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Abstract: The analysis of Compositional Data (CoDa) consists in the study of the

relative importance of parts of a whole rather than the size of the whole, because

absolute information is either unavailable or not of interest. On the other hand,
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when absolute and relative information are both relevant, research hypotheses concern 

both. This article introduces a model including both the logratios used in CoDa and 

a total variable carrying absolute information, as predictors in an otherwise standard 

statistical model. It shows how logratios can be tailored to the researchers’ hypotheses 

and alternative ways of computing the total. The interpretational advantages with 

respect to traditional approaches are presented and the equivalence and invariance 

properties are proven. A sequence of nested models is presented to test the relevance of 

relative and absolute information. The approach can be applied to dependent metric, 

binary, ordinal or count variables. Two illustrations are provided, the first on tourist 

expenditure and satisfaction and the second on solid waste management and floating 

population.

Key words: Compositional data; generalized linear model; isometric logratio trans-

formation; T−space

1 Introduction

Analysis of Compositional Data (CoDa) is the standard method of statistical analysis

when a positive vector variable carries only information about the relative size of its

components (Aitchison, 1986). Typical examples are chemical and geological analyses,

where only the proportion of each component is of interest, since the absolute amount

is only telling about the size or volume of the analysed container or sample of rocks.

Some accessible recent references are van den Boogaart and Tolosana-Delgado (2013),

Pawlowsky-Glahn and Buccianti (2011), and Pawlowsky-Glahn et al. (2015a).
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Let x be a vector in the positive orthant of the real space:

x = (x1, x2, . . . , xD) ∈ R
D

+ , with xj > 0 for all j = 1, 2, . . . , D, (1.1)

where D is the number of components. The closure of vector x to a constant k sum is

the compositional vector z which resides in a RD−1
+ subspace, known as the simplex :

z = C(x) =

(
kx1∑D
j=1 xj

, kx2∑D
j=1 xj

, . . . , kxD∑D
j=1 xj

)
= (z1, z2, . . . , zD)

with zj > 0 for all j = 1, 2, . . . , D;
∑D

j=1 zj = k .

(1.2)

It can even be the case that the absolute size of x is already constant. The analysed 

container may always be of the same volume or data may be only available in per-

centage units. Another common case of constant absolute size is time use research, on a 

24 hour basis. Despite the change in the closure constant, and even regardless of 

whether closure is performed at all, the relative information carried out by the D parts 

should remain the same, ensuring the so-called compositional equivalence property. 

That is, both vectors x and z are elements of the same equivalence class (Barceló-Vidal 

and Mart́ın-Fernández, 2016).

The most common CoDa approach is to express an original compositional vector 

of D components into logratio coordinates : logratios among components or among 

their geometric means (Aitchison, 1986; Egozcue et al., 2003). There are three main 

arguments for logratios. First, the ratios of geometric means of parts and their log-

arithms constitute a natural way of distilling the information about relative size of 

components. Second, logratios are unbounded and, once they have been computed, 

standard statistical analyses assuming that variables lie in the full RD−1 real space are 

appropriate. Third, logratios are compositionally equivalent, as they yield the same
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result regardless of whether they are computed from x or z, and, in the latter case, 

are invariant to the closure constant k. As it is well known, logratio transformations 

imply that x may contain no zero values. If the x vector contains zeros, they have to 

be replaced prior to computing the logratios. This issue is outside the scope of the 

article. The interested reader may resort to Mart́ın-Fernández et al. (2003), Mart́ın-

Fernández et al. (2011), Mart́ın-Fernández et al. (2015), and Palarea-Albaladejo et al.

(2007).

This article considers the situation in which not only the relative size of components is 

interesting to the research objectives, but also absolute size, provided that size is not 

constant. Ultimately the researchers’ objective and knowledge dictate whether size 

and the absolute amount of each component in x, if available, matter to the research 

question beyond the information carried by z. If the answer is that size and absolute 

information might matter, ignoring them may result in a loss of predictive power 

at least or in a misspecified model at worst. For instance, in web mining research 

looking for the occurrence of terms in web pages or other electronic documents, one 

would first tend to think that term relative frequency matters more than absolute 

frequency (Russell, 2014). After all, long documents can have more of every term. 

In any case, there is room for reasonable doubt; for instance, what if certain specific 

behaviours encountered in long documents correlate with the variables of interest to 

the researcher? In this example, absolute information exists and is ready to use.

If absolute information matters one may, of course, use standard statistical analyses 

on the D absolute variables directly, usually after a log transformation. However, the 

log-absolute value of a component depends both on the overall size and on the relative 

importance of that component, thus making tests of theoretical hypotheses concerning
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only absolute size or only relative importance difficult (Ferrer-Rosell et al., 2016a). 

Recently, the so-called T−spaces have been developed to enable researchers to analyse 

the relative and absolute size of components together in the same statistical model, 

while not confounding effects involving the relative importance and effects involving 

absolute size (Pawlowsky-Glahn et al., 2015b). The approach boils down to adding 

some form of total to the logratio coordinates and is referred to as CoDa with a total. 

