the reaction mechanism. Among the most plausible 
strategies, including alcohol dehydrogenation [83], hydrogenation 
without a metal catalyst [106], and borrowing hydrogen [71,107]. 
Fig. 2 includes the preferred mechanism calculated at the 
M06-D3/def2-TZVPP(smd)//BP86-D3/def2-SVP level of theory, 
following the metal-free transformation [108]. 

The mechanism in Fig. 2 begins with the proton transfer from the 
alcohol group of 2-aminobenzyl alcohol to KOtBu with the amino group 
that works as a proton shuttle. This step is kinetically feasible by over-
coming an energy barrier of 13.0 kcal/mol through TS 2→3 (see Fig. 3a). 
Therefore, from 3 the reaction proceeds through the six-membered ring 
transition state TS 3→4 with an energy barrier of 26.8 kcal/mol such as 
in the dehydrogenation reported by Berkessel et al. (see Fig. 3b). 

This step facilitates the formation of molecular hydrogen as well as 
the corresponding aldehyde 5, which is nearly isoenergetic to the 
analogous initial alcohol 1, simply being 0.9 kcal/mol higher in energy. 
At this point of the reaction, a unit of KOtBu removes one proton from 
the amide group of the other reagent. As a result, an amide anion 

stabilized by potassium is formed and tBuOH is released into the solu-
tion. Thereafter, the anion reacts with the aldehyde 5, to form an imine 
intermediate in several steps. As reported in the literature [109]. the 
imine formation is step-wise: first the carbinolamine formation, fol-
lowed by the dehydration step. In our case study, the formation of the 
carbinolamine is not favored by the protic solvent, with the amyl alcohol 
acting as a proton shuttle that transfers a proton from the amine group to 
the carbonyl [110,111]. On the other hand, the potassium cation can 
activate the carbonyl groups and bring the reactants closer. In detail, 
here from 5 the reaction proceeds with the formation of complex 6 be-
tween aldehyde and the amide anion with a stabilization of 4.7 kcal/-
mol, considering that we omit the corrections of entropy and standard 
state of 1 M concentration in solution [112]. Subsequently, carbinol-
amine 7 is formed overcoming an energy barrier of 12.5 kcal/mol after 
the nucleophilic attack of the amide anion to the aldehyde carbonyl. 
Furthermore, the imine is formed not through dehydration, but by 
elimination of a KOH molecule. At the beginning, the rather unstable 
complex 8 with the protic solvent is formed and the remaining amino 
proton is transferred to the potassium alkoxide moieties forming a 
zwitterionic intermediate through TS 8→9 overcoming an energy bar-
rier of 5.5 kcal/mol in the subsequent step. Then, KOH is removed 
through TS 9→10 (ΔG‡ = 17.4 kcal/mol) and the imine 11 is formed 
after releasing KOH•••tBuOH into the solution. The newly formed imine 
is deprotonated by KOH or KOtBu, forming complexes 12. Then, the 
deprotonated amino group reacts with the aldehyde moiety forming a 
six-membered ring of potassium amino alkoxide 13 through TS 12→13, 
overcoming energy barriers of 10.6 and 9.5 kcal/mol with R = tBu and 

Fig. 3. 3D structures of the transition states (a) TS 2→3, (b) TS 4→5, (c) TS 9→10 and (d) TS 25→26 with a selection of distances in Ȧ.  
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H, respectively. Next, either H2O or tBuOH, activated by potassium 
cation, takes the remaining amino proton with a slightly less kinetically 
transition state and transfers it to the potassium alkoxide moiety form-
ing the zwitterionic intermediates 15, thus being just proton shuttles. 
H2O and tBuOH are then released into the solution to form intermediate 
16. Finally, the quinazoline product 18 is formed by releasing a KOH 
molecule, overcoming an energy barrier of only 5.0 kcal/mol corre-
sponding to TS 16→17. Overall, the step defined by TS 9→10 results to 
be the rate determining step [113], actually the rate-determining state 
(rds) [114] of the whole reaction mechanism, with an overall kinetic 
cost of 34.9 kcal/mol [115–117]. However, it is also necessary to 
consider above all the other determining step, which is TS 3→4, the 
reason derives from seeing that if we replace KOtBu with NaOtBu as a 
reagent, the rds described as TS 16→17 remains almost isoenergetic, 
and even being 0.4 kcal/mol lower, while the step defined by TS 9→10 
does get significantly worse by 2.2 kcal/mol. To give more reliability to 
this trend, the TS 16→17 was also studied. Although it would not be 
decisive for anything, it is also seen how its kinetic cost increases by 2.6 
kcal/mol with the sodium ion. This leads us to conclude that sodium as a 
countercation of the base has a worse behavior than potassium. More-
over, it gives us feedback by making us see that the rds would not be TS 
9→10 but TS 3→4, thus being a kinetic cost of 30.9 kcal/mol, also more 
in agreement with the experimental temperature of 100 ◦C. The reason 
why the TS 9→10 barrier is overestimated is that even though it was 
attempted, more than one tBuOH molecule would have to be involved. 

