
Knowledge-Based Systems 244 (2022) 108554

a

b

c

t
a
o
t
t
r
⟨

t
s
s
c
s
d
4
T
t
1
t
v

b

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

TA4L: Efficient temporal abstraction ofmultivariate time series
Natalia Mordvanyuk a,∗, Beatriz López a, Albert Bifet b,c

eXiT Research Group, University of Girona, Campus Montilivi, Building EPS4, 17071 Girona, Spain
LTCI, Télécom Paris, IP Paris, France
AI Institute, Univerity of Waikato, Hamilton, New Zealand

a r t i c l e i n f o

Article history:
Received 11 March 2021
Received in revised form 15 February 2022
Accepted 9 March 2022
Available online 16 March 2022

Keywords:
Multivariate time series
Temporal abstraction
Time interval sequences
Time interval related patterns

a b s t r a c t

In this work, we introduce TA4L, a new efficient algorithm to transform multivariate time series into
Lexicographical Symbolic Time Interval Sequences (LSTISs), that is, sequences ready to feed time-
interval related pattern (TIRP) mining algorithms. The ultimate goal is to make explicit the embedded,
ad-hoc pre-processes related to TIRP mining algorithms while offering an efficient solution for the
required pre-processing. On the one hand, TA4L divides the signals into segments based on time
duration (instead of the often-used practice based on the number of samples), which allows the
construction of consistent time intervals. Concatenation of intervals is controlled by a maximum time
gap constraint that reinforces the generated time intervals’ consistency. Moreover, different ways to
parallelise the algorithm are explored that are accompanied by efficient data structures to speed up
the pre-processing cost. TA4L has been experimentally evaluated with synthetic and real datasets, and
the results show that TA4L requires significantly less computation time than other state-of-the-art
approaches, revealing that it is an effective algorithm.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Around the 2000th year, while the research in sequential pat-
ern mining (SPM) [1] was in full swing, [2] proposed a new SPM
pproach known as time-interval related patterns (TIRP’s) mining
r temporal arrangement’s mining. TIRPs are richer in knowledge
han patterns obtained with SPM. They take into account not only
he events and their ordering (e.g. ⟨A, B, C⟩), but also the temporal
elations between the events (i.e. ⟨A occurs before B⟩, ⟨A meets B⟩,
A overlaps B⟩, and so on) that discover from time-series data.

One of the major drawbacks of the TIRP mining algorithms is
hat they cannot process multivariate time series (neither time
eries) directly. They require a pre-processing phase to obtain
orted sequences of time-interval data. The pre-processing phase
onsists of several steps, usually carried out sequentially: 1-time
eries segmentation into intervals according to a given size, 2-
iscretisation of numeric values, 3-sequence construction and
-sequence sorting (see Fig. 1). The first two steps comprise the
emporal Abstraction (TA) task, which involves the transforma-
ion of series of values indexed by time (i.e. ⟨0.2, 8:00⟩, ⟨0.2,
2:00⟩, ⟨0.1, 13:00⟩, ⟨0.2, 14:00⟩, ⟨0.8, 15:00⟩, ⟨0.7, 16:00⟩ into
ime intervals and the corresponding symbols that abstract the
ariable values along them (i.e. ⟨A, [8:00, 13:00]⟩, ⟨A, [13:00,

∗ Corresponding author.
E-mail addresses: natalia.mordvanyuk@udg.edu (N. Mordvanyuk),

eatriz.lopez@udg.edu (B. López), abifet@waikato.ac.nz (A. Bifet).
https://doi.org/10.1016/j.knosys.2022.108554
0950-7051/© 2022 Elsevier B.V. All rights reserved.
15:00]⟩, ⟨B, [15:00, 16:00]⟩). On the other hand, the third step
concerns the concatenation of intervals with the same symbol
(i.e. ⟨A, [8:00, 15:00]⟩ when ⟨A, [13:00, 15:00]⟩ follows ⟨A, [8:00,
13:00]⟩). In this example, all values below 0.5 are labelled with
A and above 0.5 with B. Regarding the sequence sorting step, the
sorting criteria [3] proved to be necessary to achieve a robust and
simple representation of TIRPs. That means that sequences are
sorted according to the starting time of intervals, ending time,
and the discretised values called Lexicographical Symbolic Time
Interval Sequences (LSTISs). Nevertheless, this pre-processing is
usually overlooked in the literature, which focuses on providing
details about the pattern-finding algorithms.

