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Abstract 

Proportions of a total, including social network compositions (proportions of partner, family, 

friends etc.,) lie in a restricted space, which challenges statistical analysis. Network 

compositions can be both dependent and explanatory variables and are usually measured 

with error by survey instruments. Structural equation models make it possible to correct 

measurement error bias. Coenders et al. (2011) fitted a factor analysis model to transformed 

network compositions. In this article, we use another transformation called an isometric log-

ratio and we extend the model to include predictors and outcomes. The findings and 

hypotheses in the literature can be reformulated with isometric log-ratios in a more 

interpretable manner. For instance, we find relationships of gender with partner support, of 

education and extraversion with friend support, and of family support with tie multiplexity 

and closeness. 
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Introduction 

An important aspect of social network research is network composition. For instance, the 

composition of egocentered social support networks can be expressed as proportions of 

family, friends, colleagues and other network members. Network composition can be 

conceptualized as an independent, explanatory variable that may affect different outcomes 

(e.g., health, satisfaction with life, satisfaction with relationships). Conversely, network 

composition can also be a dependent variable. Factors affecting social network composition 

range from people’s demographic (e.g., gender, age, education) to personal characteristics 

(e.g., personality traits, such as extraversion or neuroticism, social skills) and various other 

factors (e.g., health, family history, physical environment, organizational membership, 

psychiatric symptoms). 

In this article, we make two methodological contributions to the estimation of relationships 

involving social network composition.  

The first contribution involves the treatment of measurement error in network 

compositions. It is certainly important to use measurement procedures that provide the 

most reliable and valid social network data. However, network compositions obtained by 

means of questionnaires will always be prone to measurement error bias. By means of 

structural equation models (SEM) and multiple indicators of network compositions we aim 

to obtain unbiased estimates of substantive effects upon and from network compositions. In 

this article, we draw from the compositional factor analysis model in Coenders et al. (2011) 

and construct an extended SEM including predictors and outcomes of social network 

compositions.  

The second methodological contribution refers to the sheer nature of compositional data. 

Social network compositions are expressed as proportions of a total, whose sum can only be 

1. Statistical analysis of compositional data in general, and particularly the estimation of 

SEM, are challenging tasks because compositional data lie in a restricted space and only 

convey information regarding the relative size of components to one another. As a result, 

compositional data have to be transformed by means of logarithms of ratios of components 

(Aitchison, 1986), which are not always easy to interpret. In this article, we extend the 
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method in Coenders et al. (2011) with more general and interpretable log-ratio 

transformations. 

Working with log-ratios not only has methodological implications but also substantive ones. 

Without log-ratios, components are estimated and interpreted separately from each another 

as if they could vary independently from each another ("all other things being held 

constant"), which is impossible: the relative importance of one component can only increase 

if the relative importance of at least one other component decreases. On the other hand, 

with log-ratios, it is possible to study what happens with one component relative to another 

component, for instance, what happens to the role of a partner relative to the role of the 

rest of the family part of the network as a result of the effect of age; or, if we use network 

composition as an independent variable, how an outcome (e.g., the level or adequacy of 

social support or tie multiplexity) changes when the ratio between two composition 

components changes (e.g., percentage of friends increasing relative to the percentage of 

other non-family network members). Accordingly, instead of seeing network components as 

independent parts of the network, they are observed in a relationship of one component to 

another. Of course, log-ratios have to be constructed in a substantively meaningful way, as 

we believe we have managed to achieve in this article. 

We illustrate our approach with a general population study of egocentered support 

networks. The outcomes we consider in this article are the multiplexity and strength of 

egocentered network ties. The covariates we consider are gender, age, education and 

extraversion. All these variables are common in the literature. The main contributions of this 

article do not lie in the set of studied variables but in the methodological approach. 

 

In the next section, we summarize the original method in Coenders et al. (2011). We then 

present the extensions made in this article. We subsequently describe the illustration, the 

data, the log-ratios and rewrite the common theoretical hypotheses in the literature in 

terms of log-ratios. Finally, we present, interpret and discuss the results. 
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An approach to measurement error in social network compositions 

In this section, we first present a measurement error model. We then discuss the 

specificities of compositional data and present the Coenders et al. (2011) approach to the 

use of compositional data in measurement error models. 

Correlated uniqueness model for compositional multitrait-multimethod data 

Multitrait-multimethod (MTMM) designs (Campbell and Fiske, 1959) are a well-established 

approach to measurement error in survey data (Saris and Gallhofer, 2007), including 

measurement error in social network surveys (Coromina and Coenders, 2006; Ferligoj and 

Hlebec, 1999; Kogovšek, 2006; Kogovšek et al., 2002). These designs consist of multiple 

measures of at least two factors (traits) with the same set of at least three measurement 

procedures (methods). Accordingly, these designs include DM measures, that is, the number 

of methods (M) times the number of traits (D). MTMM designs are usually analyzed by 

means of SEM (see Schumacker & Lomax 1996 for an overview), with the aim of taking 

measurement errors into account and estimating unbiased relationships among the traits. A 

number of SEMs for MTMM data have been formulated and tested in the literature. 

Coenders and Saris (2000) showed the great flexibility of the so-called correlated uniqueness 

(CU) model (Marsh, 1989), of which many other MTMM models constitute particular cases.  