Pawlowsky-Glahn et al. (2015b) show the statistical properties of a total computed 

from the geometric mean of all D absolute values on the one hand, and of a total 

computed from the sum of all D absolute values, on the other. Ferrer-Rosell et al.

(2016a) introduce the compositions and the total as dependent variables in a linear 

model. The authors show that, in the role of dependent variable, the researcher enjoys 

some freedom in tailoring the computed total to the research questions. For example, 

under some circumstances it is not even necessary to include all D components in the 

total, which may be computed from the geometric mean of a subset of components. In 

addition, they show that computing the total in one way or another does not modify 

the results of the tests involving the logratios.

The aim of this article is to present CoDa with a total in the case in which the 

composition and the total play the role of explanatory variables. The extension from a 

purely linear model into a generalized linear model is straightforward. For instance, if 

the dependent variable is a count, a Poisson regression can be specified, or if the 

dependent variable is ordinal or binary, an ordered or a binary logit model can be 

specified. Section 2 presents the concept of logcontrast, which is crucial to construct 

the logratio coordinates, and the model in which only the composition is the 

explanatory variable. Section 3 introduces the CoDa model with a total. Its properties 

and its relation with the classical model using logarithms are described.



6 Germà Coenders et al.

Different submodels are explored in Section 4. Sections 5 and 6 illustrate the approach 

with two real data examples from different fields and with different types of dependent 

variables. Section 7 concludes and discusses the main contributions.

2 Model with compositional predictor

The CoDa methodology started when Aitchison (1986) introduced logratio coordi-

nates. In the simplest case of having only D =2 components, only one logratio 

coordinate is needed:

f(x) = ln(x1/x2) = ln
(
x1
1x

−1
2

)
= ln(x1)− ln(x2) . (2.1)

The logratio f(x) takes the values in the full real space, and it is symmetric in the

sense that ln(x1/x2) = −ln(x2/x1). For the general case, the most interesting type

of logratio coordinate is the logcontrast :

f(x) = ψ1 ln(x1) + ψ2 ln(x2) + . . .+ ψD ln(xD) with
∑

ψj = 0 , (2.2)

where the restriction
∑

ψj = 0 ensures the compositional equivalence property defined

in Section 1. D−1 linearly independent logcontrasts contain all information about the 

relative importance of the D components (Pawlowsky-Glahn et al., 2015a).

As a general guideline to find D−1 interpretable logcontrasts, Egozcue et al. (2003) 

propose the so-called isometric logratio (ilr) coordinates. Key advantages of ilr coordi-

nates are first, that they can be used as variables in all standard statistical methods, 

both as dependent and as explanatory variables (Di Marzio et al., 2015); second,
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that they preserve key properties of the original data (Euclidean distances computed 

from ilr coordinates are interpretable and equivalent to Aitchison’s compositional dis-

tances); and third, that they are flexible and can be tailored to the research questions 

of interest. Standard statistical methods can thus be directly applied on ilr coordi-

nates, which is a common practice referred to as working on coordinates in the CoDa 

literature (Mateu-Figueras et al., 2011).

Ilr coordinates can be easily formed from a sequential binary partition (SBP) of com-

ponents and are then called balances (Egozcue and Pawlowsky-Glahn, 2005). A SBP 

consists in selecting which parts contribute to the logratio and deciding if these will 

appear in the numerator or in the denominator. To create the first balance, the com-

plete composition x = (x1, x2,  . . . ,  xD) is split into two subsets of components: one 

for the numerator and the other for the denominator. In the following step, one of the 

two subsets is further split into two new subsets to create the second ilr coordinate. In 

step k when the yk balance is created, a subset containing rk + sk parts is split into two: 

the rk parts (xn1,. . . ,  x nr) in the first subset are placed in the numerator, and the sk 

parts (xd1,. . . ,x ds) in the second subset appear in the denominator. The obtained 

balance is a normalised logratio of the geometric means of each subset of parts (Egozcue 

et al., 2003)

yk =
√

rksk
rk+sk

ln (xn1···xnr)
1/rk

(xd1···xds)
1/sk

=
√

rksk
rk+sk

(
ln(xn1)+···+ln(xnr)

rk
− ln(xd1)+···+ln(xds)

sk

)
, k = 1, · · · , D − 1 ,

(2.3)

where
√

rksk
rk+sk

is the factor that normalises coordinates. Remarkably, the coefficients

in the logcontrast expression (2.2) of the kth ilr -coordinate (2.3) are  ψjk =
√

sk
rk(rk+sk)

if the part is placed in the numerator, ψjk = −
√

rk
sk(rk+sk)

for parts appearing in the
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denominator, and ψjk = 0 for parts appearing nowhere.

