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A B S T R A C T   

The spatial effect is an element presented in many geostatistical works and it should be incorporated into studies 
regarding the heating energy demand of residential building stocks. The most common approaches have been 
made by simple descriptive statistics or using analyses by Markov random fields. In this work, we propose two 
different methods. First, the Stochastic Partial Differential Equation with the Integrated Nested Laplace 
Approximation to model the variable heating energy demand in Castellón de la Plana, Spain also considering 
covariates and the spatial effect. Second, simulated street networks for analysing data. We describe and take 
advantage of the Bayesian methodology in the modelling process in all the scenarios, including covariates and 
the possibility of creating a simulated street network with the data for the modelling issue. Our results show that 
the spatial location of the building is a crucial element to study the heating energy demand using both 
methodologies.   

1. Introduction 

Heating energy demand (EDh) has an impact on prices and is a 
growing concern about environmental problems and global warming. 
EDh was recently incorporated into the energy production agenda 
(Royston et al., 2018). The study of factors associated to changes in EDh 
is complex due to its association with other variables such as building 
block geometry and spatial distribution of building units in urban areas, 
characteristics of energy distribution networks, morphology of the 
urban layout and weather-related variables, amongst others. 

Office and residential buildings account for a significant proportion 
of energy demand and use. Residential energy use, mostly for heating, is 
an important fraction of the total energy use in Spain and energy effi-
ciency action plans have been in operation in Spain since 2014 (IDAE 
2016). For these plans to work properly, it is important to monitor the 
demand and to predict future trends. EDh shows spatial variability 
because the spatial distribution of households and different kind of in-
dustries is not completely random. This is mainly because the presence 
of short scale heterogeneity in building and size. In consequence it is 
expected that trends in energy demand will also show spatial variability. 

Therefore, the inclusion of spatial heterogeneity in the modelling pro-
cess of variables showing spatial variation improves model quality and 
gives the correct power in statistical tests (Cressie, 1993). This is 
important because municipalities can use the resulting models and the 
graphical representation of the resulting maps in planning actions for a 
better use of energy. 

In this work, we present the results of the spatial analysis and 
modelling of the EDh in the residential building zone of Castellón de la 
Plana, Spain, and its association to urban and building characteristics 
(Braulio-Gonzalo et al., 2016). We selected the city of Castellón de la 
Plana, Spain, because it is a medium-sized city, and it has been chosen 
before to implement a bottom-up-based model to predict EDh. 

We consider models in the class of the Generalized Linear Mixed 
Models (GLMM), a class that became popular in the late 80′s and early 
90′s to analyse and predict different kinds of response variables with 
linear association to random and fixed factors (Breslow and Clayton, 
1993). In our study we use information on several covariates related to 
urban and building characteristics at the building level. Our study only 
covers the wintertime, when the need for heat increases EDh and most of 
the buildings’ global energy use (Eurostat 2018). 
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Even if there are other approximations such as Markov Change 
Monte Carlo (MCMC) or Generalized Linear Models (GLM) (Braulio--
Gonzalo et al., 2016), in this study we used the Integrated Nested Lap-
lace Approximation (INLA) approach to identify the variables that affect 
the environmental performance of the life cycle of Electrical and Elec-
tronic Equipment (EEE) as it gives as additional computational 
advantages. 

In our model setting we used the common linear relation between the 
link function and the covariates. We included a spatially correlated 
random effect to account for the spatial correlation and clustering 
commonly observed in spatial data. The random effect is assumed to be a 
random field with a fixed covariance structure. We compared the usual 
geostatistical approach in which the random field Z is defined for every 
point inside the domain D that is the study area, with a simulated 
network approach, in which Z is defined only at the points of a simulated 
linear network of city streets. In the traditional geostatistical setting the 
distance between two locations is the Euclidean distance, whilst for a 
network, the distance is defined as the shortest path between those lo-
cations along the network (Okabe and Sugihara, 2012; Baddeley et al., 
2015). Using the simulated linear network approach makes sense 
because electricity is delivered along a network of electric lines running 
along the same street network defined for buildings and industries. 

The rest of the paper is organised as follows: Section 2 describes the 
data set used to model the energy demand; Section 3 describes the sta-
tistical methodology and provides the details needed to clarify the 
Bayesian modelling methodology we used. Finally, Section 4 presents 
the results and discussion. 

2. Data set and modelling process 

The energy demand data used in this work come from an urban 
neighbourhood in the municipality of Castellón de la Plana, a medium- 
sized city with 169,498 inhabitants (INE 2018) located on the east coast 
of Spain, and an area with mild climate, temperate winters, and warm 
summers. 