The CU model is specified as follows. Let xidm be the mean-centered measurement of 

individual i, for trait d with method m: 

                                                                xidm=λdmtid+eidm                                                                     (1) 

where tid is the latent variable score of individual i corresponding to trait d and eidm is the 

measurement error term of individual i, for trait d with method m. The model parameters 

are: 

• λdm: factor loading of xidm on trait tid. The λd1 parameters are constrained to 1 in 

order to fix the scale of tid. Standardized trait loadings λdm show the strength of the 

relationship between the observed scores and latent trait scores and can thus be 

interpreted in terms of measurement validity and reliability.   

• θdm: measurement error variance of eidm; 
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• θdd’m: covariance between two measurement error terms sharing a common method 

eidm and eid’m. In an MTMM design it is expected that use of the same method 

involves common errors. All other error covariances are zero by assumption; 

• φdd: error-free variance of the latent trait variable tid; and 

• φdd’: error-free covariance between two latent trait variables tid and tid’. 

A path diagram of the CU model with three traits and three methods is displayed in Figure 1.  

 {Figure 1 here} 

Compositional or absolute data 

Compositional data concern the relative size of D components within a total, usually 

expressed in proportions over 1. This is the case of data on network compositions expressed 

as proportions of friends, family and other types of members of a personal network. 

Conversely, absolute data consist of the counts of friends, family and other types of 

members. There are at least two reasons for using compositional data.  

In some cases, network size and absolute data are meaningless. Consider, for instance, the 

simplified role relation method to measure social networks, which is widely used even in 

cross-national surveys such as the Generations and Gender Programme, the European 

Quality of Life Survey or the International Social Survey Programme. Respondents are asked 

questions about a series of situations which they cannot solve on their own, and have to 

indicate who they would ask for help (a friend, a family member, and so on). Network size is 

constant and trivially equal to the number of questions for all respondents. Only the relative 

importance of the network member types is meaningful.  

In some cases, the research question concerns network compositions rather than absolute 

numbers. Research questions requiring compositions are any in which the relative 

importance of some network component is believed to be relevant. In some respect, 

absolute data can be understood as a combination of composition and size. The count of one 

component can increase both when the network size increases and when the relative 

importance of the component increases. It may even be useful to build one model for 

network compositions and a separate model for network size. 
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Challenges in the analysis of compositional data 

The measurement quality of compositional data cannot be studied by simply fitting the 

proportions to a SEM (e.g., to a CU model). Compared to absolute data, compositional data 

lie in a constrained space. A D-term composition measured on individual i with a given 

method m:  xi1m, xi2m,...,xiDm has the following constraints:  

                                                  0≤xidm≤1 and ∑
=

=
D

d

idmx
1

1                                                                    (2) 

Aitchison (1986) and Pawlowsky-Glahn and Buccianti (2011) warn against the serious 

problems that arise when using standard statistical analysis tools on compositional data: 

• compositional data are non-normal and heteroskedastic; 

• one component can only increase if some other(s) decrease. This results in negative 

spurious correlations among the components and prevents interpreting effects of 

linear models in the usual way “keeping everything else constant”; and 

• the true dimensionality of a set of compositional variables measured with a given 

method m is D-1. Analysis of all D dimensions leads to perfect collinearity.  

These problems also apply to SEM on compositional data. In the SEM literature, constant 

sum data are sometimes referred to as ipsative data (Chan, 2003; Cheung, 2004). In the CU 

model case, an important additional problem occurs (Coenders et al., 2011). The 

compositional xidm data do not fit the CU model. Intuitively, for a given set of true 

compositions tidm the observed component xi1m can only increase if some other components 

decrease. xi1m is thus not only dependent on ti1m but on all tidm. The CU model assuming each 

observed variable is to load only on a trait is thus misspecified.  

Additive log-ratio transformation for compositional data 

Even if specialized techniques for compositional data are starting to appear (e.g. Thió-

Henestrosa and Martín-Fernández, 2005), compositional data can also be transformed so 

that they can be subject to standard and well-understood statistical techniques (Aitchison, 

1986). This is the approach we take here. 
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In compositional data the absolute size of components is lost. Only the relative size of some 

components to the others is maintained. Thus, ratios are the only meaningful way of 

expressing the data. Several ratio transformations have been suggested in the literature 

(Egozcue et al., 2003). The additive log-ratio transformation (alr) is the most popular and 

easiest to compute since it is simply the log-ratio of each component to the last: 

                                     yidm=ln(xidm/xiDm)= ln(xidm)-ln(xiDm) with d=1,2,...,D-1                                 (3) 

The alr transformed yidm variables recover the full unconstrained -∞ to ∞ range. It must be 

noted that one dimension is lost.  

Coenders et al. (2011) suggest simply estimating the CU model on the alr transformed yidm 

data with conventional methods for SEM. The alr transformed data are appealing because of 

their simple computation, but still have certain limitations regarding parameter 

interpretation (Coenders et al., 2011), with the main one being that trait covariances and 

error covariances are spurious and positive because alr data have a common denominator. 

In this article, an alternative type of log-ratio transformation will be used, as explained 

below. 

