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a b s t r a c t

In this paper we study the appearance of bifurcations of limit cycles in an epidemic model with two
types of aware individuals. All the transition rates are constant except for the alerting decay rate of
the most aware individuals and the rate of creation of the less aware individuals, which depend on the
disease prevalence in a non-linear way. For the ODE model, the numerical computation of the limit
cycles and the study of their stability are made by means of the Poincaré map. Moreover, sufficient
conditions for the existence of an endemic equilibrium are also obtained. These conditions involve a
rather natural relationship between the transmissibility of the disease and that of awareness. Finally,
stochastic simulations of the model under a very low rate of imported cases are used to confirm the
scenarios of bistability (endemic equilibrium and limit cycle) observed in the solutions of the ODE
model.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The role of human behaviour has been increasingly consid-
red in epidemiological modelling since the early 2000s [1]. The
pread of COVID-19 has highlighted even more its important
ole in the progress of infectious diseases. Besides institutional
easures as mobility restrictions, mandatory use of facemasks,
r school closings, self-initiated individual behaviours related
o risk aversion are recognized as a driving force in epidemic
ynamics [2,3]. Another important example of the impact of self-
nitiated individual behaviours on epidemic spreading is given by
he evolution of sexually transmitted diseases (STDs). The current
esurgence in the number of cases of STD such as gonorrhea
nd syphilis began in the mid-1990s, after the striking decline in
he number of STD cases following the appearance of the HIV in
he early 1980s and the subsequent widespread use of condoms.
owever, a lower perception of risk following the introduction of
ntiretroviral therapies for HIV led to a decrease in condom use
nd the current explosion of STD cases (see [4] and references
herein).

One way to model such behavioural changes in deterministic
odels is to modify the incidence term βSI where β denotes

he rate of disease transmission, and S and I are the number of
susceptible and infected individuals, respectively. The simplest
way to modify it is by assuming that β is no longer constant but
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a decreasing function of the prevalence of the disease [3,5–7]. In
this mean-field formulation of the incidence term, β depends on
the contact rate as well as on the probability of transmission dur-
ing an infectious contact. So, its reduction can reflect a diminution
in the number of social contacts (social distancing), the adoption
of measures to prevent infection while keeping the same contact
rate (decrease of the infection probability), or both.

On the other hand, it is well known that the perception of
infection risk is uneven among susceptible individuals [8]. One
way to introduce some heterogeneity in risk-taking propensity
has been to include more types of uninfected individuals char-
acterized by their level of responsiveness to risk. For instance,
the Susceptible–Aware–Infectious–Susceptible (SAIS) model con-
siders a new class of non-infected individuals with a higher
risk aversion than the susceptible ones, the so-called aware or
alerted individuals, who are characterized by a lower transmis-
sion rate [9].

A basic ingredient in such a modelling approach is the trans-
mission of awareness among individuals [10]. In [4] the authors
considered an SAIS model where alerted individuals were able to
transmit awareness by convincing non-aware individuals to take
preventive measures against the infection, which is an example
of self-initiated individual behaviour. Moreover, a new class of
aware individuals, the so-called unwilling (U) individuals, is also
introduced. They are characterized by a lower level of alertness
which is translated into a lack of willingness to transmit aware-
ness to susceptible individuals. The existence of this second class
of aware individuals turns out to be necessary to have oscillatory
solutions of the SAUIS model with no births and deaths in the

population.
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Fig. 1. Shape of function σm(i) with η = 0.4 for different values of m.

The inflow of new susceptible individuals in the population is
key factor in mean-field epidemic models to observe periodic
olutions [6]. In dynamic networks models, link dynamics can
lso play this role [11]. However, even without demographic
rocesses, behaviourally-induced epidemic oscillations can also
e expected to occur when individuals experience a decline in
wareness as a result of preventive measures taken over long
eriods of time combined with low disease prevalence. The
HO report entitled ‘‘Pandemic Fatigue’’ defines this decline

s ‘‘demotivation to follow recommended protective behaviours,
merging gradually over time and affected by a number of emo-
ions, experiences and perceptions’’ [12]. The existence of this
ype of oscillations was, indeed, proved in [4] by analysing the
ccurrence of a Hopf bifurcation from an endemic equilibrium
f the SAUIS model. Later, the robustness of such oscillations
as confirmed in [13] under the assumption of a low rate ε of

mported cases (infections contracted from abroad) by means of
tochastic simulations on random networks.
In this paper, we explore an extended version of the SAUIS-ε

model in [13] which considers that awareness dynamics changes
abruptly when disease prevalence crosses a threshold value η.
recisely, the rate νa of creation of unwilling individuals and
he rate of awareness decay δa are modulated by the following
function σm(i) of the fraction i of infected individuals:

σm(i) =
1

1 + (i/η)m
, m ≥ 1.

he sharpness of the reduction of these two rates is controlled
y the parameter m, while η is the half-saturation constant (see

Fig. 1). In particular, for m ≫ 1, 1 − σm(i) becomes closer to
the unit step function θ (i − η). Sudden behavioural changes can
occur, for instance, with the appearance of new cases of a highly
fatal infectious disease such as that caused by the Ebola virus, a
reemerging disease that generated panic among people during its
2014 outbreak [14].