The data for this project were obtained from a set of randomly 
selected buildings in different neighbourhoods of Castellón. EDh data 
were obtained by modelling energy efficiency using building simulation 
software EnergyPlus (U. S. Department of Energy 2015) with the 
DesignBuilder interface (DesignBuilder UK. 2015). EnergyPlus uses 
computer-based simulation tools to perform detailed analysis of a 
building’s energy use. These are a commonly used software for con-
ducting energy modelling studies, such as Theodoridou et al. (2011), 
Caputo et al. (2013), Ascione et al. (2013), Mauro et al. (2015) and 
Fonseca and Schuleter (2015), amongst others. Herein, the simulations 
were conducted according to the procedures set in EN ISO 6946:2012 
(CEN, 2012) and in EN ISO 673:2011 (CEN, 2011). In this modelling 
process after doing a comprehensive analysis of the neighbourhood, five 
covariates were identified to characterise buildings and their urban 
surroundings. At the building scale the available information was shape 
factor (S/V) and the building’s year of construction (Y). At the urban 
scale, although there is a variety of covariates that can be used to 
describe the urban taxonomy, for the city of Castellón de la Plana we 
only had available spatial information about urban block type (UB), 
street height-width ratio (H/W) and solar orientation of the main façade 
(O). The definition of all the covariates considered in this study are 
presented in Table 1 and were described in detail by Braulio-Gonzalo 
et al. (2016). 

Fig. 1 shows the spatial location of the 574 buildings in Castellón and 
the histogram of the EDh data resulting from the modelling process 
described above. The number of building units per area is higher in the 
central parts of the city and decreases in the outer zones. The marginal 
distribution of the EDh values is skewed to the left, indicating the 
presence of a high number of buildings with low energy efficiency. 
Those low EDh values correspond to old buildings, which lack insulation 
systems in walls and windows. Old buildings are scattered mostly in the 

central part of Castellón, as well as in the area close to the port, known as 
“El Grau” in the eastern part of the city. 

After defining the covariates characterising urban taxonomy, EDh 
data were obtained according to the following information:  

• Empirical energy performance assessment: a sample of three 
buildings was selected such that the three building typologies in the 
neighbourhood under study in terms of the covariate Shape factor(S/ 
V) were represented: multifamily terraced buildings with four floors 
or fewer (MF≤4), with more than four floors (MF>4) and single- 
family terraced buildings with four floors or fewer (SF≤4. So, the 
covariates of these three building typologies were identified as fol-
lows. The year of construction (Y) was divided in five time periods, 
because different construction periods imply different thermal 
transmittance values for the facades, roofs, and floors of buildings. 
Variations in solar orientation (O) are expected to be associated to 
different natural heating gains, which notably influence the EDh of 
buildings. The more solar gains, the less heating use results. The 
street height-width ratio (H/W) was included to test if narrow streets 
(high ratio) or wide streets (low ratio) have different solar gain. 
Finally, two urban block types (UB) were identified in Castellón: UB1, 
with a big internal courtyard that allows solar access on the build-
ing’s façades; UB2, with smaller own light wells as internal building 
elements that block solar access. By combining the five covariates (Y, 
S/V, O, H/W and UB), multiple variations were conducted. As a 

Table 1 
Covariates of the model.  

Scale Covariate Characteristics Description 

Building Year of 
construction (Y)  

• Before 1940 Absence of thermal 
insulation 
One layer-thick walls with 
thermal inertia  

• 1940 – 1959 Absence of thermal 
insulation 
Two-layer light walls  

• 1960 – 1979 Absence of thermal 
insulation 
Two-layer light walls  

• 1980 - 2006 Poor thermal insulation 
Two-layer light walls  

• After 2006 Poor thermal insulation 
Two-layer light walls 

Shape factor (S/ 
V)  

• MFT(≤4) Multifamily terraced 
building ≤ 4 floors  

• MFT(>4) Multifamily terraced 
building > 4 floors  

• SFT(≤4) Single family terraced 
building ≤ 4 floors 

Urban Solar orientation 
(O)  

• North Indirect solar radiation  
• East Direct solar radiation in the 

mornings; small elevation 
angle  

• South Direct solar radiation at 
noon; maximum elevation 
angle  

• West Direct solar radiation in the 
afternoons; small elevation 
angle 

Street height- 
width ratio (H/ 
W)  

• Hu=24 m; 
WU=10m 

Narrow streets that imply 
poor solar access  

• Hu=24 m; 
WU=20m 

Wide streets that imply good 
solar access 

Urban block (UB)  • UB1 Big internal courtyard that 
allows solar gains on the 
south, east and west façades 
of buildings with an inward 
orientation towards the 
courtyard  

• UB2 No big courtyard, but smaller 
own light wells as internal 
building elements  
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result, 240 hypotheses were obtained that allowed to extrapolate the 
conclusions to the rest of the building that integrates the whole 
neighbourhood under study.  