Dealing with zero components 

If the xidm variables contain zeroes, then log-ratios cannot be computed. An obvious initial 

procedure is to amalgamate small and conceptually similar components with many zeroes 

into larger ones. In social network compositions it may be feasible, for instance, to group 

several types of family member categories (uncle, cousin, father-in-law etc.) in a more global 

family member category. In certain instances, some zero components result from individual 

characteristics (essential zeroes; Aitchison, 1986). For instance, people who have never been 

employed cannot have co-workers in their social network. In this case, it is advisable to 

narrow the definition of the target population and drop individuals with essential zeroes. 

After the amalgamation of components and redefinition of the population, the remaining 

(hopefully few) zeroes may be understood as components which are too small to be 

detected. For instance, in a network with size sim, the smallest detectable component is 

1/sim. Coenders et al. (2011) and Pierotti et al. (2009) recommend replacing values xidm=0 

with: 
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Non-zero xidm values have to be reduced in order to preserve the unit sum. As suggested by 

Martín-Fernández et al. (2003), this implies replacing xidm>0 with: 
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Model estimation 

A severe drawback of the standard MTMM approach is that at least three repeated 

measurements are required from the same respondents. Saris et al. (2004) suggest solving 

this problem with a split-ballot MTMM design. The split-ballot MTMM design employs 

various random samples of the same population, but in each of the samples only two 

methods are used. In the authors' three-group design, the respondent group A uses methods 

1 and 2, group B uses methods 2 and 3 and group C uses methods 3 and 1. The only 

statistical implication is that this design requires estimators which can handle missing data. 

The ML estimation of SEM with missing data was discussed by Arbuckle (1996). A variant of 

the ML estimator with missing data described by Yuan and Bentler (2000) and Arminger and 

Sobel (1990) is robust to non-normality under certain conditions and is the estimation 

method we use, as implemented in the MLR option of the Mplus6.12 program (Muthén and 

Muthén 2010). If all three measurements are administered to all respondents, then standard 

SEM estimation procedures can be used. 

 

Extensions to the method 

In this section, we extend the method in Coenders et al. (2011) by considering alternative 

log-ratio transformations with better interpretational and statistical properties and by 

adding covariates and outcome variables into the model. 

Alternative transformations 

In certain cases, other log-ratio transformations are more interpretable than the alr while 

offering some statistical and geometrical advantages. They are also more flexible in that the 
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denominator does not have to be the same component in all ratios. A good example is 

compositions with 4 components which can be meaningfully grouped in pairs. In this article, 

we will be dealing with 4 network components: xi1m=partner, xi2m=other family members, 

xi3m=friends and xi4m= other non-family members. The first two constitute a family pair and 

the second two a non-family pair. A meaningful log-ratio transformation is: 

• ( ) ( )mimi

mi

mi
mi xx

x

x
y

21

2

1

1
lnlnln −=








=  is a ratio of partner over other family members 

within the family pair; 

• ( ) ( )
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=  is a ratio of friends over other non-family 

members within the non-family pair;  
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=  is a ratio of the 

geometric mean of the family pair over the geometric mean of the non-family pair. 

This log-ratio transformation happens to be proportional to an isometric log-ratio 

transformation (ilr; see Egozcue et al. 2003) because it can be expressed as: 
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where the y vector has D-1 dimensions, and the rows of the ΨΨΨΨ matrix have zero means and 

scalar products.
1
 

                                                           
1
 In a genuine ilr transformation, the rows of ΨΨΨΨ also have unit sums of squares. Thus, ΨΨΨΨ defines an orthonormal 

coordinate base and preserves distances. In order to achieve this, the genuine ilr transformation applies a scale 

change to the log-ratios which is called balance (Egozcue & Pawlowsky-Glahn, 2005). For instance, the first 

balance in our example is ( ) ( )mimi
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 . Since the 

SEMs used in this article are scale invariant (Cudeck, 1989), we choose not to use the scale change to build 

balances but to use the log-ratios as they are. This makes them more easily interpretable. 
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The advantages of ilr transformations are discussed in Egozcue et al. (2003) and Egozcue and 

Pawlowsky-Glahn (2005; 2006). Among others, ilr transformations do away with spurious all-

positive or all-negative covariances among components. However, ilr covariances cannot be 

interpreted as covariances among components but have yet to be interpreted according to 

the definition of the ratios as combinations of components.  

Other examples of interpretable transformations for network compositions which are 

proportional to ilr transformations are given in the appendix. 

Inclusion of covariates and outcome variables 

As described in the Introduction, certain individual background and attitudinal variables are 

known to have an effect on social network compositions and can be included in the standard 

way in SEM models as covariates (see the path diagram in Figure 2). Effects of these 

covariates cannot be understood on components but on log-ratios of components, hence 

the importance of building interpretable log-ratios. 

Social network compositions are also known to affect certain outcome variables. The 

interpretation of effects on outcomes is slightly more complicated. One would be tempted 

to interpret the effects of increasing a component while keeping all other components 

constant. To begin with, this type of interpretation is impossible for compositional data 

because a component can only increase if some other(s) decrease. However, it can be 

feasible to increase one log-ratio while keeping the remaining log-ratios constant. For this 

purpose, great care is needed in interpreting the results according to the manner in which 

log-ratios are built. In our example: 

• The effect of yi1m on an outcome variable refers to the effect of increasing xi1m 

(partner) and reducing xi2m (remaining family) in the same proportion so that the 

product xi1m xi2m remains constant, as well as both xi3m and xi4m.  