Considering the computational complexity involved in the
whole pre-processing step of the TIRP mining algorithms, some
authors started to investigate the pre-processing as a separate
problem and develop a specific algorithm to generate LSTIS. In
particular, [4] propose a method based on labelled data. The
method presented in this work is unsupervised, as TIRP mining
original goal was to find patterns from unlabelled data. The TA4L
algorithm aims to accelerate the pre-processing time, merging
all the pre-processing tasks to be executed together in a single,
special purpose algorithm. As our algorithm performs a temporal
abstraction and returns LSTISs, we decided to call it the name
resulting from the union of the initials of the two concepts
‘‘TA4L’’.

Our method is partially inspired by SAX [5]. One of the main

differences with SAX is that every interval is composed of a fixed

https://doi.org/10.1016/j.knosys.2022.108554
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2022.108554&domain=pdf
mailto:natalia.mordvanyuk@udg.edu
mailto:beatriz.lopez@udg.edu
mailto:abifet@waikato.ac.nz
https://doi.org/10.1016/j.knosys.2022.108554

N. Mordvanyuk, B. López and A. Bifet Knowledge-Based Systems 244 (2022) 108554

n
s
r
l
s
S
o
f

a
t
p

s
m
t
r
o
S
F

Fig. 1. Pre-processing step in the literature.
umber of samples in SAX, while in TA4L, intervals are con-
tructed based on a certain duration. This fact plays an important
ole when the dataset has missing values and could eventually
ead to losing some TIRPs. Conversely, TA4L split input data into
egments of equal time duration that later are concatenated.
uch pre-processing achieves a more reliable time representation
f the variables inside intervals and provides a solid basis for
orthcoming TIRP mining.

The contributions of the present work are:

• The pre-processing phase for TIRP mining is explicitly de-
scribed and formulated for unsupervised data.

• A new method called TA4L is provided, which generate se-
quences of symbolic time intervals sorted in lexicographical
order. This involves a temporal abstraction approach that
combines segmentation and discretisation of temporal data.

• The TA4L algorithm constructs intervals based on the time
duration (instead of a fixed number of samples). In so doing,
the limits of the time intervals are defined over the real
values in the interval (not over the missing values resulting
from the fixed-length).

• A maximum gap constraint is used to decide whether two
consecutive points could be considered to be part of the
same event (i.e. belonging to the same time-interval) or do
not.

• Use of special data structure that allows performing inter-
vals insertions into LSTISs efficiently.

• Different approaches to apply parallelism to the process.

To sum up, TA4L converts multivariate time series into LSTISs,
nd it is intended to be used as a preprocessing algorithm in
he TIRPs mining field. The code of the TA4L algorithm will be
ublicly available from the Bitbucket repository (see Appendix A).
This paper is organised as follows. In Section 2, we provide

ome background and review related work on pre-processing
ethods for TIRP mining algorithms. In Section 3, we formulate

he pre-processing problem. In Section 4, the novel TA4L algo-
ithm is introduced. In Section 5, we give a detailed description
f the datasets and the setup used in our experiments, and in
ection 6, the results and a discussion about them are presented.
inally, Section 7 draws some conclusions from this work.
2

2. Related work

In this section, we first review how the preprocessing is per-
formed in the TIRP mining algorithms; secondly, we go deepening
on the discretisation methods employed in the TIRP mining field;
finally, we motivate how the present work fits within the context
of the existing literature.