• Statistical modelling: The analyses were carried out with the R 
freeware statistical package (version 3.5) (R Core Team 2016) and 
the R-INLA package (R-INLA 2017). With the estimates for the 
response variable, we produced predictions for the EDh of 
non-sampled buildings. The applied model is defined in the next 
section.  

• Stock aggregation: the individual building prediction results were 
aggregated to extrapolate conclusions at the urban scale. Here the 
Geographical Information System (GIS) technology was used, which 
combines geo-referenced information with cartography, allowing 
digital maps of urban areas to be developed to identify certain spe-
cific aspects of the built environment by a graphical interface. In this 
study, the cadastral data of the urban area under study was processed 
by gvSIG software (Asociación, 2022). This means providing the EDh 
of each building that comprises the neighbourhood via a graphical 
scale (Fig. 2), where it can be seen that all possible distances between 
the measurements have been taken into account, and Energy map for 
the EDh of the buildings in the neighbourhood (Fig. 3). 

3. Statistical modelling methodology 

Generalized Linear Mixed Models (GLMM) were fitted, taking the 
EDh data from the sampled buildings as the response variable and a log 
link function. Besides the covariates included in the study, the model 
incorporated an independent error term and a spatially correlated error 
term. The spatially correlated error term was included to capture the 

spatial variation not accounted by the covariates in the models. The 
independent error term was included to capture the error induced by the 
modelling of the EDh to obtain the data for that variable. Hierarchical 
Bayesian methods are a common choice to fit GLMM (Blangiardo and 
Cameletti, 2015 and Braulio-Gonzalo et al., 2016). Instead of using the 
Markov Change Monte Carlo (MCMC), we use the Integrated Nested 
Laplace Approximation (INLA) methodology, developed by Rue and 
Martino (Rue et al., 2009), because it is short computational time and 
much easier to fit complex models (Braulio-Gonzalo et al., 2016). 

The model framework and the process we followed to construct the 
energy efficiency maps for Castellón is summarised in Fig. 4. Details on 
the models and the fitting methodology were as follow: 

Let Y(s) denote the energy efficiency at location s. The data {y(si), i =
1,…,n} were assumed as realisations of a stochastic process indexed by s, 
this is 

Y(s) ≡ {y(s) : s ∈ D}

where the study area D is a subset of Rd
. 

Unlike ordinary GLMM models (Breslow and Clayton, 1993), where 
the response variable is assumed independent, the assumption of inde-
pendence is relaxed through the inclusion of a spatially correlated error 
term. Spatial data are often associated with other spatial variables or 
covariates, which might also show spatial variability. The inclusion of 
the covariates and spatial term permits to account for the effects of risk 
factors on the spatial distribution of the variable of interest (Aragó et al., 
2016 and Serra et al., 2013) and to use the proper power in statistical 
inferences regarding the model parameters (Cressie, 1993). 

In our application, the goal is to model the mean EDh (E[Y(si)]) for 
the building block units, which is related with a linear combination of 

Fig. 1. Data distribution and the histogram.  

Fig. 2. The histogram of the distances between sites and the cumulative proportion.  
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the covariates through the relation: 

ηst = β0 +
∑M

m=1
βmzm,st +

∑L

l=1
fl
(
νl,st

)

Where ηi = h(μ) is the linear predictor which relates the expected value 
of the response variable with a linear combination of the covariates and 
the spatial term through the link function h(⋅); β = (β0, β1,…, βM) are the 
coefficients that quantify the effect of covariates zj = (z1j, .., zMj) on the 
response, and f = {f1(.), .., fL(.)} is a collection of functions defined in 
terms of a set of covariates ν = (ν1, .., ν L) that include the random effects 
as well as the spatially correlated effect. This spatial effect is a random 
effect itself because we don’t know its structure completely, and it is 
introduced as a random field with Matérn covariance structure. 