• The effect of yi2m on an outcome variable refers to the effect of increasing xi3m 

(friends) and reducing xi4m (other non-family members) in the same proportion so 

that the product xi3m xi4m remains constant, as well as both xi1m and xi2m.  



11 

• The effect of yi3m on an outcome variable refers to the effect of increasing both xi1m 

and xi2m in the same proportion while reducing both xi3m and xi4m in the same 

proportion.  

It is important to note that the estimates of these effects will be free of measurement error 

bias since measurement error variances and covariances are accounted for by the θ 

parameters. 

It is of course possible to add direct effects from the predictor to the outcome variables (not 

represented in Figure 2 for simplicity). 

{Figure 2 here} 

 

Illustration 

In this section, we present an illustration of the proposed method. We first describe the 

data, type of network, components and measurement methods. Then we describe a few 

appropriate covariates and outcomes which are common in the literature and show how to 

reformulate the findings in the literature in terms of log-ratios. We then present the results 

and show how they should be interpreted. 

Data 

The focus of this study is compositions of egocentered networks in the city of Ljubljana 

collected by Kogovšek et al. (2002). Networks were defined as personal social support 

networks understood as a multidimensional construct. Kogovšek et al. (2002) used the 

typology of Cohen and Wills (1985), which distinguishes instrumental support, informational 

support, emotional support and social companionship. The names of alters were obtained 

with so-called name generator questions, asking whom the respondent would ask for help in 

a number of situations (small jobs in or around the house, advice about a major change in 

life, talk about personal matters, borrowing money, and the like). Respondents could 

mention as many names as they wished.  

Once the names had been collected, several additional questions (name interpreters) were 

posed to find out about the type of relationship between the ego and alters (family 
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members, friends etc.) and an evaluation of the relationship (perceived importance of each 

alter to the ego). The characteristics measured through the name interpreters can be used 

to build network components and certain outcome variables. The questionnaire also 

included questions on covariates related to the respondent’s background and attitudes.  

Kogovšek et al. (2002), Kogovšek and Ferligoj (2005) and Coenders et al. (2011) already 

studied the measurement quality of these data, from non-compositional and compositional 

perspectives. The methodological focus of the Kogovšek et al. (2002) study offers a limited 

number of potential outcomes and covariates of social network composition, although we 

think they are enough for the purpose of illustrating the methodology. 

The network components used in this article are the same as in the example in the 

Extensions to the Method section (partner, other family members, friends, other non-family 

members). The methods used in the data set of Kogovšek et al. (2002) and in this article are: 

• 1: A face-to-face survey with name interpreters ordered by alters (respondents 

answer all questions about an alter before moving to the next alter). 

• 2: A telephone survey with name interpreters ordered by alters.  

• 3: A telephone survey with name interpreters ordered by name interpreters 

(respondents answer a question for all alters before moving to the next question). 

Kogovšek et al. (2002) designed their study as a split-ballot MTMM design (Table 1). 

{Table 1 here} 

The data were collected between March and June 2000 by computer-assisted telephone 

interviews (CATI) and computer-assisted personal interviews (CAPI) for a representative 

sample of 1,033 inhabitants of the city of Ljubljana, Slovenia. 59% were women and 41% 

men. With regard to education, 9% of respondents had primary school or less, 13% had 

professional training, 43% had a 4-year secondary school and 35% had a higher education.  

Covariates 

The purpose of this illustration is to relate network composition to some background and 

attitudinal covariates and outcomes. The following covariates were included in the model: 
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• Gender was introduced as a dummy coded variable (0=male; 1=female). According to 

the literature, a partner tends to be a more important source of support for men 

than for women, who tend to seek support, especially emotional, more with friends 

(e.g., Edwards et al., 1998). Women also tend to have more kin relations in their 

networks (Fischer, 1982; Iglič, 1988; Marsden, 1987; van der Poel, 1993). 

• Education was introduced as a dummy coded variable (0=professional or lower; 

1=secondary or higher). According to the literature, the percentage of friends tends 

to increase with education (e.g., Cornwell et al., 2009; Fischer, 1982; Iglič, 1988; 

Marsden, 1987; van der Poel, 1993). 

• Age was expressed in decades in order to obtain reasonable-sized effects. The non-

linear effect was considered by also including age squared (age was mean-centered 

in order to reduce collinearity with age squared). In general, the literature reports 

the percentage of family members within a network to increase with age, although 

the relationship is not necessarily linear. It is often relatively large in the youngest 

and oldest age groups and may be relatively low in middle age groups, especially on 

account of friends and co-workers who retire or die in later stages (e.g., Ajrouch et 

al., 2001; Cornwell et al., 2009; Dremelj, 2003; Hoffmeyer-Zlotnik, 1990; Iglič, 1988; 

Marsden, 1987; van der Poel, 1993). Other ties gain importance with age, especially 

neighbors and distant family. 

• Extraversion was measured with a summated scale (nine Likert-type items ranging 

from 1 to 5
2
). The literature shows that extraverts have larger networks with diverse 

compositions and a smaller family component (e.g., Doeven-Eggens et al., 2008; 

Newcomb and Keefe, 1997; Ying, 2002). 