In contrast to other papers where awareness is considered in
terms of non-constant infection transmission rates (see, for in-
stance, [3,5–7,15]), here we will focus on the awareness dynamics
themselves and their role in the appearance of periodic solutions
(oscillatory epidemics). We are interested in how the behaviour
of solutions is affected by the reduction of both the decay of
awareness and the creation of unwilling individuals. Moreover,
we will use a parameter, m, which is not a transmission rate but
it is related to the behavioural response itself.
2

Precisely, we prove the existence of endemic equilibria for the
model with ε = 0 and a general function σm(i) under biologi-
cally meaningful conditions by proving and applying an extended
version of the Poincaré–Miranda theorem on a triangular do-
main. Moreover, for ε > 0, a set of parameters satisfying these
onditions, and using m as a tuning parameter, we obtain two
regions of bistability that appear from a saddle–node bifurcation
of limit cycles, one for low values of m and the second one for
high values of m. These two scenarios of bistability are confirmed
by performing stochastic simulations of the transitions involved
in the model. To our knowledge, this is the first time that such
bifurcations are reported in epidemic models with dissemination
of awareness, whether deterministic or stochastic.

2. SAUIS-ε model with varying coefficients

Each individual in a population can be in one of the following
four states: S (susceptible), A (aware), U (unwilling), and I (in-
fected). The model assumes that aware individuals are created
at alerting rates αi and αa from susceptible ones after being in
contact with infected and aware individuals, respectively. Aware
individuals experience an alerting decay and become unwilling
at a rate δa, while unwilling individuals also appear at rate νa
from contacts between susceptibles and aware individuals and
they become susceptible at a rate δu. The infection transmission
rates for susceptible, aware, and unwilling individuals are β , βa,
and βu, respectively, while the recovery rate from infection is δ.

Moreover, following the SAUIS-ε model introduced in [13],
we consider the entry of imported cases (infections contracted
abroad) at a very low rate ε > 0. This fact will prevent stochastic
epidemic oscillations from extinction and, at the same time, the
dynamical properties of the solutions remain close to those of
the deterministic ODE model with ε = 0. From a demographic
point of view, it is assumed that the arrival of imported cases
is a sporadic event and, therefore, does not significantly alter
the prevalence of the disease. In stochastic simulations, it will
mean on average less than one imported case per mean infectious
period when the population size is N = 105 because only
non-infected individuals can bring infections from abroad.

Finally, as explained in the introduction, we assume that the
rate of awareness decay δa and the rate νa at which susceptible
hosts become unwilling due to a contact with an aware host both
depend on the fraction of infected individuals through a reduction
factor given by the function σm(i).

Here it follows a summary of all transitions defining the
SAUIS-ε model for a population of N individuals:

I + S
β0

−→ 2I, I + A
β0
a

−→ 2I, I + U
β0
u

−→ 2I

I + S
α0
i

−→ I + A, A + S
α0
a

−→ 2A, A + S
ν0a

−→ A + U

I
δ

−→ S, A
δa

−→ U, U
δu

−→ S, {S, A,U}
ε

−→ I

(1)

where δa = δaσm(i) and

β0
=

β

N − 1
, β0

a =
βa

N − 1
, β0

u =
βu

N − 1
, α0

i =
αi

N − 1
,

α0
a =

αa

N − 1
, ν0

a =
νaσm(i)
N − 1

(2)

are the corresponding rates per single contact.
After replacing N − 1 by N in (2) for simplicity, the resulting

DE system governing the epidemic dynamics is given by:
da
dt

= αi s i + αa s a − βaa i − δa σm(i) a − εa, βa < β,

du
dt

= δa σm(i) a + νa σm(i) s a − βuu i − δuu − εu, βu < β,

di
= (β s + βaa + βuu − δ)i + (1 − i)ε, s + a + u + i = 1,

(3)
dt
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here s, a, u, and i denote the fractions of hosts in the S, A, U ,
nd I compartments, respectively. The differential equation for s

has been omitted because it is redundant.

3. Equilibria

The natural state space of system (3) is Ω := {(a, u, i) ∈ R3
:

0 ≤ a + u + i ≤ 1}. The existence of imported cases from abroad
guarantees that the vector field defined by this system on the
boundary of Ω points strictly towards its interior. In particular,
this implies that Ω is positively invariant under the flow defined
by the solutions of system (3) and, moreover, the non-existence
of disease-free equilibria for this model.