The default value for the smoothness parameter of the Matérn 
covariance in R-INLA is 2 (Blangiardo and Cameletti 2015). In the same 
way, the temporal effect (in this case the year) is included as a random 
walk effect. We used the log link function because the response variable 
is positive and continuous (Braulio-Gonzalo et al., 2016). We fitted and 
tested several models using the INLA-SPDE approach (Lindgren et al., 
2011). 

From this definition, varying the form of the functions fl(.) we can 
estimate different kinds of models, from standard and hierarchical 
regression to spatial and spatiotemporal models (Rue et al., 2009). 

3.1. Statistical modelling with INLA-SPDE 

The INLA-SPDE approach allows a Gaussian Random Field (GRF) 
with Matérn covariance structure to be approximated as a discretely 
indexed spatial random process known as Gaussian Markov Random 
Field (GMRF) (Lindgren et al., 2011; Serra et al., 2014 and Juan-Verdoy, 
2019). GMRF are defined directly by their first- and second-order 
neighbour structures, and their straight implementation is 
time-consuming, which leads to the so-called “big n problem”. The 
discrete approximation made when using SPDE offers significant 
computational advantages over the well-known Markov Chain Monte 
Carlo methods used to estimate model parameters for GLMM models in 
the Bayesian context. 

The main idea of the SPDE approach consists in defining the 
continuously indexed Matérn GF X(s) as a discrete indexed GMRF by 
means of a basis function representation defined on a triangulation of 
the domain D, 

S(j) =
∑n

l=1
φl(s)ωl  

where n is the total number of vertices in the triangulation, {φl(s)} is the 
set of basis function and {ωl} are zero-mean Gaussian distributed 
weights. The basis functions ϕl(s) are not random, but rather were 
chosen to be piecewise linear on each triangle, 

φl(s) = {1 at vertice l and 0 elsewhere} (1) 

Fig. 3. Energy map for the EDh of the buildings in the neighbourhood.  

Fig. 4. Model framework and process followed to construct an urban energy map.  
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The key step is to calculate {ωl}, which reports on the value of the 
spatial field at each vertex of the triangle. The values inside the triangle 
will be determined by linear interpolation (Simpson et al., 2016). 

Different GLMM models can be obtained depending on the covariate 
combination considered for each one. The selection of covariates for the 
different models fitted was done based on their known association with 
the EDh as well as on the availability of information at the needed spatial 
scale for the analysis. Once a battery of competing models is chosen, we 
used correlation between real data and predicted by the model (near 1), 
the smaller root-mean square error (RMSE), the deviance information 
criterion (DIC) and the Watanabe-Akaike information criterion (WAIC) 
for model selection. The chosen models were those with a low level of 
complexity and the lowest WAIC and DIC amongst the battery of models 
compared (Spiegelhalter et al., 2002; Watanabe 2010): 

The process to construct predictive maps of EDh in Castellón using 
the SPDE in Euclidean space included a step to choose the best mesh to 
approximate the random fields that represent the spatial random effects. 
In our study, the mesh needed for the INLA-SPDE analysis of these data 
can be produced in three ways: using only the data position, only the 
boundary, or using both. In this case, and as shown in the next section, 
the last option was taken because such a mesh resulted in the best model 
(Fig. 5). 

3.2. Network approach methodology 

The modelling process described in the previous section considers 
that the underlying gaussian random field is defined at every point in-
side the study area D. Buildings in the urban areas are arranged along 
streets which form a network (Fig. 3). Instead of considering that two 
buildings centred at two locations si and sj are separated by the shortest 
straight distance between them we will consider that |si- sj| is the dis-
tance that a pedestrian must walk to go from si to sj. In planar spatial 
analysis, one is interested in the analysis of spatially varying phenomena 
within a bounded subset of R2. Instead, spatial analysis along networks 
poses a different challenge in the sense that observations occur on a 
linear network that is a subset of a bounded planar space. Modelling the 
data using a network approach requires some modifications of the 
geometrical context, mainly the topology in terms of distances along a 
street network. The clustering analysis and correlation in such network 
requires a measure of distance along paths in the network. Common 
practice is to measure distance by the length of the shortest path in the 
network (Okabe and Sugihara, 2012). 

Formally, a linear network is the union L = ∪N
i=1li of finitely many 

line segments in the plane of the form li =[ui,vi]={w:w=tui +(1 − t)vi,0 ≤
t ≤ 1}, where ui,vi ∈ R2 are the endpoints of li. Without loss of generality, 
we assume that for i ∕= j, the intersection of li and lj is either empty, or is 
one of the endpoints of li or lj. 