Following the major findings in the literature, we formulate the hypotheses below. Since 

compositional data only convey information on component size relative to other 

                                                           
2
 The scale is part of the larger 50-item Big Five Factor Markers taken from the International Personality Item 

Pool webpage (http://ipip.ori.org/; also see Goldberg, 1992). The extraversion dimension in the original scale 

had 10 items. The item »Don't like to draw attention to myself« was left out of our analyses owing to the 

extremely low correlations with all other variables (communality in a factor analysis was only 0.072). 

Cronbach’s alpha was 0.773; Heise and Bohrnstedt's (1970) omega was 0.781 (omega is a reliability measure 

based on the factor analysis model and assumes congeneric items, which is a less strict assumption than tau-

equivalent items, as implied by alpha). 
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components (in other words, ratios), meaningful hypotheses have to be reformulated with 

ratios in mind, in other words, in the context of a relationship among the network 

components: 

• For women, family is more prominent within the network in relation to a partner 

(H1a) and family is more prominent in relation to other non-family relationships 

(H1b). 

• For more educated respondents, friends are more prominent within the network in 

relation to other non-family members (H2). 

• For older respondents, other family members are more prominent within the 

network than a partner (H3a) and other non-family members are more prominent in 

relation to friends (H3b). For both the youngest and the oldest respondents, family 

members are more prominent in relation to non-family members (H3c). 

• In the networks of extraverted respondents, a partner is more prominent in relation 

to the family part of the network (H4a) and friends are more important in relation to 

other non-family members (H4b).  

Outcome variables 

The following outcome variables were included in the model: 

• Multiplexity of ties: in how many name generators each alter is mentioned (average 

for all alters related to the ego). This can be understood as the average number of 

support functions played by all alters within an ego’s network. According to the 

literature, close network members more often provide different types of social 

support (i.e., are multiplex, Dremelj, 2003; Laireiter and Baumann, 1992; Wellman 

and Wortley, 1990). Family relationships (especially the closest kin like parents and 

children) tend to be very important for providing multidimensional social support. 

Friends are also strong providers of all types of support (Dremelj, 2003; Norris and 

Tindale, 1994). 
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• Strength of ties: average perception of importance for all alters related to the ego
3
. 

For obvious reasons, network components differ in tie strength. Close or strong ties 

usually include a partner, close friends and close family, while less close or weak ties 

usually include co-workers, neighbors, distant family and the like. The social network 

composition thus affects the tie strength. 

From the literature, the following hypotheses were reformulated in terms of ratios with 

regard to the outcome variables: 

• Respondents where the partner is more prominent in relation to other family 

members (H5a) and where friends are more prominent in relation to other non-

family members (H5b) and where family is more prominent in relation to non-family 

(H5c) tend on average to have a higher level of multiplexity in the network. 

• Respondents where the partner is more prominent in relation to family (H6a), where 

friends are more prominent in relation to other non-family members (H6b) and 

where family members are more prominent in relation to non-family members (H6c) 

on average have a greater degree of closeness to their network members. 

Results 

Table 2 shows the basic descriptive statistics of the included variables. The x’idm scores are 

percentages of network components before any log-ratio transformation is applied. The yidm 

scores are log-ratios computed as in the example in the Extensions to the Method section. 

As shown by the x’idm scores, other family members and friends are on average the biggest 

components for all methods. As a result, the first log-ratio (partner/other family members) is 

on average negative for all methods and the second (friends/other non-family members) is 

positive. The family and non-family parts of the network are quite balanced and the third 

log-ratio is close to zero for all methods. As is often the case, the x’idm scores have quite large 

skewness and kurtosis, which is much reduced for log-ratios. 

{Table 2 here} 

                                                           
3
 Average response to the name interpreter “How important is this person in your life? Please describe how 

close you feel on a scale from 1 to 5, where 1 means not important and 5 means very important”. 
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The model was built as in Figure 2. Since some significant direct effects of covariates on 

outcomes were found, they are included in the model for control purposes, even if they are 

not specified in any of the hypotheses. After including these direct effects, the fit of the 

model was excellent. The Chi-Square test of model fit was 63.573 with 57 degrees of 

freedom (p-value=0.2561). The 90 Percent C.I. for the root mean square error of 

approximation was (0.000; 0.023). The CFI was 0.997 and the TLI 0.993. The standardized 

root mean square residual was 0.020. As recommended by Saris et al. (2009), even if the 

goodness-of-fit measures were acceptable, we explored alternative ways of improving the 

model by adding parameters. The expected standardized changes for candidate parameters 

to be added were either small or nonsensical, which led us to maintain the model. 

A complete treatment of the interpretation of the measurement part of the model can be 

found in Coenders et al. (2011), therefore we will not interpret it extensively here. As in that 

article, the best measurement quality of network composition (here indicated by the 

standardized trait loadings in Table 3) is found in method 1 (Face to face) for all traits. Within 

the telephone method, no ordering seems to be consistently better. The second trait (ratio 

of friends over other members) has the lowest measurement quality for all methods. Error 

variances are omitted because they do not provide any new information (standardized error 

variances are equal to one minus the squared standardized trait loadings). Error covariances 

are included only with methodological purposes (Coenders et al., 2011) and are not 

interpreted. 