On the other hand, since σm(0) = 1, the same analysis of
the bifurcations from the two disease-free equilibria (DFE) of
the model with ε = 0 done in [13] works for our system. For
instance, taking ε as a bifurcation parameter, it follows that one
interior equilibrium of (3) comes from the bifurcation of a DFE
of the system with ε = 0 when β < δ. Precisely, either the
DFE e∗

1 = (0, 0, 0) enters Ω for ε > 0 if αa < δa, or the DFE
e∗

2 = (a∗

0, u
∗

0, 0) with a∗

0 = δu (1 − δa/αa) / (δa (1 + νa/αa) + δu)
and u∗

0 = δa/δu (1 + νa/αa) a∗

0 enters Ω for ε > 0 if αa > δa.
In both cases, the interior equilibrium of system (3) bifurcates
from an asymptotically stable DFE and is only maintained by
the presence of imported cases. So, such an equilibrium is not a
proper endemic equilibrium because it does not result from the
disease transmission within the population.

For β > δ and taking βa as a bifurcation parameter, it
follows that e∗

2 is still asymptotically stable if βa < βc
a := β −

β − δ − (β − βu)u∗

0

)
/a∗

0. In this case, an interior equilibrium fed
y the imported cases bifurcates from it. So, from now on we will
ssume that β > δ and βa > βc

a to guarantee that no interior
quilibrium for ε > 0 arises from a DFE with ε = 0 and, hence,
hat any interior equilibrium corresponds to the perturbation of
n endemic equilibrium of the system with ε = 0.
Endemic equilibria are, in general, very difficult to determine

nalytically. When ε = 0 we can easily see that any endemic
quilibrium lies inside the plane

−
δ

β
−

(
1 −

βa

β

)
a −

(
1 −

βu

β

)
u − i = 0. (4)

The following result gives sufficient conditions for the existence
of at least one endemic equilibrium point of the model (3) with
ε = 0. The proof relies on a version of the Poincaré–Miranda the-
orem in a triangular domain, which we include in the Appendix
for completeness.

Lemma 3.1. System (3) with ε = 0 has an endemic equilibrium
point in Ω if 0 ≤ βa < βu < δ < β and αa

δa
<

β−βa
δ−βa

.

roof. Substituting (4) into the first and second equations of (3)
e obtain two continuous functions in the variables (a, u), f1
nd f2, respectively. We find endemic equilibria in the common

zeros of f1(a, u) and f2(a, u). The intersection of the plane (4) with
Ω projected to the (a, u)-plane is the right triangle with vertex
(0, 0), ( β−δ

β−βa
, 0) and (0, β−δ

β−βu
). Notice that β−δ

β−βa
,

β−δ

β−βu
< 1 since

βu, βa < δ. The hypotenuse of the triangle is given by substituting
i = 0 in Eq. (4).

On the one hand, f1(0, u) =
αiβu(β−βu)

β2 u2
−

αi(ββu+βδ−2βuδ)
β2 u +

αiδ(β−δ)
β2 is positive for u ∈ [0, β−δ

β−βu
) and vanishes at u =

β−δ

β−βu
. On

he hypotenuse, f1 takes the value

f1(a,
β−δ−(β−βa)a

β−β
) =

a
(αa(βu−βa)a+αa(δ−βu)−δa(β−βu))
u β − βu

3

hich vanishes at a = 0 and a =
δa(β−βu)−αa(δ−βu)

αa(βu−βa)
. Elementary

omputations show that this second root is greater than β−δ

β−βa
if

and only if

(β − βu)(δa(β − βa) − αa(δ − βa)) > 0,

hich follows from the hypotheses. Thus f1 < 0 on the hy-
otenuse (note that the coefficient of a2 is strictly positive since
u > βa).
On the other hand, f2(0, u) =

βu(β−βu)
β

u2
−

(β−δ)βu+βδu
β

u is
egative for all u ∈ (0, β−δ

β−βu
) and vanishes at u = 0, and

f2(a, 0) =
σm(i)

β

(
−βaνaa2 + (βδa + δνa)a

)
anishes at a = 0 and a =

βδa+δνa
βaνa

> 1, so f2(a, 0) > 0 for all
∈ (0, β−δ

β−βa
).

Therefore, f (a, u) := (f1(a, u), f2(a, u)) satisfies the assump-
ions of Theorem A.2 (see the Appendix) and there exists a
ommon zero of f1(a, u) and f2(a, u) inside the triangle formed
y the plane (4) inside Ω , which corresponds to an endemic
quilibrium. □

Note that, if αa
δa

<
β

δ
and the first hypothesis of the lemma is

fulfilled, then the second one is guaranteed because g(x) =
β−x
δ−x

s an increasing function of x and, hence, we have
αa

δa
<

β

δ
<

β − βa

δ − βa
.

n other words, if the basic reproduction number of the disease
n an awareness-free population, β/δ, is larger than 1 and, also,
s larger than that of the awareness transmission in a wholly
usceptible population, αa/δa, then the existence of an endemic
quilibrium for ε = 0 is guaranteed.
With respect to the endemic equilibria of system (3) for ε > 0,

e know that any equilibrium whose existence is guaranteed by
emma 3.1 will persist inside Ω for ε > 0 small enough under
he classical transversal condition thanks to the implicit function
heorem.