A path between locations u and u’ in L is a sequence v0, v1, . . ., vm, 
vm+1 of the points in the network, with v0 = u and vm+1 = u’, so that [vi, 
vi+1] is a subset of L for each i = 0,…,m. The length of this path is 

∑m

i=0
‖ vi− i+1 ‖

where ‖ ‖ denotes Euclidean distance. The shortest-path distance δSP(u, 

u’) between u and u’ is the minimum of the lengths of all paths between 
u and u’. If there are no such paths, which implies that the network is not 
connected, then δSP (u, u’) = ∞. 

In our application, the data for the addresses of the buildings in 
Castellon were converted to points along a simulated linear network, 
aiming to resemble Castellon’s street network, resulting in a set of points 
s1,…,sn € L, where L denotes the simulated street network of Castellon. 
Using GIS techniques, we defined a thin buffer zone around L and used 
this to construct the mesh needed for INLA-SPDE. 

Using the buffer zones for the analysis in the Euclidean space and in 
the linear network space, we fitted several models for EDh, computing in 
all cases the goodness of fit statistics described in the next section. Note 
that the analytical approach we are using is not formally a network 
analysis, but instead an areal-data approach in a narrow set covering the 
street network. Nevertheless, we refer to our study area as “network”. 
Models were fitted and tested in a one-by-one basis because there is not 
an automatic stepwise model selection method implemented for INLA- 
SPDE. 

3.3. Models 

For all the models considered in this study, once the mesh for INLA- 
SPDE was obtained, the next step was to fit different models and 
compare their diagnostic measures to decide which is the best one under 
such measures. In all cases, the models were fitted with and without a 
spatial effect and all included the covariates. The response variable, EDh, 
was added in the model as a Gamma likelihood because this error 
structure was used in previous works (Braulio-Gonzalo et al., 2016). The 
tested models were: 

Model 1 includes covariates (H/W, Y, O, S/V), spatial effect (using 
model SPDE) and temporal effect (using random walk model for year 
of construction). 
Model 2 includes covariates (H/W, Y, O, SV) and temporal effect 
(using random walk model), without spatial effect. 
Model 3 only includes spatial effect (using model SPDE). 
Model 4 includes covariates (H/W, Y, O, SV), spatial effect (using 
model SPDE) and without temporal effect. 

4. Results 

The study of the exploratory analysis suggests the need to implement 
models adequate to capture the presence of an uneven spatial distribu-
tion of EDh. In the next points, the analysis and results are shown. 

4.1. Analysis in Euclidean space 

The results for the models fitted when we consider that the separa-
tion between any two buildings in Castellón is the Euclidean distance 
between them are presented in Table 1. Goodness of fit for each model 
was assessed using the criterion of the DIC and CPO. The DIC and CPO 
values for the four models fitted to the data available are presented in 
Table 2. 

According to the Table 2, in terms of the DIC and the CPO criteria for 
goodness of fit, the best model is Model 1, this is, the model with spatial 
component and all the covariates. Although this does not imply that all 
the covariates included in model 1 are significant, the CPO and DIC 

Fig. 5. The two different possibilities of the mesh for the observed data.  

Table 2 
DIC, CPO, Correlation and RMSE for the battery of the fitted models.   

Model 1 Model 2 Model 3 Model 4 

DIC 12,209.36 12,211.03 12,772.97 12,216.64 
CPO 10.83272 10.83404 20.79705 10.83927 
Cor 0.661319 0.655411 0.974661 0.660814 
RMSE 477,748.7 517,774.5 28,288.13 486,056.6  

P. Juan et al.                                                                                                                                                                                                                                    



Spatial and Spatio-temporal Epidemiology 43 (2022) 100547

6

suggest that their inclusion improves the quality of the model. On the 
other hand, the correlation, and the root-mean-square error (RMSE) 
criteria favoured model 3. The best correlation (near 1) and lower 
RMSE, gives us the best result, and in this case is the model 3, the one 
with only spatial effect. 

When we compare between the observed and the predicted values for 
the four models fitted models show that the best correspondence be-
tween both variables are models 1 and 3 (Fig. 6). Models 2 and 4 show a 
reasonable quality of fit but over predict large observed EDh values. This 
explains in part why they show low correlation and high RMSE. 

Table 3 presents the estimates of the covariate effects and their 
corresponding 0.95 probability intervals. Except for the effect of the 
building orientation, all of them are significant, indicating that all the 
covariates are useful to explain in part the variability observed in the 
energy demand in Castellón. Non-significance of the effect of facade 
orientation is probably because in most of the city, the residential 
buildings are over 8 floors tall, and the streets are narrow, so buildings 
provide shade to each other in facades facing east or west. Increasing the 
number of floors increases the energy demand as one might expect, due 
to the increased number of apartments on each extra floor. 