{Table 3 here} 

The part of the model which is most relevant to this article is summarized in Table 4: the 

estimates of the effects of covariates on network components and the effects of network 

components on outcome variables. The two coefficients relating age and age squared are 

best jointly interpreted later on in the context of Figure 3, which plots the non-linear 

relationship of age on all three log-ratios.  

With regard to the partner over family ratio (t1, proportion of explained variance R
2
=0.131), 

it can be seen that the effects of extraversion, age and gender are statistically significant. 

Extraverted respondents tend to have support networks in which the partner is relatively 
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more prominent than the remainder of the family (H4a confirmed). For women, the family 

part of the network is more prominent than the partner (H1a confirmed). 

Regarding the ratio of friends over other non-family members (t2, R
2
=0.229), the effects of 

extraversion, age and education are statistically significant. More extraverted respondents 

tend to have more friends compared to other non-family members in their networks (H4b 

confirmed). Respondents with a higher education tend to have more friends than other non-

family members in their networks (H2 confirmed). 

Regarding the prediction of the family over non-family ratio (t3, R
2
=0.013), only the effect of 

age is statistically significant. Gender had no statistically significant effect (H1b not 

confirmed). 

{Table 4 here} 

With regard to the effects of network composition on tie multiplexity (R
2
=0.123), the partner 

over other family ratio and the family over non-family ratio are statistically significant. 

Respondents, where the proportion of the partner is increasing on account of other family 

members decreasing, have a higher level of multiplexity of ties (H5a confirmed). 

Respondents, with an increasing proportion of family on account of a decreasing proportion 

of non-family members, also have higher multiplexity (H5c confirmed). The effect of the 

ratio of friends over other non-family was not statistically significant (H5b not confirmed). 

Regarding the effect of the network composition on the importance of ties within the 

support network (R
2
=0.222), only the effect of the family over non-family ratio is statistically 

significant – respondents where the proportion of family increases on account of a 

decreasing proportion of non-family have a higher level of importance of their alters (H6c 

confirmed). The effects of the partner over other family ratio (H6a) and of the friends over 

other non-family ratio (H6b) were not statistically significant. One possible explanation for 

failing to confirm H5b, H6a and H6b is that we did not distinguish between close and distant 

friends or between close and distant family, while only the close parts are expected to 

provide multiple support functions and to be perceived as important. 

{Figure 3 here} 
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Regarding the effect of age on the ratio between the partner and family, the non-linearity of 

the effect is obvious (Figure 3). The partner is the most important in relation to other family 

members in middle age categories and decreases toward both the younger and older age 

categories. Accordingly, H3a cannot be confirmed univocally. With regard to the ratio of 

friends over other non-family members, it can be seen that the proportion of friends tends 

to decrease with age (H3b confirmed), although friends still remain the more important 

component of the two (the log-ratio remaining positive). The ratio of family over non-family 

tends to be stable with a slight tendency to increase in the youngest and oldest age 

categories, therefore giving support for H3c.  

 

Discussion  

From the substantive point of view, the limitation of this article is that the aim of the 

Kogovšek et al. (2002) survey was methodological (testing the reliability and validity of social 

network measurements) and not substantive. We were therefore somewhat limited in 

finding the most appropriate covariates and outcomes. The results have to be understood as 

simply an illustration of the proposed methodology. We believe we have shown it is possible 

to successfully build models that include testing measurement as well as estimating 

unbiased substantive effects on key concepts, while treating compositional data in a proper, 

simple and interpretable manner. It is then not surprising that most of our results are in line 

with previous research on the topic, which provides support for the appropriateness of the 

method.  

With regard to the statistical model itself, we benchmarked it with a variety of log-ratio 

transformations (including the old alr used in Coenders et al., 2011) and alternative sets of 

covariates and outcome variables, with equivalent results with varying interpretational 

difficulty. The results regarding measurement quality were always stable and coincident with 

the results in Coenders et al. (2011), namely, the face-to-face method had the highest 

quality estimates of network composition. We also see a substantive advantage in using the 

ilr instead of the alr log-ratio transformation. It makes more sense to build log-ratios of 

substantively compatible network components (partner over family, friends over non-family, 

family over non-family) than to compare all components in relation to the last. This is shown 

by the fact that the effects described in the literature review were very easy to translate into 
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testable hypotheses involving ilr log-ratios. Ilr log-ratio transformations are not any more 

difficult to construct than alr, as shown in the appendix.  