2.1. The pre-processing in the TIRPs mining field

If we analyse the literature on TIRP mining, we will find
that pre-processing is tightly related to the kind of data used
to test the algorithms. When using synthetic datasets (as in
[2,6,7]), data are usually generated with a synthetic data gen-
erator like [8], which have been modified to generate sorted
symbolic time-intervals, and the pre-processing, in this case, is
nonexistent.

On the other hand, when using real datasets as in [3,4,9,10],
or on both synthetic and real datasets (as in the present work)
[11–13], we can find different approaches to pre-processing to
convert multivariate time series into LSTISs: internal [14–16] or
external [11–13] to the TIRP mining algorithm. In general, the
different steps followed in the literature are summarised in Fig. 1.

First, for each variable, a temporal abstraction is applied. Tem-
poral abstraction is a conversion of a signal (e.g. blood pressure
values) to an abstracted comprehensive to a human representa-
tion (e.g. ‘‘2 h of high blood pressure’’) [17]. When the variable is
numeric, temporal abstraction involves both interval construction
and discretisation steps. When the variable is already discrete,
time intervals are constructed.

Regarding the interval construction step, data is segmented
into time intervals, where each interval should include its cor-
responding start and end times. Intervals are constructed usu-
ally performing bottom-up, top-down or sliding-window ap-
proaches [18]. In the sliding window approach [19], a segment is
grown until a specified error threshold is reached, where, in each
window, a linear approximation is performed. In the top-down
approach, time series are repeatedly split according to the best
splitting point from all considered points until the desired num-
ber of intervals is obtained [20]. The bottom-up approach [10]

N. Mordvanyuk, B. López and A. Bifet Knowledge-Based Systems 244 (2022) 108554

s
i
a

n
v

e
t
t
r
A
o
T
t
O
(

B
E
L
b
o

2

t
1
t
o
o
f
e
f
f
h
F
T
p
o
b
s

E
A
v
v
p
s
f
t
o
n

b
p
a
o
o
S
d
o
m
o

tarts by segmenting the series with small segments and then
teratively concatenating adjacent segments. In the present work,
bottom-up approach is used.
During the discretisation step, first, the variable values are

ormalised. Afterwards, numeric values or the first derivative of
alues [4,21] are converted into a discrete representation.
TA steps (interval construction and discretisation) can be ex-

cuted sequentially or at the same time with a mapping func-
ion [11,12]. The output of the TA task is a set of symbolic
ime intervals. Next, during the sequence construction step, all
ecords belonging to the same sequence are grouped together.
nd, finally, during the sequence sorting step, sequences are
rdered according to the TIRP’s mining algorithm criteria: some
IRP mining algorithms require time-intervals to be sorted by
heir end time [6]. Others, by their start and end times [12].
thers sort them by start and end times and lexicographically [9]
as we do in the present work).

This is the process that, in general, is followed in the literature.
ut not always the starting point of the algorithm is the same.
xamples of the full process, from multivariate time series to
STIS, are [9–12,15]. Sometimes the starting point is interval-
ased data [13], and in other cases, the starting point is already
rdered sequences of time-intervals [2,6].

.2. Temporal abstraction in the TIRPs mining field

Knowledge-Based Temporal Abstraction (KBTA) [17] method is
he most widely used discretisation method in the literature [9,
0,12,13]. KBTA belongs to the group of supervised discretisa-
ion methods, where data is discretised following the knowledge
f an expert in the corresponding field. This fact makes the
utput of these methods significant that lead to the success-
ul data interpretation (e.g. [3,4,11]). The problem is when the
xpert knowledge is lacking, or when the discretisation is per-
ormed not for the interpretation of the time series, but rather
or the performance of other tasks, possibly less intuitive for
uman experts, such as classification, clustering, and prediction.
or example, these two works [3,4] are focused on this problem.
emporal discretisation for Classification (TD4C) [4] is another su-
ervised discretisation method geared towards the enhancement
f classification accuracy, which determines the cutoffs that will
est discriminate among classes through the distribution of their
tates.
Alternative, non-supervised methods could be used, such as