Height to width ratio (H/W) has a positive effect on the energy de-
mand. After exponentiation of the coefficient value of 0.2767 for this 
covariate, we find that an increase of a unit in the H/W value implies an 
increase of 14.5 percent on the expected energy demand. Regarding the 
effects of year and shape factor (S/V), they both have a negative effect 
on the energy demand. Exponentiating the coefficients we find that for a 
one-year change in the construction of the building the energy demand 
decreases by 12.5%, this is, buildings constructed in 2000 have an en-
ergy demand 12.5% lower than those built in 1999 for instance. 

In Fig. 7 we present the maps with the posterior mean estimates of 
the latent Gaussian random field incorporated in the models (left) and 
the posterior standard deviation (right). We show only the maps cor-
responding to models 1, 3 and 4 as the second model did not include a 

spatial effect. The geographic pattern for the spatial effect with model 1 
and 4 looks similar in terms of valleys and hills, but the magnitude of the 
spatial effect is far lower with model 1, indicating that given the cova-
riates, model 1 gives a better fit to the EDh data. For model 3, the 
standard deviation of the posterior estimates of spatial effect is lower 
near the data points, indicating a poor fitting of such model. This result 
is consistent with models that do not include external information in the 
form of covariates, and thus the lowest standard deviation values 
correspond to the zone where the data were observed, like an ordinary 
kriging analysis. Models 1 and 4 on the other hand show ups and downs 
in the study area, as it would be expected. 

The scale of the three maps indicates that the lowest standard de-
viation values correspond to the full model (model 1) as it should be. 

Fig. 8 presents the general temporal effect for model 1, showing a 
clear increase of expected energy demand over time. The energy de-
mand increased strongly during the late 40′s and the 50′s of the past 
century and remained constant during the 1960′s and even decreasing 
during the late 1970′s. From there on, the overall trend in energy de-
mand has returned to the values it had at the beginning of the 20th 
century. It is also clear that energy demand did not increase during the 
civil war and second world war years. 

The parameters related to the random terms for the models (Het-
erogeneity, Spatial effect, and Temporal effect) are presented in Table 4, 
as well as their associated posterior standard errors. The temporal term 
was non-significant for the models that included such component. For 
the models that included the spatial effect, it was significant using an 
equivalent 0.05 significance level for its posterior distributions in the 
different models. Also, the heterogeneity term was significant in all the 
models including it as a component. The statistical significance of the 
spatial term indicates that not all the spatial variability is explained by 
the spatial distribution of the covariates used in the models and that 
perhaps some other external covariates showing spatial variations 
should be included in the model. The significance of the heterogeneity 

Fig. 6. The Observed vs Predicted EDh values obtained with the different models. The first line: models 1 and 2. Second line: models 3 and 4.  
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term implies that there is still some variation in the energy demand data 
that cannot be explained by the model and that it is still subject to 
further improvement. 

In Fig. 9 we present the maps of the EDh obtained by the different 
models fitted. Model 3 does not include any covariate in its formulation 
and in the way the INLA-SPDE algorithm works, it is equivalent to a 
simple linear interpolation on a grid based on the raw observations. The 
maps obtained by the rest of the models look similar, but overall, the 

best fit was obtained by model 1, which includes all the covariates plus 
the spatial random effect. The highest EDh values are in areas where 
building density is low. These areas are associated to places where old 
single-family farms were located and thus no thermal insulation exist, 
and farm machinery demands more energy. For the rest of the study 
area, all the models predict an almost constant EDh, which is explained 
by the similar construction techniques used for most of the building and 
households in those parts of Castellón. 

Table 3 
Fixed effects: (mean [0.025quant, 0.975quant]).   