The advantage of using a SEM with multiple indicators is not their ability to deal with 

compositional data but their ability to deal with measurement error attenuation bias. The 

basic method for dealing with network compositions outlined in this paper can also be 

applied to simpler statistical techniques than SEM. This method includes the way of dealing 

with zeroes in the components, and the way of transforming the original D components into 

a set of D-1 interpretable log-ratios. The latter can be achieved both by means of ilr and alr, 

with the key reason for choosing one over the other being the interpretability of the 

obtained log-ratios according to the conceptual meaning of the components. Once zeroes 

have been replaced and log-ratios computed, the researcher can proceed as in standard 

statistical analysis. If the researcher’s aim is to relate network compositions to a set of 

outcomes and covariates, in the usual case in which only one measurement of network 

composition is available, linear regressions are an appropriate tool. The researcher can thus 

fit the linear regression models of each log-ratio on the covariate set and the linear 

regression models of each outcome variable on the log-ratio set. Standard estimation 

methods for linear regression models can be used. Even ordinary least squares can be used 

whenever the usual diagnostic tools show that the method’s assumptions hold, which occurs 

often with log-ratios and never with raw proportions (Aitchison, 1986). The up to recently 

standard practice of treating raw proportions of components with standard statistical tools 

(e.g., Ajrouch et al., 2001; Cornwell et al., 2009) leads at the least to wrong statistical tests 

and confidence intervals because of non-normality, of limited variable distribution, and of 

heteroskedasticity. 
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Appendix. Other interpretable log-ratio transformations which are proportional to ilr  

An interpretable transformation is very easy to build whenever components can be ordered. 

If we have the following components in a study of personal support networks: xi1m=lives in 

the same neighborhood, xi2m=lives in the same city, xi3m=lives further away, then a 

meaningful log-ratio transformation is: 

• The first log-ratio ( ) ( )mimi
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In general, an interpretable log-ratio transformation which is proportional to an ilr 

transformation is easy to compute whenever there is an interpretable sequential binary 

partition of components into pairs of groups of components according to the conceptual 

similarity of the components. These partitions start by dividing components into two 

clusters and then continue by subdividing one of the clusters into two until each 

component constitutes its own cluster. D components always involve D-1 partitions. 

These partitions are best understood as a partition tree or dendrogram (Pawlowsky-

Glahn & Egozcue, 2011). If we have the following components in a study of personal 

support networks: xi1m=close friends, xi2m=non close friends, xi3m=neighbors, xi4m=co-

workers, xi5m=co-members of associations, then a meaningful sequential partition is 

given in the conceptual classification tree below.  

{Figure 4 here} 
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A meaningful log-ratio transformation takes ratios of the geometric means of the two 

component clusters at each partition. Numerators and denominators are interchangeable. 

For instance, we may have: 

• 
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Table 1: The split-ballot MTMM design of the study* 

Group n First measurement with method: Second measurement with method: 

A 320 Face to face ordered by alters Telephone ordered by alters 

B 402 Telephone ordered by alters Telephone ordered by name interpreters 

C 311 Face to face ordered by alters Telephone ordered by name interpreters 

*Original sample sizes in Kogovšek et al. (2002) are shown. Seven cases with network size equal to 1 or with missing data for the covariates 

were deleted for the analyses in this article 
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Table 2: Descriptive statistics 

  Min Max mean st.dev. skewness kurtosis 

x’idm scores (compositions with zeroes replaced %)       

x11 (partner, method 1) 1.32 87.50 12.41 11.62 1.95 6.91 

x21 (other family, method 1) 1.47 90.63 32.94 21.02 0.42 -0.39 

x31 (friends, method 1) 1.47 93.75 40.14 23.57 0.09 -0.82 

x41 (other non-family, method 1) 1.47 91.67 14.51 17.05 1.94 3.94 

x12 (partner, method 2) 1.04 45.83 11.17 9.28 1.13 0.93 

x22 (other family, method 2) 1.25 91.67 34.10 21.45 0.43 -0.37 

x32 (friends, method 2) 1.56 94.64 40.54 23.68 0.04 -0.82 

x42 (other non-family, method 2) 1.47 91.67 14.20 16.56 1.88 3.58 

x13 (partner, method 3) 1.04 85.00 11.20 9.87 1.64 4.98 

x23 (other family, method 3) 1.25 93.75 33.72 20.32 0.53 -0.07 

x33 (friends, method 3) 1.79 95.31 41.50 22.25 -0.02 -0.64 

x43 (other non-family, method 3) 1.04 85.00 13.58 14.87 1.65 2.51 

yidm logratios       

y11 (partner/family, method 1) -3,84 3,04 -1,07 1,40 0.49 -0.07 

y21 (friends/other, method 1) -3,54 3,82 1,29 1,68 -0.80 -0.03 

y31 (family/non-family, method 1) -3,01 3,22 -,10 1,08 -0.01 -0.01 

y12 (partner/family, method 2) -3,62 2,76 -1,17 1,29 0.40 -0.23 

y22 (friends/other, method 2) -3,92 3,98 1,31 1,64 -0.80 0.07 

y32 (family/non-family, method 2) -3,48 2,77 -,10 1,12 0.00 -0.05 

y13 (partner/family, method 3) -3,81 2,83 -1,21 1,26 0.41 -0.17 

y23 (friends/other, method 3) -2,92 4,11 1,40 1,53 -0.66 -0.20 

y33 (family/non-family, method 3) -3,30 3,30 -,12 1,09 0.01 0.23 

covariates       

age 18.00 91.00 43.98 17.93 0.42 -0.86 

extraversion Likert scale  1.00 5.00 3.55 0.83 -0.43 -0.31 

outcome variables       

average number of support ties of alters 0.40 4.00 1.50 0.52 0.96 1.36 

average importance of alters 1.67 5.00 4.04 0.56 -0.34 0.14 
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       Table 3: Model estimates. Measurement part 