. Saddle–node bifurcation of limit cycles

A bifurcation that passes from the exhibition of two hyper-
olic limit cycles of different stability in the phase portrait to
he absence of such limit cycles through their collision in a
on-hyperbolic semistable limit cycle is called a saddle–node bi-
urcation of limit cycles. A classic scenario in the plane where this
ifurcation appears is through a bistable configuration, when a
table equilibrium point is surrounded by an also stable limit
ycle. Therefore a second limit cycle, in this case unstable, sepa-
ates the basins of attraction of both stable objects. A continuous
ependence on parameters may cause the two limit cycles col-
ide and initial solutions that were attracted to the oscillatory
otion are then attracted to the equilibrium. This bifurcation is
ot exclusive of the plane, although for greater dimensions the
xistence of the equilibrium is not required.
In order to find limit cycles and to determine their stability,

he Poincaré map is used. In three-dimensional vector fields, as it
s the case for the model under consideration, the Poincaré map
also known as first-return map) is a two-dimensional discrete
ap from a plane transversal to the flow of the system located
ear the periodic orbit to itself. The image by the Poincaré map
f each point on the transversal plane is the next intersection
oint of the flow on the plane. Fixed points of the Poincaré map
orrespond to limit cycles and the stability of such fixed points
ives the stability of the periodic orbit.
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Fig. 2. Two solutions of system (3) for m = 3.5 tending to the limit cycle (in green) whose dynamics is close to the plane (4) (in light blue).
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4.1. Numerical computation of limit cycles and their stability

Analytic treatment of bifurcations involving limit cycles are
only available when the expression of the periodic orbit is known
as a function of the parameter producing the bifurcation. Since
such expression is usually not computable in applications, nu-
merical methods are the common technique for the detection of
saddle–node bifurcations of limit cycles.

Consider a system of differential equations ẋ = f (x) for x ∈ Rn

and the associated flow ϕt (x), t ∈ R. Consider a hypersurface
Σ of Rn transversal to the vector field and assume there exists
x0 ∈ Σ such that ϕT0 (x0) ∈ Σ for some minimal time T0 >

0. Continuous dependence on initial conditions of the system
provides the existence of a neighbourhood U of x0 and a function
T : U → R such that ϕT (x)(x) ∈ Σ for all x ∈ U , the so-called
time-return map. The map P : Σ → Σ defined by P(x) = ϕT (x)(x)
is the Poincaré map or first-return map of the section Σ .

Fixed points of P correspond to limit cycles of the system. So,
in order to locate them, the Newton–Raphson’s method can be
applied to the distance function F (x) = P(x) − x near the limit
cycle we wish to locate. The iterative procedure

xn+1 = xn − DF (xn)−1F (xn),

where DF denotes the Jacobian matrix of F and xn ∈ Σ , produces
successively better approximations of the periodic orbit. Rather
than computing the inverse of the Jacobian matrix, the usual and
more numerically stable procedure is to solve the linear system

DF (xn)(xn+1 − xn) = −F (xn). (5)

Newton–Raphson’s method is an effective way to find isolated
periodic orbits as long as the Jacobian matrix DF is non-singular.
In order to integrate the solution we use Runge–Kutta’s method
RK45. At the same time the solution ϕt (x) is integrated, we also
integrate the variational equation

Ẏ = Df (ϕt (x))Y , Y (0) = In

obtaining the monodromy matrix DϕT (x)(x). Therefore the differ-
ential of the Poincaré map can be computed as

DP(x) = f (P(x))DT (x) + DϕT (x)(x).

If the hypersurface Σ is defined by {g(x) = 0} and it is traversed
from {g(x) < 0} to {g(x) > 0}, by implicit derivation of g(x) = 0
we can find the differential of the time-return map

DT (x) = −
Dg(P(x))DϕT (x)(x)

.

Dg(P(x))f (P(x))

4

Table 1
Standing values of some parameters.
β βa βu αi αa νa δ δa δu ε η

2 0 0.5 0.001 0.015 3 1 0.01 0.03 10−5 0.4

Then the Jacobian matrix of the Poincaré map can be written as

DP(x) = −f (P(x))
Dg(P(x))DϕT (x)(x)
Dg(P(x))f (P(x))

+ DϕT (x)(x).

inally, DF = DP − I and the iterative procedure (5) can be
used to locate limit cycles (we refer the reader to [16] for more
details). Once the limit cycle is located, the eigenvalues of the
monodromy matrix DϕT (x)(x) at the limit cycle, the so-called
Floquet characteristic multipliers, give the stability of the limit
cycle found.