qual Width discretisation (EWD) [22] or Symbolic Aggregate
pproXimation (SAX) [5]. EWD involves sorting the observed
alues of a continuous feature and dividing the range of observed
alues for the variable into k equally sized bins, where k is a
arameter supplied by the user. SAX divides the original time-
eries into equally sized frames, computes the mean for each
rame, and assigns a symbol to each calculated mean, based on
he statistical table (of a normal continuous random variable) and
n the size of the vocabulary. The size of the vocabulary and the
umber of frames are the parameters supplied by the user.
In [3] the KBTA, Equal Width discretisation (EWD), and Sym-

olic Aggregate ApproXimation (SAX) methods have been com-
ared, and it was found that discretisation using SAX led to better
ccuracy on classification than using the EWD. While KBTA cut-
ff definitions, when available, were superior to both in terms
f accuracy. TD4C was also compared to the EWD, KBTA, and
AX methods in [4]. In general, some configurations of the TD4C
iscretisation method and the KBTA method outperformed the
ther methods, but SAX was always very close to the TD4C
ethods and sometimes even outperformed some configurations
f the TD4C.
3

2.3. How the present work fits within the context of existing litera-
ture?

Except for TD4C [4], in the literature on TIRP mining, the
pre-processing from multivariate time series to LSTISs is usually
mentioned in a brief paragraph of the experimental setup or
algorithm section of the article. Unlike TD4C [4], TA4L is an unsu-
pervised abstraction method that is transparent to discretisation,
which means that the function to convert a numeric value to a
discrete one is a parameter of the algorithm.

TA4L is provided with a duration constraint, designed to do
not miss any TIRP without neglecting efficiency. In the TA4L,
we use the maximum gap constraint to decide whether two
consecutive points or intervals belong to the same interval or
not. The maximum gap constraint is not a novelty. It has been
widely used in sequential pattern mining [23,24] and also in TIRP
mining approaches [6,25]. However, this is the first time it has
been adapted in an algorithm to create LSTISs.

3. Problem statement

Given multivariate time series with missing values, where
samples gather information about n variables in q situations or
sequences, a minimum duration of an interval δ (e.g. in seconds),
an alphabet Σ , and a maximum gap constraint max_gap, we are
required to provide LSTISs, one per sequence LSTIS1, . . ., LSTISq,
where variable values have been abstracted to symbols in the
alphabet, annotated with time intervals bounded in [s, e] (with
δ ≤ e − s ≤ max_gap), and sorted according to time-interval
boundaries and alphabet symbols.

3.1. Input parameters

Each sequence sid ∈ [1, q] of the multivariate time series, has a
total of nsid samples. Each sample Y (sid, tid) comprises the values
of the n variables for a given sequence sid and time tid, that is,
Y (sid, tid) = ⟨y1(sid, tid), . . . , yn(sid, tid)⟩, where yi(sid, tid) is the
value of the i variable of the sample. Moreover, for the purposes
of this work, we denote yv(sid) to all of the values corresponding
to variable v in a given sequence sid (i.e. signal).

The minimum duration of an interval can be expressed in any
time scale (e.g. seconds, hours, days). The max_gap constraint
should be consistent with the max_gap scale.

The alphabet Σ by default is defined in [A, Z], but any other
alternative or vocabulary is also possible. An important issue
regarding the complexity of the problem to be tackled is its size
|Σ |.

3.2. Output: LSTISs

Several notations related to LSTIS should be considered first.

Definition 3.1 (Symbolic Time-interval). A symbolic time-interval
I is a triple I = ⟨s, e, v.sym⟩, composed of a start time (s), an
end time (e), and a symbol v.sym where v is a variable name and
sym ∈ Σ .