Let ln(xi)=(ln(xi1), . . . ,  ln(xiD)) be a row vector containing the D log absolute 

compo-nents for the ith individual and let yi = (yi1, . . . ,  y iD−1) be the row vector 

containing its corresponding D−1 balances. The transformation matrix Ψ with D rows 

and D-1 columns that yields yi =ln(xi) · Ψ is

Ψ =

⎛
⎜⎜⎜⎜⎜⎝

ψ11 · · · ψ1D−1

...
...

ψD1 · · · ψDD−1

⎞
⎟⎟⎟⎟⎟⎠

, (2.4)

with orthonormal columns; that is, with columns having unit sums of squares and 

zero scalar products. The Ψ matrix can be interpreted as an orthonormal projection 

matrix from ln(xi) ∈ RD to a D-1 dimensional subspace orthogonal to the unit vector 

1=(1,1,. . . ,1),  which  is  isometric  to  the  simplex (Egozcue et al., 2003).

Each possible SBP leads to a different Ψ matrix, and ilr coordinates have to be inter-

preted with respect to the chosen partition. A positive relation of the ilr coordinate 

with an external dependent variable implies that increases in the group of parts in 

the numerator (or decreases in the group of parts in the denominator) tend to occur 

together with increases in the external variable. Parts can be partitioned in such a 

way that the relationships between the balances and external variables are related to 

hypotheses or research questions of interest. Once balances have been computed, a 

linear statistical model to relate an external metric dependent variable w to a com-

position acting as explanatory variable for the ith individual is

wi = α0 + α1yi1 + . . .+ αD−1yiD−1 + ui = α0 + yi ·α+ ui, (2.5)
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where α0 is the constant term, ui is the disturbance term and α are the regression

coefficients of the balances arranged in a column vector.

3 Compositions with a total as explanatory variables

3.1 Classical approach

The classical linear model to predict a metric variable w from absolute component size

normally uses the logarithms of parts. The log transform is favoured in many scientific

fields, in order to restore positive variables into the full real range (Pawlowsky-Glahn

et al., 2015b), correct positive skewness, and bring large outliers closer to the centre

of the distribution. In economics it is also favoured because it is aligned with the

economic thinking in terms of elasticities (e.g. Thrane, 2014). The model can be

written as

wi = γ0 + γ1ln(xi1) + . . .+ γDln(xiD) + ui = γ0 + ln(xi) · γ + ui. (3.1)

This model has an interpretational drawback. γ1 to γD refer to the effect of increasing 

the logarithm of one component while keeping the remaining components constant, 

which is the combined effect of increasing the relative importance of that component 

and increasing absolute size, and thus leads to confounding relative and absolute 

information. In other words, all parameters are related to both absolute and relative 

importance.
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3.2 Approach by the T−space

Pawlowsky-Glahn et al. (2015b) study the properties of the T−space defined by a

composition and a total. They state that D−1 ilr coordinates yi together with a

total ti computed as
√
D times the logarithm of the geometric mean of all absolute

values

ti =
√
D ln ( D

√
xi1xi2 · · · xiD) =

1√
D

(ln(xi1) + ln(xi2) + · · ·+ ln(xiD)) , (3.2)

lead to the same distances among individuals as in the space of the logarithms of

absolute values. Note that ti can be interpreted as the projection of ln(xi) to the unit

normalized vector (1/
√
D)1. Using the ilr coordinates and this total as predictors

leads to the model

wi = β0 + β1yi1 + . . .+ βD−1yiD−1 + βDti + ui = β0 + (yi ti) · β + ui. (3.3)

The (yi ti) vector is formed by the balances yi augmented with the total ti. Compared 

to the model (2.5), in (3.3) β has one more coefficient.

The global F statistic in this model tests the hypothesis that the explanatory vector, 

all things considered (relative and absolute information) has no effect on w. Individual 

tests of β1 to βD−1 refer to the relative importance of components and are interpreted 

with respect to the particular balances, as the effect of increasing one balance, while 

keeping the remaining balances and total constant. The fact that the remaining 

balances are held constant implies that parts in the numerator of the balance increase 

all in the same proportion and parts in the denominator decrease all in the same
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proportion. The fact that the total is kept constant implies that the increase in 

the numerator is exactly offset by the decrease in the denominator. The tests of 

β1 to βD−1 depend on the SBP constructed and can be used to answer the research 

questions which guided balance construction. It is not recommended to use these tests 

to remove non-significant balances, because it can affect the interpretation of the kept 

balances. If all D−1 balances are in the model, then the test of βD is interpreted with 

respect to increasing overall size while leaving relative importance of components 

constant, i.e. increasing all absolute component sizes in the same proportion.

Some properties of the CoDa model with a total (3.3) are:

• The global F statistic gives the same result as (3.1) and is SBP invariant; that 

is, invariant to the choice of ilr coordinates (balances).

• The overall goodness of fit of the model (e.g. the R−squared value, and the 

residual standard error) is the same as in (3.1) and is SBP invariant.

• The βD total effect is SBP invariant.