4.2. The saddle–node bifurcation of limit cycles in the model

The version of the SAUIS-ε model (3) exhibits a saddle–node
bifurcation of limit cycles in a certain region of the parameter
space using m as a bifurcation parameter. Throughout the paper
we take fixed values for some parameters. See Table 1. For those
parameters Lemma 3.1 ensures the existence of one equilibrium,
e∗(m) = (a∗(m), u∗(m), i∗(m)), which in this case is unique and
ies inside the plane (4). For the computation of the Poincaré map
e consider the plane Σ := {g(a, u, i) = a − a∗(m) = 0} as a
oincaré section near the limit cycles.
For values of the parameter m < mh ≈ 3.698, the equilibrium

∗(m) is unstable and the system presents an attractive limit
ycle that is mostly restricted to that plane (see Fig. 2). As the
arameter increases, the stability of the equilibrium changes, pro-
ucing a subcritical Hopf bifurcation at m = mh and a bistability
cenario for m > mh: the equilibrium and the limit cycle (see top
anels in Fig. 3). As a consequence of the subcritical character
f the Hopf bifurcation, an unstable limit cycle is born from the
quilibrium. As long as the parameter continues increasing, both
imit cycles (stable and unstable) start approaching each other.
t the saddle–node bifurcation point m = msn1 ≈ 3.761, both
imit cycles collide in a non-hyperbolic semistable limit cycle and
isappear, leaving the equilibrium as the only stable scenario
see bottom panels in Fig. 3). The dynamics remain similar for
sn1 < m < msn2 and, at the second bifurcation pointm = msn2 ≈

6.057, a second saddle–node bifurcation of limit cycles occurs.
n this case, a non-hyperbolic semistable limit cycle appears and
plits into two hyperbolic (stable and unstable) limit cycles as

> msn2, and this happens without any change of the stability
f the equilibrium e∗(m) which remains always asymptotically
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Fig. 3. Projections on the (a, u)-plane of some solutions of system (3) for m = 3.69 (top left), m = 3.73 (top middle), m = 3.76 (top right), m = 3.76082 (bottom
eft), m = 3.77 (bottom middle) and m = 3.8 (bottom right). The orbit in green corresponds to the hyperbolic attractive limit cycle, the orbit in red to the hyperbolic
epulsive limit cycle and the orbit in blue to the non-hyperbolic semistable limit cycle. Blue circles mark the initial conditions.
Fig. 4. Projections on the (a, u)-plane of some solutions of system (3) for m = 16 (top left), m = 16.05 (top middle), m = 16.0575 (top right), m = 16.05755
(bottom left), m = 16.06 (bottom middle) and m = 17 (bottom right). The orbit in green corresponds to the hyperbolic attractive limit cycle, the orbit in red to the
hyperbolic repulsive limit cycle and the orbit in blue to the non-hyperbolic semistable limit cycle. Blue circles mark the initial conditions.
o
o

stable (see Fig. 4). The limit cycles separate each other until
a position which is qualitatively unchanged as m increases. In
Fig. 5 we show the previous described bifurcation phenomena,
where the amplitudes of the stable limit cycle (solid line) and
unstable limit cycle (dashed line) with respect to the proportion
of infected individuals are displayed. The amplitude is computed
as the difference between the largest and smallest value of the
proportion of infected individuals along the orbit. Zero amplitude
corresponds to the equilibrium e∗(m). In Fig. 6 we represent
the Floquet characteristic multipliers of the monodromy matrix
5

DϕT (x)(x) of the stable (solid blue line) and unstable (dashed red
line) orbits, showing the stability of each limit cycle. We point out
that, since DϕT (x)(x) is the monodromy matrix of a limit cycle,
ne of its eigenvalues is always 1 (the one with eigenvector
rthogonal to the section Σ). Moreover, since the motion is

rapidly almost captured by the plane (4), a second eigenvalue is
close to zero. The stability of the limit cycles is then given by the
remaining third eigenvalue. On the left-hand panel we can see
how the unstable limit cycle appears for m = mh, with its third
eigenvalue being larger than one. When approaching m = msn1
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Fig. 5. Bifurcation diagram for ε = 0 (left) and ε = 10−5 (right).
Fig. 6. Floquet characteristic multipliers of the stable limit cycle (solid blue line) and the unstable limit cycle (dashed red line).
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he unstable eigenvalue tends to 1, as it does the third eigenvalue
f the stable limit cycle, producing the saddle–node bifurcation of
imit cycles and the semi-stability of the orbit. On the right-hand
anel we can see that at m = msn2 the semi-stable limit cycle
ppears giving birth to the stable and unstable limit cycles for

> msn2. We point out the strength of the instability in this
case, as we also see on the bottom right panel of Fig. 4, where
orbits are rapidly pushed away from the unstable limit cycle.

5. Stochastic simulations

System (3) is a continuous model for the averaged propagation
f an SAUIS-ε epidemics among the individuals in a fully mixed

population. So, we need to perform stochastic simulations in
order to assess in which sense and to which extent the invariant
objects exhibited by system (3) are found also in a discrete
context.