Time scales for the start and end times are application-
dependent, as stated above. The same alphabet is used for all of
the variables. Therefore we use the prefix v (v.symj) to different
symbols corresponding to the different variables.

Eventually, different alphabets Σv could also be used, and thus
Σ =

⋃
v Σv).

In the definitions below, I.s, I.e, and I.sym are used when the
start time, end time and symbol of an interval are referred to.

N. Mordvanyuk, B. López and A. Bifet Knowledge-Based Systems 244 (2022) 108554

D
⟨

I

<
v
<

Fig. 2. Graphical representation of LSTIS.
v
f
t
1
r

s
c
b
o
a

4

efinition 3.2. A symbolic time-interval sequence, IS =

I1, I2, . . . , Ik⟩ represents a sequence of symbolic time-intervals
i.

Given that there are n variables and nsid samples per variable,
a multivariate time series can be represented by a IS of length
k = (n ∗ nsid).

To sort time-intervals, usually, relational operators are used.
In the present work, rather than comparing two time intervals
with an exact operator, we look for an approximate (epsilon) ap-
proach (following [3]). The epsilon approach allows for a certain
variability in the temporary boundaries of events caused by noisy
data [16]. The epsilon approach is implemented by means of the
=

ϵ and <ϵ operators.

Definition 3.3 (Quasi-equal ‘‘=ϵ ’’). Two time-points t i and t j are
quasi-equal, t i =

ϵ t j, if |t i − t j| ≤ ϵ.

Definition 3.4 (Precedes ‘‘<ϵ ’’). Time-point t i precedes time-point
t j, t i <ϵ t j, if t j − t i > ϵ.

Definition 3.5 (Follows ‘‘>ϵ ’’). Time-point t i follows time-point t j,
t i >ϵ t j, if t i − t j > ϵ.

The relational operators =
ϵ and <ϵ are used to sort time-

interval events into a sequence.

Definition 3.6. A lexicographical symbolic time-interval se-
quence LSTIS is a symbolic time-interval sequence, IS
= ⟨I1, I2, . . . , Ik⟩, in which the elements are sorted in order of the
start and end times using the relations <ϵ , =

ϵ and the symbols
with a lexicographical order, that is: ∀I i, I j ∈ IS(i < j):

((I i.s <ϵ I j.s)∨

(I i.s =
ϵ I j.s ∧ I i.e <ϵ I j.e)∨

(I i.s =
ϵ I j.s ∧ I i.e =

ϵ I j.e ∧ I i.sym < I j.sym)∨

(I i.s =
ϵ I j.s ∧ I i.e =

ϵ I j.e ∧ I i.sym = I j.sym ∧ |I i.e − I i.s| = max_gap).

For example, ⟨⟨<8:00, 10:00, var1.A>, <8:00, 12:00, var1.B>,
11:00, 13:00, C>⟩, ⟨<14:00, 17:00, var1.C>, <16:00, 17:00,
ar1.A>, <16:00. 18:00, var1.B>⟩, ⟨<10:00, 13:00, var1.C>,

11:00, 14:00, var1.B>, <12:00, 13:00, var1.A>, <14;00, 15:00,

4

ar1.C>⟩⟩ is a LSTIS that contains three sequences, all of them
rom the same variable var1. The first sequence is composed of
hree symbolic time-intervals, ⟨<8:00, 10:00, var1.A>, <8:00,
2:00, var1.B>, <11:00, 13:00, var1.C>⟩. Fig. 2 shows a graphical
epresentation of this example.

The requirement to have the LSTISs ordered implies a con-
umption in the algorithm. In this sense, other schemes using
ompositional tools (e.g. codawork, compositional distances) can
e studied in the future, seeking a more compact representation
f the LSTISs. However, this would impact the operation of the
lgorithms to be used next (downstream).