Indeed, we define the transformation matrix U as

(yi ti) = ln(xi) ·U and ln(xi) = (yi ti) ·U−1, (3.4)

where

U =

⎛
⎜⎜⎜⎜⎜⎝

Ψ

1
/√

D

...

1
/√

D

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

ψ11 · · · ψ1D−1

...
...

ψD1 · · · ψDD−1

1
/√

D

...

1
/√

D

⎞
⎟⎟⎟⎟⎟⎠

. (3.5)
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It must be noted that UTU=I. The U matrix is an orthonormal change of basis

matrix from ln(xi) into the RD space. From this it follows that U−1 = UT and

wi = γ0 + ln(xi) · γ + ui = γ0 + (yi ti) ·UT · γ + ui = β0 + (yi ti) · β + ui, (3.6)

wi = β0 + (yi ti) · β + ui = β0 + ln(xi) ·U · β + ui = γ0 + ln(xi) · γ + ui, (3.7)

from which we conclude that γ0 = β0; γ = U·β; β =UT ·γ and that both models are

equivalent, yielding identical predicted values and disturbances. Any global test or

goodness of fit measure which is a function of predicted values, observed values and

disturbances will yield the same results in the classical model (3.1) and the model

(3.3) using the total (3.2). Any estimation method optimising a function of predicted

values, observed values and disturbances will yield the same optimum, and estimates

will be equivalent following the relationships (3.4), (3.6) and (3.7).

By construction of the last row of UT, the total effect βD is

βD =
1√
D
γ1 + · · ·+ 1√

D
γD . (3.8)

This holds regardless of the Ψ matrix and SBP constructed. From the expression (3.8) 

it follows that the total (3.2) will have greater predictive power the further the sum of 

the coefficients in γ is from zero. On the contrary, the sum of the γ vector equal to zero 

indicates that the total is not informative.

Model (3.1) and model (3.3) are thus equivalent. Both models are also subject to 

the same well-known statistical and distributional assumptions. The choice for one 

or the other depends only on the ease of interpretation. The model (3.3) makes it
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easier to test hypotheses on absolute and relative importance separately. Besides, the 

hypotheses about relative importance can be chosen by the researcher in the SBP.

The CoDa model with a total (3.3) can be extended to a generalized lineal model to 

deal with a count w variable (e.g. Poisson or negative binomial regression), a binary w 

variable (e.g. logit or probit model), or an ordinal w variable (e.g. ordered logit or probit 

model). The total (3.2) recommended by Pawlowsky-Glahn et al. (2015b) best 

separates absolute and relative information and we advise researchers to use it. 

Below we show how  alteration or omission of the total affect the model properties 

and interpretation.

4 Different submodels

4.1 Composition-only model: consequences of omitting the

total

Standard CoDa is equivalent to fitting (2.5), which we refer to as composition-only 

model. It can thus be understood as a particular case of CoDa with a total when βD =0, 

or, following (3.8), as a particular case of the classical approach (3.1) in which the sum 

of the coefficients in γ is zero.

All known results about the removal of variables in a generalized linear model can 

thus be applied here. If the total has a non-zero βD effect on the dependent variable 

in the population, omitting it constitutes a model misspecification which can bias 

the effect estimates involving balances, more so if balances and total are correlated.
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If data are purely compositional (i.e. if absolute information is truly arbitrary and 

irrelevant) then the total is expected both to be uncorrelated with the balances and 

with any variable of interest.

Omitting the total when relevant affects parameter interpretation. The αj param-eter 

relates to the effect of increasing all components in the numerator by a given proportion, 

while decreasing all components in the denominator by another given proportion. 

However, the interpretation is ambiguous: it is not known what happens with the total, 

which will depend on the unknown relationship between yj and t. If  this relationship 

is zero, the problem disappears and a purely compositional analysis is correct. If this 

relationship is positive, the parts in the numerator are inadvertently increasing to a 

greater extent than the parts in the denominator are being reduced; if negative, it is the 

other way around.

Actually, the statistical significance of the βD effect of the total can be understood as 

evidence that the absolute value of components does matter to the research question. 

Only if the total is not significant can data be held as purely compositional and is 

the standard CoDa model (2.5) reasonable.

4.2 Total-only model

One could also consider a model in which relative information does not matter, which 

we term total-only model

wi = β0 + βDti + ui. (4.1)

This model is a legitimate option if the distribution of the total among parts has no

effect on the dependent variable. However, the interpretation of the coefficient is once
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more unclear. It is related to the effect of increasing the product of components as a 

whole, by unknown, equal or unequal factors.

Analogously to the composition-only model, the model (4.1) can also be related to 

the classical model (3.1). Since by construction of UT all rows from 1 to D-1 have 

zero sum, when all γ coefficients in (3.1) are equal it follows that  β1 = ... = βD−1 =0.

4.3 Nested model hierarchy

The models (2.5) and  (4.1) are nested into the model (3.3) and can thus be compared 

to it in order to test for the relevance of relative and absolute information when 

predicting w.