An alternative mechanisms has also been proposed in Fig. 4 starting 
with imine 11 where one molecule of 2-aminobenzyl alcohol hydroge-
nated the imine group similarly to the pyridine-mediated alcohol 
oxidation reported by Namitharan and coworkers [107]. The 2-amino-
benzyl alcohol is deprotonated to form the corresponding potassium 
alkoxide. Next, the potassium alkoxide forms complex 19 with imine 11 
required to overcome TS 19→20 with an overall kinetic cost of 36.9 

kcal/mol, which discards this alternative mechanism. On the other 
hand, another mechanism starts with the formation of the potassium 
2-aminobenzyl alkoxide 22, with a favorable energy gain of − 3.7 
kcal/mol. The alkoxide then forms the adduct 23 with the amide. Next, 
overcoming an energy barrier of 26.0 kcal/mol there is the H-transfer 
that leads to intermediate 24, with the fundamental role of the potas-
sium cation to stabilize the negative charge of any of the oxygen atoms 
involved. Through the rotational movement of the K-O-C–N dihedral 
angle, complex 24 isomerizes into complex 25 to facilitate the proton 
transfer from the amino group to the carbonyl. However, although the 
aldehyde is activated by potassium, the condensation of aldehyde with 
the amine group results to be expensive in terms of kinetics (ΔG‡ = 31.9 
kcal/mol) and it leads to the formation of species 26 (see Fig. 3d). The 
next step, the dehydration step [37,38,118], results to be expensive too 
even if assisted by a solvent molecule [119–121]. First, intermediate 27 
is formed and, then the remaining amino proton is transferred through 
TS 27→28 (ΔG‡ = 13.3 kcal/mol) to the hydroxyl group meanwhile the 
latter one is acting as a leaving group. Anyway, the latter steps lead to an 
overall kinetic cost of up to 51.2 kcal/mol. Since both of the latter 
mechanisms discussed are higher in energy with respect to the one 
displayed in Fig. 2, they were discarded. 

4. Conclusions 

In conclusion, we have developed a methodology for the synthesis of 
substituted quinazolines under transition metal-free reaction conditions, 
and omitting oxidations working under argon atmosphere [122]. 
Controlled experiments were carried out to elucidate the reaction 
mechanism. The role of K+ ions was established by trapping with 
18-crown-6-ether. The DFT calculations not only unveiled the reaction 
mechanism but also justify the reaction conditions, laying the ground-
work for improving them even further by describing the most kinetically 

Fig. 4. Alternative mechanisms/steps are leading to quinazoline derivatives starting from 2-aminobenzyl alcohol and aryl amide by potassium tertiary butoxide 
(relative Gibbs energies in kcal/mol) at the M06-D3/def2-TZVPP(smd)//BP86-D3/def2-SVP level of theory. 
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demanding steps. The present method offers operational simplicity and 
general applicability to synthesize a wide range of 2-substituted qui-
nazolines derivatives (including alkyl, aryl, and heterocyclic), with good 
to excellent yields of products. To the best of our knowledge, we are 
unaware of any report for quinazoline synthesis starting from 2-amino-
benzyl alcohol and amides as substrates without using a transition metal 
as a catalyst. 
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