5.1. General simulation setup

As usual in the setting of continuous-time stochastic simula-
ions, we use the well-known Gillespie algorithm (GA in what
ollows) [17], which was originally designed to simulate a fully
ixed chemically reacting system. We have a population of N

individuals and the algorithm keeps trace of the total numbers S,
A, I , U of susceptible, aware, infected and unwilling individuals.
At each iteration, a single event is chosen at random according to
 h

6

its weight. More precisely, we consider the interval [0, y] where

y = ISβ0
+ IAβ0

a + IUβ0
u + ISα0

i + ASα0
a

+ ASν0
a + Iδ + Aδa + Uδu + (N − I)ε.

e think [0, y] as the total event window, partitioned in ten
subintervals corresponding to the ten possible types of reactions
listed in (1), the length of each subinterval being a summand
in the previous equality. Then, a number x in [0, y] is chosen
uniformly at random. The subinterval containing x tells us the
type of single event that will occur. Once chosen, the event takes
place and A, I , U and S = N − A− I − U are accordingly updated.
Finally, we choose at random a number 0 < z < 1, increase the
continuous time by − log(z)/y (see [13,17]) and proceed to the
next iteration.

Given a population size N , a combination of model parame-
ters, and an initial condition a(0), u(0), i(0), we run 50 indepen-
ent simulations, each corresponding to a random distribution of
(0)N , u(0)N , i(0)N and (1−a(0)−u(0)−i(0))N individuals having
espectively the initial states of aware, unwilling, infected and
usceptible. For any experiment, we store the evolution of a(t),
(t) and i(t) as three time series of equally-spaced points in the
nterval [0, T ], where T is the maximum running continuous-time
f the simulation. Throughout the paper, the caption of each re-
orted figure obtained by simulation includes the specification of
he values of N , a(0), u(0), i(0) and T . Recall that some parameters
ave the standing values shown in Table 1.
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Fig. 7. On top, two outputs from GA with parameter m = 3.7 with N = 105 (dotted line) and N = 106 (solid line), and initial conditions a0 = 0.039359, i0 = 0.231104,
0 = 0.306049 (left), a0 = 0.039359, i0 = 0.331104, u0 = 0.172716 (centre), a0 = 0.039359, i0 = 0.431104, u0 = 0.039382 (right) and same initial random seed. On
ottom, two outputs from GA with parameter m = 3.7 with N = 106 and same initial conditions as before with different initial random seed.
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.2. Detection of the bistability regime

With the aim of producing an analogous stochastic version of
he numerical bifurcation diagram depicted in Fig. 5 we follow
he procedure mentioned in the previous section. We perform 50
ndependent simulations for each value of the parameter m and
nitial conditions starting from the location of the equilibrium
∗(m) = (a∗(m), i∗(m), u∗(m)), keeping a(0) = a∗(m) fixed,
ncreasing the value of i(0) from i∗(m) by 0.01 and computing
(0) according to the equality (4). In this way, for each m ap-
roximately 20 different initial conditions are considered inside
straight line lying on the plane (4). The larger i(0), the farther

rom the equilibrium the initial condition.
In stochastic epidemic models the average of the data is the

sual way to construct a single signal to compare with the an-
lytic dynamics. This is so because ODE systems are a good
pproximation of the mean of realizations of stochastic processes
n systems with a large number of components. However, al-
hough the standard mean of trajectories is a good option when
ealing with high prevalence endemic equilibria, it does not
lways work when a system exhibits fluctuating dynamics and
ven less in the presence of bistability. In the three lower panels
f Fig. 7 we see two different realizations of the same experi-
ent with identical initial conditions but different initial random
eed. Although they start identically, it is clear that stochasticity
eveals differences in the global behaviour beyond the expected
mall perturbations. This phenomenon is due to the bistability of
he system, where small stochastic perturbations may change a
ealization from one attraction basin to the other. Of course, the
reater the number of individuals N , the more similitude between
ealizations and with the deterministic scenario. The three top
anels of Fig. 7 show how lower number of individuals produce
ore instability of the realization (for instance, abrupt changes of

he amplitude) than higher number of individuals. The bistability
egion in the previous figure is sensitive and very narrow, as
7

hown in Fig. 5. A more clear example is given in Fig. 8 for the
arameter values m = 17 and m = 18.
The previous discussion motivates to choose a more useful

epresentation of the different realizations (see [18] for a similar
pproach). To this end, and with the aim of producing a stochastic
ifurcation diagram, for each parameter m and each initial con-
ition we represent the maximum amplitude of each individual
ealization of the experiment in the time interval [1000, 10000].
or instance, the maximum amplitude of approximately 1000
ifferent realizations is shown in Fig. 9. We omit the first part of
he realization seeking for stationarity of the time series. On the
eft panel, a transition can be noticed around the parameter value