The test of the full model (3.3) against the composition-only model (2.5) refers to the 

null hypothesis that total does not matter (H0: βD =0). The test of the full model (3.3) 

against the total-only model (4.1) refers to the null hypothesis that composition does 

not matter (H0: β1 = β2 = . . .  = βD−1 =0).

We suggest using the model hierarchy for hypothesis testing rather than for model 

selection. In other words, we suggest keeping the full model, whose interpretation is 

always clear, regardless of the test outcomes. Even if not statistically rejected, the 

composition-only or total-only models may be misspecified to some extent in the 

population.

Of course, we recommend users not to base their conclusions on tests alone. Some 

goodness of fit measure of the three models should tell to what extent size and com-

position contribute predictive power. Ideally, such fit measure should take parsimony 

into account (e.g. AIC, BIC, and adjusted R-squared).
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4.4 Consequences of including the total as a sum

Pawlowsky-Glahn et al. (2015b) discussed the possibility of using a total based on its 

usual understanding as a sum of parts, rather than the product-based total (3.2)

t
′
i = ln(xi1 + xi2 + · · ·+ xiD) . (4.2)

It must be noted that this is the logarithm of the sum used in the closure operation

(1.2).

When compositions with a total are used as dependent variables, the particular def-

inition of the total does not modify equations relating to balances (Ferrer-Rosell et

al., 2016a). However, when used as explanatory, the model (2.5) combined with the

total (4.2) does not yield the same results as the model (3.3). Even if there is noth-

ing inherently wrong with (4.2) and at first sight a total as a sum looks intuitively

appealing, parameter estimates and interpretation do change and many readers may

find the interpretation of the model with the total (3.2) simpler. In a similar way

as logarithms in (2.1), (2.3), (3.1) and (3.2), the logarithm in (4.2) has  the twofold

objective of transforming positive values into the whole real space and shifting the

focus from absolute to relative changes. In this context, the sum is a hard-to-interpret

operation, while products and geometric averages are natural in a log scale.

When the total sum (4.2) is used, the tests of β1 to βD−1 refer to the effect of in-creasing

all components in the numerator by a given proportion, while decreasing all

components in the denominator by another given proportion. However, the inter-

pretation is once more ambiguous. Are the components in the numerator increasing to a

greater or lesser extent, proportionally speaking, than the components in the
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denominator are being reduced? Once more, absolute and relative information are 

not well separated.

In addition, the model with the total (4.2) is no longer equivalent to the model (3.1). 

If the researcher finds (3.1) to be a good representation of the reality to be modelled, 

then fitting the model with (3.2) and  (3.3) is the natural thing to do and is subject 

to the same distributional assumptions.

On the other hand, if the researcher believes the sum of parts to be a relevant char-

acteristic of individuals, then (4.2) may be preferred to (3.2). A very pragmatic 

approach is also possible: if the researcher’s objective is merely to predict the depen-

dent variable as accurately as possible, he or she may simply choose between (4.2) 

and (3.2) on the basis of explanatory power alone.

4.5 Consequences of not including all absolute information

in the total

Ferrer-Rosell et al. (2016a) show that in a dependent role, the geometric mean of any 

number of absolute values (even just one absolute value) can be used as a total. When 

compositions and a total are used as explanatory, any modification in the total changes 

what is held constant when interpreting the balances and the interpretation of the 

coefficients is once more rather counterintuitive. Let us assume without loss of 

generality that the total includes the geometric mean of the absolute values of the first 

s parts. In spite of defining

t
′′
i =

√
s ln ( s

√
xi1xi2 · · · xis) =

1√
s
(ln(xi1) + ln(xi2) + · · ·+ ln(xis)) , (4.3)
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βD is not related to the first s parts but to all of them. Multiplying all parts simul-

taneously by the same constant is the only way in which ti
′′ 
can be increased while 

leaving all balances constant. Besides, the last column in (3.5) is no longer orthogo-

nal with respect to the first D-1 and hypotheses on balances are once more not well 

separated from the hypotheses on the total.

Interestingly, the goodness of fit of the model and the overall significance test are not 

modified by the inclusion of only some parts in the total.

5 An example in tourism economics

5.1 Background

This example deals with tourist expenditure on three components which constitute 

the three major parts of a trip budget: transportation, accommodation & food, and 

activities & shopping. It constitutes a clear case in which both total expenditure and 

the way it is distributed is interesting to tourism scholars and managers (Ferrer-Rosell 

et al., 2016a). This notwithstanding, tourist expenditure research has largely ignored 

budget distribution, ignored budget total, or confounded both. The vast majority of 

tourist expenditure studies take into account one single expenditure variable (Brida 

and Scuderi, 2013) and thus ignore budget distribution. Some studies focus on trip 

budget distribution among parts, thus ignoring trip budget total, by means of CoDa 

(e.g. Ferrer-Rosell et al., 2016b) or other analysis methods (e.g. almost ideal demand 

systems, see Lee et al., 2015). Finally, some studies focus on absolute trip expenditure 

per trip budget part. Since part expenditure in absolute terms belongs to total
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expenditure, budget distribution and budget total are confounded: a large absolute 

expenditure on a given trip budget part may correspond either to a tourist with a 

large overall budget or to a tourist who particularly tends to spend on that part. 