Model 1 Model 2 Model 3 Model 4 

Intercept 11.04098 
[10.50243,11.60139] 

10.99091 
[10.47037,11.54501] 

10.88097 
[10.64596,11.12833] 

10.83607 
[10.37502,11.29992] 

Surface 0.00045 
[0.00039,0.00051] 

0.00046 
[0.00039,0.00052] 

– 0.00045 
[0.00038,0.00051] 

Floors 0.13559 
[0.10232,0.16895] 

0.13576 
[0.10282,0.16786] 

– 0.14153 
[0.10874,0.17438] 

H/W 0.26748 
[0.16081,0.37131] 

0.27467 
[0.17346,0.37396] 

– 0.27684 
[0.16750,0.38262] 

Y − 0.13291 
[− 0.2445,− 0.04164] 

− 0.12015 
[− 0.23533,− 0.03712] 

– − 0.05946 
[− 0.09521,− 0.02353] 

O 0.00017 
[− 0.00017,0.00051] 

0.00015 
[− 0.00019,0.00048] 

– 0.00019 
[− 0.00015,0.00054]  

Fig. 7. EDh prediction maps for the study area obtained with 3 different models. Model 1 (top), Model 3 (middle) and Model 4 (down).  
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4.2. Analysis in network space 

Although we don’t have the street network for Castellon as a GIS 
shape file, we simulated linear network with a shape close to the loca-
tions of the observed coordinates of the buildings in Castellon. Next, for 
each building we projected each point to the closest segment of the 
network. The values for selected covariates for the buildings in Castellón 
along this simulated network are presented in Fig. 10. Note that the 
building locations are actual data and only the network of streets has 
been simulated. Taller buildings tend to be located closer to the edge of 
the study area, which is the modern part of Castellón and where larger 
buildings have been constructed in the past 20 years. Regarding energy 
efficiency typology, the categories are in descending order going from A 
(highly efficient) to F (least efficient). This covariate is closely related to 
the presence of means for insulation from external temperature. In 
Fig. 10 we can see that the least energy-efficient buildings (Class F) are a 
high proportion of the buildings in our study area and tend to show 
clusters. Middle-efficiency classes (C and D) are spread regularly over 
the study area. 

To test the significance of the spatial effect, the Berman test is 
applied (Berman, 1986), whose results indicate that the spatial effect is 
statistically significant, and it must be included in the models (z1 =
2.7942e-05, p-value=1). A similar conclusion is reached when the 
spatial Kolmogorov test is used (D = 0.083246, p-value = 0.0008057) 
(Baddeley et al., 2015). These tests for significance of the spatial effect in 
the models were significant, indicating that the models must include a 
spatial effect term. The inclusion of the spatial effect in the models 
corrects variance estimates and reduces chances of type I error. This 
confers increased power to statistical tests and allows the correct 
screening of the external factors that affect energy efficiency. 

Finally, a density estimate of EDh along the network of buildings in 
Castellón de la Plana is shown in Fig. 11 for two different values of the 
bandwidth. This estimate is an exploratory tool and provides insight into 
the non-uniform distribution of energy efficiency. The highest values are 
observed in the north and west parts of the city, where new housing 
developments with modern building construction techniques are found. 
The central and south-eastern parts of the city obtain the lowest 

efficiency values because these areas are occupied with older buildings 
and farms, where thermal insulation is poor. 

5. Discussion 

It is well known that spatial models with covariates have a 
complexity that makes their fitting non-trivial. Bayesian methods to fit 
such models have been a useful tool since their appearance in the early 
90′s (Besag et al., 1991; Handcock and Stein, 1993). However, the 
complexity of the models usually forced the use of MCMC methods to 
obtain samples from the full posterior distributions of the parameters of 
interest. The INLA-SPDE approach is a faster method to obtain the es-
timates of the model parameters through the assumption of an under-
lying gaussian Markov random field that can be estimated 
approximately using Delaunay tessellations. In our case, the adaptation 
of the INLA-SPDE to assess the energy efficiency in Castellón, Spain, 
gave satisfactory results in terms of the statistics used to assess goodness 
of fit for the models proposed. 

The presence of a spatial effect means that the energy efficiency 
between nearby buildings tends to be similar. This similarity comes from 
factors such as a similar number of floors, a similar year of construction 
and a similar building technique, amongst others. Therefore, that areas 
inside the urban perimeter of Castellon are opened to urban develop-
ment during similar time laps. 

In turn, the assumption that buildings are spread along a network of 
streets and avenues for the analysis of energy demand makes it a sensible 
assumption that permits a better analysis in the sense of distance mea-
surement to assess spatial association amongst spatial units and corre-
lation in model error. The inclusion of covariates related to the 
characteristics of the building stocks in the analysis of the data using the 
network approach showed to be an attractive way for analysing data 
observed at locations along city street networks. Such approach has been 
used previously in the geostatistical context (Abu Bakarra et al. 2016). 

From our analyses we have no way to differentiate which of the two 
approaches could be more advantageous in terms of facility to incor-
porate the spatial effect. We have shown that for the two approaches 
presented in this work, it is not difficult to implement models with both, 
covariates and spatial effects. The choice of the Euclidean or the 
Network methodology will depend on the nature of the data, this is, if 
they can be considered as point in a network or if the data can be taken 
at any point inside a continuous bounded study area. 