= 4, where amplitudes pass from 0.45 to nearly neglectable
around 0.1). On the right panel, a similar situation occurs near

= 16. These two values are close to the bifurcation points
sn1 ≈ 3.761 and msn2 ≈ 16.057 numerically computed for
he system (3). However, a clear difference on the abruptness of
he transition can be appreciated between the two bifurcation
oints. On the right-hand panel, the bistability scenario is clearly
epresented and only a small amount of realizations near msn2
iffer from their amplitudes. However, in the left-hand panel
he change in the amplitude seems to be more continuous. This
appens for two reasons. The first one is, as usual, related to the
umber of individuals. In Fig. 10 a zoom near m = 3.8 is given,
howing two panels with N = 105 (left) and N = 106 (right).
e note that the region of bistability is narrower and closer to
sn1 in the right-hand panel. Therefore we can expect a better
iagram as N increases. The second reason is dynamical. First, the
egion of bistability in the parameter space for mh < m < msn1
s really small compared with m > msn2. Second, the stability of
he limit cycles is also very different. For mh < m < msn1 the
nstable limit cycle has very weak repulsion as shown in the left
anel of Fig. 6. As a consequence, the dynamics near the unstable
imit cycle can be misunderstood as stochastic periodic solutions
ue to the slow decay of the amplitude (even small stochastic
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Fig. 8. On top, two outputs from GA with parameter m = 17, N = 105 and initial conditions a0 = 0.033240, i0 = 0.437330, u0 = 0.039240 (left), a0 = 0.033240,
0 = 0.447330, u0 = 0.025900 (centre), a0 = 0.033240, i0 = 0.457330, u0 = 0.012570 (right). On bottom, a single output from GA with parameter m = 18, N = 105

and initial conditions a0 = 0.033240, i0 = 0.437420, u0 = 0.039140 (left), a0 = 0.033240, i0 = 0.447420, u0 = 0.025810 (centre), a0 = 0.033240, i0 = 0.457420,
0 = 0.012480 (right).
Fig. 9. Maximum amplitude of each GA output in the time interval [1000, 10000] with N = 105 .
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erturbations may counter the decay). This is clearly represented
n Fig. 3. On the other hand, for m > msn2 the repulsion of the
nstable limit cycle is very strong as shown in the right-hand
anel of Fig. 6 and this makes the realizations either stay on the
table limit cycle or rapidly tend to the equilibrium, as shown in
ig. 8.

. Conclusions

The existence of a high number of infectious cases in a popula-
ion during an epidemic can modify our individual behaviour and
ow we relate to others. In turn, behavioural changes modify the
pidemic spread itself. This interplay has long been considered
n many papers dealing with classic compartmental models with
ncidence functions depending on the disease prevalence in a
onlinear way [6,7,15,19]. An alternative approach is based on the
8

ddition of new compartments for alerted/responsive individuals
hat have reduced transmission rates [9–11,20,21].

In this paper, we combine both approaches by considering an
pidemic model without demography which includes two types
f aware individuals who are distinguished by their willingness
o convince susceptible individuals to adopt preventive measures.
or the model with constant rates, we know that oscillatory
olutions can appear as a consequence of a supercritical Hopf
ifurcation from the endemic equilibrium [13]. Now, assuming
hat the rate of alerting decay δa as well as the rate of creation of
ew unwilling individuals νa decrease by a nonlinear reduction

factor σm(i) ∈ (0, 1] as the prevalence i of the disease increases,
we have shown the existence of two scenarios where a bistable
configuration with a stable limit cycle and a stable endemic
equilibrium occur. Precisely, we assume an abrupt change of both
rates when disease prevalence crosses a threshold value η (the
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Fig. 10. Maximum amplitude of each GA output in the time interval [1000, 10000] with N = 105 (left) and N = 106 (right).
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alf-saturation constant). Below this threshold, the value of the
ates are close to their maximum values (δa and νa), whereas
hey clearly decrease above it. The sharpness of this change is
ontrolled by a parameter m which determines the slope of σm(i)
t i = η (σ ′

m(η) = −m/(4η)). In both scenarios, the parameters
alues are in agreement with the sufficient conditions we have
btained for the existence of, at least, one endemic equilibrium.
Values of m ≫ 1 can be associated with radical changes in

he self-initiated individual behaviour when the prevalence level
s close to η. In this case, σm(i) ≈ 0 for η < i ≤ 1 which
mplies almost no decay of awareness and almost no creation of
nwilling individuals (only fully aware individuals are created).
or the parameters considered in the paper, a bistable configu-
ation is always the case for m > 16.06 (σ ′

m(η) < −10) after
he occurrence of a saddle–node bifurcation of limit cycles. This
onfiguration is clearly observed in the stochastic simulations of
he epidemic process with a very low rate of imported cases due
o the strongly repulsive character of the unstable limit cycle
ying between the stable one and the endemic equilibrium. For
ower values of m (here m < 4), the reduction of both rates is
ot so abrupt and bistability is only present for a narrow range
f values (3.698 < m < 3.761 with σ ′