A repeated finding in this type of analysis is that some variables are related to all 

budget parts in the same direction.

In this illustration we relate tourist expenditure allocation among budget parts and 

total expenditure to trip satisfaction. In the literature, trip satisfaction has been used 

both as a predictor (Brida and Scuderi, 2013) and  as an outcome (Ferrer-Rosell et 

al., 2017) of spending behaviour. In the latter case, to the best of our knowledge only 

total expenditure has been considered, and the reported effect has been positive.

We use an ordinal dependent variable: a question on overall trip satisfaction rated from 

0 to 10. Accordingly, we fit an ordered logistic regression (logit) model.

5.2 Data and balances

We use official statistics microdata from the EGATUR tourist expenditure survey 

conducted by the Spanish Ministry of Industry, Energy and Tourism (ITE, 2014). 

We consider European leisure visitors arriving to Spain by air in 2012 and spending 

between 1 and 120 nights in a single destination in that country. As Ferrer-Rosell 

et al. (2015, 2016a,b) we exclude tourists for whom expenditure distribution among 

budget components is partly or completely unobserved (mainly those staying with 

friends/relatives or in an owned apartment, and package tourists). The sample size 

is 19142.

We focus on D= 3 expenditure components:
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• x1 Euro spent on transportation,

• x2 Euro spent on accommodation and food at destination,

• x3 Euro spent on activities and shopping at destination.

An interpretable ilr transformation is easy to compute whenever there is an inter-

pretable SBP of components according to the researchers’ questions. These partitions 

are best understood with a dendrogram (Pawlowsky-Glahn and Egozcue, 2011). The 

dendrogram (Figure 1) we use is related to research questions concerning:

• The effect on satisfaction of how tourists distribute total expenditure between

transportation and at-destination expenditure.

• The effect on satisfaction of how tourists distribute at-destination expenditure

into accommodation and food versus activities and shopping.

Figure 1 SBP of trip budget parts.
Source: Authors’ own.
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The implied ilr coordinates (balances) are

y1 =
√

2
3
ln
(

x1√
x2x3

)
=

√
2
3
ln(x1)− 1

2

√
2
3
ln(x2)− 1

2

√
2
3
ln(x3)

y2 =
√

1
2
ln
(

x2

x3

)
=

√
1
2
ln(x2)−

√
1
2
ln(x3) .

(5.1)

Adding the total (3.2) to (5.1) leads to the following transformation matrix U (3.5)

(
yi1 yi2 ti

)
=

(
ln (xi1) ln (xi2) ln (xi3)

)
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−
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⎟⎟⎟⎟⎟⎠

. (5.2)

Model parameters have to be interpreted in the context of each application, taking

some care in understanding what the other terms in the model are controlling for (i.e.

keeping constant when interpreting the parameter). In our model (3.3) using total

(3.2) and balances (5.1):

• β1 is associated to the effect of multiplying x1 by a constant a>1, while multi-

plying x2 and x3 simultaneously by 1/
√
a. The reader will notice that this is

the only way in which y2 and t can be held constant while varying y1.

• β2 is associated to the effect of multiplying x2 by a constant a>1, while multi-

plying x3 by the inverse of the same constant 1/a. The reader will notice that

this is the only way in which y1 and t can be held constant while varying y2.

• β3 is associated to the effect of multiplying x1, x2 and x3 simultaneously by the

same constant a>1. The reader will notice that this is the only way in which

y1 and y2 can be held constant while varying t.
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5.3 Results

The results of the classical approach (3.1) show positive effect estimates of all log-

parts, which may be the result of confounding total and allocation (model 1 in Table 

1). The global χ2 likelihood ratio test of all the coefficients in (3.3) using the total (3.2) 

is significant (model 2 in Table 1). This test coincides with model 1 and is telling that 

expenditure, all things considered, is related to trip satisfaction.

The results of the individual parameter tests in model 2 show that trip satisfac-

tion significantly increases when relative importance of transportation expenditure 

decreases compared to at-destination expenditure (y1), when relative importance of 

accommodation and food within at-destination expenditure increases (y2), and when 

all components of the total budget increase by the same proportion (t).

Omitting the significant total as in (2.5) modifies the estimates of the balance coef-

ficients to a substantial extent, which in this case is interpreted as omitted variable bias 

(composition-only model 3). Model 4 is the total-only model (4.1).