 Estimate std. err. t-value p-value Standardized 

estimate 

Loadings       

λ11† 1.000*    0.867 

λ21 1.000*    0.722 

λ31 1.000*    0.868 

λ12 0.885 0.059 15.008 0.000 0.828 

λ22 0.808 0.103 7.815 0.000 0.594 

λ32 0.918 0.066 13.867 0.000 0.797 

λ13 0.779 0.064 12.249 0.000 0.754 

λ23 0.906 0.108 8.377 0.000 0.712 

λ33 0.879 0.065 13.588 0.000 0.769 

Error covariances‡      

θ211† -0.049 0.067 -0.731 0.465 -0.060 

θ311 -0.084 0.038 -2.243 0.025 -0.221 

θ321 0.101 0.051 1.981 0.048 0.160 

θ212 0.168 0.057 2.966 0.003 0.175 

θ312 -0.101 0.036 -2.802 0.005 -0.210 

θ322 0.010 0.047 0.218 0.827 0.012 

θ213 0.050 0.053 0.947 0.344 0.057 

θ313 -0.024 0.034 -0.696 0.486 -0.041 

θ323 0.082 0.043 1.922 0.055 0.109 
* Constrained to 1 to fix the scale of the latent trait scores 

†The last parameter subindex shows the method. The first subindex shows the trait (loadings) or the pair of 

traits (covariances). 

‡Each  error term also has a variance parameter, which is not reported for the sake of simplicity. 

Standardized error variances equal one minus the squared standardized loading. 
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Table 4: Model estimates. Relationship part 

 Estimate std. err. t-value p-value Standardized 

estimate* 

Equation predicting t1 (partner over remaining family members) R
2
=0.131 

Extraversion (H4a) 0.112 0.049 2.280 0.023 0.077 

Age (H3a) 0.044 0.026 1.738 0.082 0.066 

age
2
 -0.102 0.012 -8.348 0.000 -0.288 

female (H1a) -0.585 0.085 -6.890 0.000 -0.237 

secondary-higher -0.047 0.100 -0.476 0.634 -0.016 

Equation predicting t2 (friends over remaining non-family members) R
2
=0.229 

extraversion (H4b) 0.187 0.059 3.136 0.002 0.129 

age (H3b) -0.253 0.030 -8.297 0.000 -0.375 

age
2
 0.027 0.013 2.088 0.037 0.077 

female -0.010 0.091 -0.109 0.913 -0.004 

secondary-higher (H2) 0.666 0.119 5.619 0.000 0.231 

Equation predicting t3 (family over non-family) R
2
=0.013 

extraversion -0.071 0.040 -1.769 0.077 -0.062 

age 0.002 0.019 0.118 0.906 0.004 

age
2
 (H3c) 0.022 0.011 2.025 0.043 0.080 

female (H1b) 0.021 0.067 0.310 0.757 0.011 

secondary-higher -0.074 0.083 -0.892 0.372 -0.032 

Equation predicting average number of support ties of alters (multiplexity) R
2
=0.123 

t1 (H5a) 0.039 0.016 2.399 0.016 0.090 

t2 (H5b) 0.002 0.020 0.087 0.930 0.004 

t3 (H5c) 0.078 0.018 4.336 0.000 0.143 

extraversion 0.016 0.019 0.829 0.407 0.026 

age -0.084 0.011 -7.459 0.000 -0.289 

age
2
 0.003 0.005 0.567 0.571 0.019 

female 0.166 0.033 5.023 0.000 0.157 

secondary-higher -0.014 0.041 -0.340 0.734 -0.011 

Equation predicting average importance of alters (strength) R
2
=0.222 

t1 (H6a) -0.022 0.016 -1.345 0.179 -0.048 

t2 (H6b) 0.004 0.020 0.196 0.845 0.009 

t3 (H6c) 0.216 0.022 9.674 0.000 0.372 

extraversion 0.082 0.020 4.221 0.000 0.124 

age -0.003 0.011 -0.258 0.796 -0.009 

age
2
 0.007 0.005 1.269 0.204 0.043 

female 0.219 0.034 6.476 0.000 0.194 

secondary-higher -0.181 0.040 -4.471 0.000 -0.136 

Disturbance covariances†      

t1-t2 0.011 0.062 0.173 0.863 0.009 

t1-t3 -0.094 0.041 -2.286 0.022 -0.087 

t2-t3 -0.072 0.049 -1.478 0.139 -0.072 

number of ties-importance 0.067 0.008 8.404 0.000 0.279 
* Standardized estimates of age and the dummy variables on education and gender cannot be interpreted in terms of 

standard deviation increases but only as measures of effect size.  

† Each  disturbance term also has a variance parameter, which is not reported for the sake of simplicity. Standardized 

disturbance variances equal one minus the R
2
. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure captions 

Figure 1: Path diagram of the CU model for MTMM designs. 3 traits and 3 methods 

Figure 2: Path diagram of the extended CU model for compositional MTMM designs. 3 traits, 3 

methods, 2 covariates (c1, c2), 2 outcomes (o1, o2) 

Figure 3: Non linear effect of age on the log-ratios (t1: partner over remaining family; t2: friends over 

remaining non-family; t3: family over non-family). Predicted log-ratios for males with professional or 

lower education with average extraversion 

Figure 4: Example classification tree for a sequential binary partition 

 

 

 

 

 

 
 

 
 