The use of Stochastic Partial Model fitting with the Stochastic Partial 
Differential Equation (SPDE) approach, along with the Integrated Nes-
ted Laplace Approximation (INLA) to fit the models posted for EDh in 
Castellon de la Plana, Spain, has proven a faster and computationally 
efficient method. It also allows the fit of more sensitive, but complicated 
models. This is an advantage of our modelling approach, as energy 
planners need sometime quick responses to changes in energy demand, 
so to have a model that fits faster but keeps the precision of parameter 
estimates is desirable in such cases. The inclusion of an error term 
modelled as a gaussian random field allows the computation of standard 
errors for the model parameters and the spatial predictions whenever 
the gaussian assumption is sensible. 

However, a possible weakness of our modelling approach is that 
linear networks for energy supply are not always available for medium 
and small sized cities, limiting the applicability of the model. Also, 
building a buffer around the linear network and implementing the INLA 
approach requires some specialised GIS knowledge. 

Fig. 8. Estimated temporal effect for the study area showing an increasing 
trend for EDh. 

Table 4 
Parameter estimates for the different models fitted under the assumption of data inside a Euclidean space with the corresponding distance metric.  

Term Model 1(mean, sd) Model 2 (mean, sd) Model 3 (mean, sd) Model 4 (mean, sd) 

Heterogeneity (7.3722, 0.4914) (7.1569,0.4266) (4.3593, 0.6370) (7.2572, 0.5161) 
Spatial effect (2.42546, 1.08346) – (0.51386,0.13364) (2.30149, 0.93147) 
Temporal effect (14,213.40, 47,582.98) (7578.30, 16,029.09) – –  
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Another point is that models fitted under the assumption of the data 
locations belonging to a Euclidean space and under the Linear network 
approach are not directly comparable because the data lie on different 
metric spaces. However, in both cases the best models were those that 
included covariates and a spatial term, meaning that a substantial part of 
the spatial variability in EDh is not accounted by the covariates. 

EDh is related to the demand for electricity generation. Thus, a 
detailed analysis of EDh is expected to shed some light on factors 
contributing to climate change and global warming. Although they are 
in principle more complicated to fit, models fitted under the linear 
network approach are more sensible as electric power is delivered 
through power lines to the buildings and it is such amount of energy that 
is of interest for EDh studies. Therefore, for initial studies models for EDh 
fitted under the Euclidean approach have the advantage of being easier 

to fit, but for more detailed and geographically precise studies it is better 
to use a linear network approach. This will require availability of a GIS 
shape file of the street network of the city being studied, but such maps 
are available for most middle size and large cities around the world. 

6. Conclusions 

The study of the EDh of residential building stocks is presented herein 
and indicates the benefits of model estimation and hypothesis testing 
form including the spatial autocorrelation presented in the geographic 
data. Previous works have provided simple descriptive statistics. In our 
case, the methods applied in the analysis enabled EDh maps to be built, 
which is very useful material for screening out the covariate effects on 
the EDh in the study area. 

The assumption that buildings lie along a network of streets to 
analyse EDh data is sensible in methodological terms, but a standard 

Fig. 9. Prediction of EDh from model 1 (Top) to model 4 (Down).  

Fig. 10. The building locations and covariate values. The top plot shows the 
location of buildings in the network number of floors. The middle plot shows 
the location of buildings by different typology of energy demand. The lower 
panel shows the different energy demand typology separately. 

Fig. 11. A kernel estimate of EDh across the network.  
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methodology has not yet been developed for such kind of data. However, 
a simulated network analysis in the geostatistical context has been used 
(Abu Bakarra et al. 2016). The possibility of creating a network and 
separating data according to the levels of the categorical covariates has 
been shown. 

Finally, the advantages of the Bayesian methodology by creating a 
network with building locations to allow the use of SPDE and INLA in all 
the modelling scenarios and the use of models with covariates and a 
random spatial effect has proven to be a sensible approach to analyse the 
energy demand in an urban area. The most important elements pre-
sented in this work were the assumption that data locations are a real-
ization of a stochastic spatial process in a network (Rakshit et al., 2017), 
the inclusions of covariates and, finally, the inclusion of a spatial effect. 
Future research should include the quantitative comparison of the 
network and continuous approaches of spatial data in urban areas 
whenever the data are suitable for this purpose. 
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