The restricted models 3 and 4 in Table 1 can be compared to the full model 2 in order 

to test for the relevance of absolute and relative information, respectively. When 

comparing the nested models 3 and 2, the likelihood ratio test computed as the χ2 

difference is 131.680−35.012=96.668 with 1 d.f. (p−value<0.0005), leads to rejecting 

model 3 and H0: β3 =0 and to concluding that absolute expenditure has a non-zero 

effect on satisfaction. When comparing the nested models 4 and 2, the χ2 difference is 

131.680−113.421=18.259 with 2 d.f. (p−value<0.0005), leads to rejecting model 4 and 

H0: β1 = β2 =0 and to concluding that relative expenditure has a non-zero effect on 

satisfaction. However, the results of the tests do not tell about predictive power
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in practical terms. When we look at the BIC values in Table 1, the total-only model 

appears to be preferable, thus telling that predictive power of relative expenditure 

information is negligible. This notwithstanding, we interpret the total effect in the full 

model, because of its more precise definition in terms of what happens when all 

components increase by the same proportion.

Models 5 and 6 in Table 1 illustrate the implications of modifying the total. Modifying 

it as the sum (4.2) in model 5 changes both the estimates of the balance effects and 

the global goodness of fit. The interpretation of balances in model 2 does not hold 

anymore.

As an example of a total focusing on specific parts (4.3), Ferrer-Rosell et al. (2016a) 

defined ti′′ =ln(xi1) within a study on transportation economics. If t′′ is included as 

explanatory, then the global χ2 likelihood ratio test is the same as in model 2 but the 

interpretation of some of the coefficients is rather counterintuitive (model 6). In spite 

of defining ti′′ =ln(xi1), β3 is not related to transportation (x1) but is proportional to the 

effect of multiplying x1, x2 and x3 simultaneously by the same constant, and the β3 test 

statistic is equal to that of model 2. β1 is associated to the effect of increasing x2 and x3 

while keeping ln(x1) constant, and thus leads to confounding relative and absolute 

information.
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Table 1 Tests and estimates of alternative specifications. (*) Global χ2 test of
β1 = β2 = β3 = 0 or γ1 = γ2 = γ3 = 0: 131.680 with 3 d.f.; p−value<0.0005.
(**) Global χ2 test of α1 = α2 = 0: 35.012 with 2 d.f.; p−value<0.0005. (***)
χ2 test of β3 = 0: 113.421 with 1 d.f.; p−value<0.0005. (****) Global χ2 test of
β1 = β2 = β3 = 0: 158.183 with 3 d.f.; p−value<0.0005.

Std. Estimate/ Test
Model and variables Estimate error Std. error p−value
1) Classical (3.1, BIC=52142) *

ln(x1) 0.030 0.024 1.274 0.203
ln(x2) 0.163 0.021 7.600 0.000
ln(x3) 0.050 0.011 4.639 0.000

2) Full (3.2 and 3.3, BIC=52142) *
y1 -0.062 0.024 -2.569 0.010
y2 0.080 0.019 4.300 0.000
t 0.140 0.014 9.968 0.000

3) Composition-only (2.5, BIC=52108)**
y1 -0.132 0.023 -5.717 0.000
y2 0.033 0.018 1.826 0.068

4) Total-only (3.2 and 4.1, BIC=46052)***
t 0.130 0.012 10.876 0.000

5) t′ = ln(x1 + x2 + x3) (3.3 and 4.2, BIC=52115)****
y1 -0.041 0.025 -1.681 0.093
y2 -0.009 0.018 -0.465 0.642
t′ 0.271 0.024 11.265 0.000

6) t′′ = ln(x1) (3.3 and 4.3, BIC=52142)*
y1 -0.261 0.026 -9.918 0.000
y2 0.080 0.019 4.300 0.000
t′′ 0.243 0.024 9.968 0.000

Source: Authors’ own.
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6 An example on urban solid waste and floating pop-

ulation

The actual population residing in a municipality is composed by the census count and 

the so-called floating population (tourists, seasonal visitors, hostel students, short-time 

employees, and the like). Floating population may be positive if the municipality is 

receiving more short term residents than it is sending elsewhere, or negative if the 

opposite holds. It is usually expressed as a percentage above (if positive) or below (if 

negative) the census count.

Floating population, including tourist population, has a large impact on solid waste 

generation (Mateu-Sbert et al., 2013) and thus overall solid waste can be used to 

predict floating population (Mateu-Sbert et al., 2013). Tourists and census population 

do not generate the same amount of waste (Mateu-Sbert et al., 2013) and may have 

different recycling patterns (Mendes et al., 2013), which calls for considering both 

waste total and composition.

The composition of solid waste has been studied by means of CoDa (Pivnenko et al., 

2016). In this illustration we show how both absolute size (tons per census inhabitant) 

and composition of urban solid waste can be used to proxy floating population.

The Catalan Statistical Institute (IDESCAT) publishes floating population data for all 

municipalities in Catalonia (Spain) above 5000 inhabitants, together with solid waste 

weight classified into D =5 components: non recyclable (x1, grey waste con-tainer in 

Catalonia), glass (x2, bottles and jars of any colour −green container), light containers 

(x3, plastic packaging, cans and tetra packs −yellow container), paper and
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cardboard (x4, blue container) and biodegradable waste (x5, brown container). Fig-

ure 2 shows a possible SBP tree of urban solid waste. We use data for 2014 (n =215 

municipalities).