m(η) ≈ −2.3) once a
ubcritical Hopf bifurcation has occurred. In this case, σm(i) is
learly positive for η < i ≤ 1. For m < 3.698, the smoothness
f the transition between high and low values of σm (σ ′

m(η) ∈

−2.3, −0.625]) as well as the lower reduction of the two rates
or i ≈ 1 make the endemic equilibrium unstable and allow for a
table limit cycle.
The existence of imported cases (at a rate ε) assumed in

he present work has also been considered elsewhere (see, for
nstance, [18,22]). In addition to its suitability when modelling
pidemics in non-isolated populations, it prevents the stochas-
ic extinction of oscillatory epidemics when disease prevalence
eaches very low levels. From a deterministic point of view, as
ong as ε is small enough, the continuous dependence of solutions
n parameter values guarantees that the attractors of the model
ith and without imported cases will be very close to each other
see Fig. 5). Higher values of ε are not expected to affect the
ain dynamical features of the model as long as the entry of

mported cases is occasional (see, for instance, [13] where a value
f ε one order of magnitude higher is also considered and it does
ot significantly alter the oscillatory dynamics of the model with
onstant rates).
In summary, we have shown the existence of bifurcations of

imit cycles in the SAUIS model (without demography) when epi-
emic spread and awareness transmission are coupled through
9

onlinear rates that depend on the prevalence level in a popula-
ion. This has been obtained under a choice of parameters values
hich assumes a much faster transmission among susceptible

ndividuals of both infections and low level of awareness than
he creation of fully aware individuals. These dynamics are also
bserved in stochastic simulations of the model assuming a (very
ow) rate of imported cases with large enough population sizes.
ote that the model does not include vaccination. Therefore,
ehavioural aspects such as vaccine hesitancy, a delay in accept-
ng or refusing vaccines despite the availability of vaccination
ervices [23], have not been considered in this paper.
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ppendix

In this Appendix we present a modified version of the
oincaré–Miranda theorem on the plane, which is an extended
ersion of the classical Bolzano’s theorem in higher dimension.
p to the authors’ knowledge, Poincaré–Miranda theorem is not
rivially deduced in a planar triangular domain. We credit and
hank professor Rafael Ortega for the idea of the proof, which
elies on the following result of degree theory that we include
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Fig. 11. On the left, structure and assumptions of the Poincaré–Miranda theorem for triangles in Theorem A.2. On the right, a sketch of the behaviour of the function
f (Γ (t)) for t ∈ [0, 1].
or the sake of completeness (see the Appendix on degree theory
n [24].)

Let Γ be a Jordan curve in R2 and let Ω be the open set
enclosed by Γ . Let f : Ω̄ → R2 be continuous such that f (x) ̸= 0
for all x ∈ ∂Ω = Γ . The degree of f in Ω , deg(f , Ω), can be
omputed as the winding number of f (Γ ) around the origin.

heorem A.1. Let f : Ω̄ → R2 be continuous such that f (x) ̸= 0
or all x ∈ ∂Ω . If deg(f , Ω) ̸= 0 then f has a zero in Ω .

Now we state the version of Poincaré–Miranda theorem on a
riangular domain, which can be easily generalized for any Jordan
urve with similar assumptions.

heorem A.2. Let Ω be a triangle and let f : R2
→ R2 be

continuous function, f (x, y) = (f1(x, y), f2(x, y)). Consider the
oundary of Ω positively oriented and three distinguished points α,
and γ as shown in Fig. 11. If f2 > 0 from α to β , f1 < 0 from β

o γ and f1 > 0 and f2 < 0 from γ to α, then f (x, y) has at least
ne zero in Ω .

roof. Let us assume, with the aim of reaching contradiction,
hat f does not vanish on Ω . Let Γ : [0, 1] → R2 be a curve
ravelling the boundary of Ω with Γ (0) = Γ (1) = α. Notice that,
y hypothesis, f does not vanish on the boundary of Ω . So, we
an consider a continuous argument function θ : [0, 1] → R such
hat

(Γ (t)) = |f (Γ (t))| (cos θ (t), sin θ (t)) ,

hich is unique up to an additive constant 2π . By the hypotheses
f the theorem, f (Γ (t)) lies on the first and second quadrants
hen travelling from α to β , and f (β) lies on the second quadrant.
imilarly, from β to γ , f (Γ (t)) lies on the second and third
uadrants, finishing on the negative ordinate semi-axis. Finally,
rom γ to α, f (Γ (t)) lies on the fourth quadrant ending on the
ositive abscissa semi-axis where it started (see Fig. 11). There-
ore, the winding number of the curve f (Γ (t)) is θ (1)−θ (0)

2π = 1.
y the definition of the degree, deg(f , Ω, 0) = 1 and then, by
heorem A.1, f has at least one zero in Ω . □
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