Figure 2 SBP of urban solid waste parts.
Source: Authors’ own.

Since the dependent variable is numeric, a linear regression model can be appropriate.

Table 2 shows the estimates of the model (3.3) with the total (3.2). The adjusted R

−squared is high at 63.1%

Table 2 Test and estimates of the effects of solid waste on floating population. Global
F test of β1 = β2 = β3 = β4 = β5 =0: 74.117 with 5 and 209 d.f.; p−value<0.0005.

Std. Estimate/ Test
Estimate error Std. error p−value

Balance non-rec. & glass over all other (y1) 19.244 2.312 8.324 0.000
Balance containers over bio. & paper (y2) -8.185 3.788 -2.161 0.032
Balance non-rec. over glass (y3) 6.184 3.569 1.733 0.085
Balance bio. over paper (y4) 1.993 2.105 0.947 0.345
t 23.045 1.509 15.272 0.000

Source: Authors’ own.

The nested test of this full model against the total-only model leads to rejecting
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H0:β1 = β2 = β3 = β4 =0 (F=66.645 with 4 and 209 d.f.; p−value<0.0005) while the 

nested test of this full model against the composition-only model leads to rejecting 

H0:β5 =0 (F=233.23 with 1 and 209 d.f.; p−value<0.0005). In this example both 

composition and total have substantial predictive power: the total-only model has an 

adjusted R−squared equal to 31.7% and the composition-only model 22.2%.

The fact that a higher floating population can be predicted from a higher waste total 

was to be expected. However, waste composition helps making substantially better 

predictions. A higher floating population can also be expected from a lower balance of 

light containers over paper, cardboard and biodegradable waste (y2), and from a larger 

balance of non-recyclable and glass waste over the three types above (y1). Floating 

population not only increases waste in the transient municipality, but also has different 

consumption or recycling patterns, compared to permanent population.

7 Final remarks

In this article we show and illustrate how relative and absolute information can be 

combined and used to explain other variables of interest by means of CoDa with a 

total. While being equivalent to modelling all log absolute values, this approach has 

the advantage that tests of the effect of relative importance of parts and of the effect of 

absolute size are separated. The approach uses, on the one hand, the logarithm of the 

geometric mean of all absolute values; on the other, D−1 balances obtained from a 

SBP, in other words, ilr coordinates, exactly as in standard CoDa. Nested models can 

be used to test the relevance of each. It is assumed that absolute size is not constant 

and data are available in their original x form prior to carrying out the
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closure operation. CoDa with a total is of no interest on closed data.

Parameters are easy to interpret and can be tailored to the researcher’s questions and 

hypotheses. When D is large, it may indeed be difficult to derive the SBP from research 

questions. An alternative approach is to construct the SBP from the data by means of 

the so-called principal balances (Pawlowsky-Glahn et al., 2011).

Extensions to non-normal dependent variables are immediate by means of general-

ized linear models, and, once balances and total have been computed, any standard 

software handling generalized linear models will do the job.

Using a total other than the geometric mean of all absolute values leads to some 

degree of confounding between relative and absolute information, while dropping the 

total makes interpretation ambiguous, and even biased if the total is actually relevant. 

As a word of caution, including absolute information is advisable even if it is not of 

interest to the researcher, for the sake of a clearer and unbiased interpretation of the 

balance effects.

Applications of the method include situations in which the researcher is interested 

both in relative and absolute information, and situations in which the main interest 

lies in relative information but the relevance of absolute information (assumed to be 

available) cannot be ruled out. They may include research in such diverse fields as web 

content analysis and mining (e.g. number of postings within each content category 

or containing each term), bacteria or pollutants (e.g. abundance and distribution 

per types or species), household budgets (e.g. total expenditure and its allocation), 

forestry management (e.g. forest density and species distribution), marketing (e.g. 

market share and sales), finance (e.g. balance sheet analysis: liquidity and leveraging
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ratios, and total assets), quality control (e.g. defect or customer complaint count 

and type), ecology (e.g. abundance and distribution of resources and species), and 

dietetics/nutrition (e.g. fat total content by fat type), among others.

Previous research has already dealt with the case in which composition and a total act 

as dependent variables. Further research can firstly extend the findings in this article 

to statistical models in which compositions and a total are at the same time dependent 

and explanatory, or in which there may even be more than one composition. This 

includes techniques such as structural equation models and partial least squares, for 

which standard CoDa is already in place (Kalivodová et al., 2015; Kogovšek et al., 

2013).

Secondly, further research can include developing comparable measures of effect size 

supplementing the information provided by the statistical tests and the goodness of fit 

measures, in order to better gauge the practical relevance of each model parameter. 

Finally it can include testing, and if necessary adapting, the zero treatment methods in 

CoDa when a total is present.
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