. The TA4L algorithm

Algorithm 1: TA4L
input: MTS: multivariate time series

max_gap: the maximum gap constraint
dur: duration of the interval

1 output: LSTISs: a list of LSTISs for each sequence

2 LSTISs = {}
3 for each MTSseq ∈ MTS do
4 LSTISseq = {}
5 for each var ∈ MTSseq do

/* Temporal abstraction */
6 if MTSseq(var) is numeric then
7 Zseq(var) = Z-norm(MTSseq(var))

/* Framing, discretisation,
Concatenation, and Sequence
Generation (FDCS) */

8 LSTISseq = FDCS(Zseq(var),max_gap,dur,LSTISseq)
9 else

/* Segmentation, Concatenation and
Sequence Generation (SCS) */

10 LSTISseq = SCS(MTSseq(var),max_gap,LSTISseq)

11 LSTISseq = sort(LSTISseq) ; // if not using a sorted
insertion

12 LSTISs = append(LSTISseq,LSTISs)

N. Mordvanyuk, B. López and A. Bifet Knowledge-Based Systems 244 (2022) 108554

s
c
i
p

T
a
o
c
a
c
g
u
T
f
i

v
t
v
l
a
S
v
T
a
B
o
a
t
w

Fig. 3. TA4L over multivariate time series of two variables. The algorithm parameters used in this example have been: Σ = 3, δ = 24 h, and discretisation = SAX.
4

⟨

n
⟨

t
i

4

o
b
k
e

s
t
t
k
t
t
0
t
m
y
t
t
t
y

k
f

The inputs of the TA4L algorithm include multivariate time
eries MTS, the maximum gap max_gap allowed between two
onsecutive time intervals, and the minimum duration of time
ntervals dur . The algorithm returns a list of LSTISs, where each
osition will be an LSTIS corresponding to a certain sequence.
The first step of the algorithm is to initialise the list of LSTISs.

hen for each sequence, the algorithm constructs an LSTISseq and
dds it to LSTISs. If the variable is numeric first, a Z-normalisation
f this variable is performed. Then each frame is discretised and
oncatenated with the next frame, based on the maximum gap
nd the symbol. If the variable is discrete, segmentation and
oncatenation are performed, also depending on the maximum
ap and the symbol. And finally, in the case we decide not to
se a sorted insertion to LSTISseq, the LSTISseq must be sorted.
he FDCS and SCS functions are detailed in Appendix B. The
undamentals of the proposal are technically in-deep introduced
n the remaining of this section.

An example of TA4L is summarised in Fig. 3 for two variables,
ar1 and var2. This example is used along the section to illustrate
he details of the algorithm. Note that the first four bell curves of
ar1 in Fig. 3, from 2016-10-04 to 2016-10-07, are B, while the
ast bell curve at 2016-10-09 is A. This is because the breakpoints
re determined by looking them up in a statistical table (look
ection 4.2. Framing), and according to the statistical table, for
ocabulary 3, the breakpoints are −0.4307273 and 0.4307273.
his means that all values below −0.4307273 are labelled with A,
ll values between −0.4307273 and 0.4307273 are labelled with
, and all values above 0.4307273 are labelled with C. The means
f the first four bells are 0.1562,−0.4162,−0.2381 and −0.1577,
ll of them between −0.4307273 and 0.4307273; therefore, all of
hem are labelled with B. The mean of the last bell is −0.4675,
hich is below −0.4307273; therefore, it is labelled with A.
 a

5

.1. Normalisation

Given a sequence sid and the values of a variable v, yv(sid) =

yv(sid, 1), . . ., yv(sid, nsid)⟩, the normalisation step applies the
ormalisation method using the Z-method, obtaining yZv (sid) =

yZv (sid, 1), . . ., yZv (sid, nsid)⟩. Fig. 3(a) shows the normalisation of
he variable var1. In the figure, it is possible to observe that there
s several missing information for the variable.

.2. Framing

Instead of reducing the dimensionality of the input data based
n the number of samples was is done in SAX, TA4L reduces it
ased on a duration δ, with time interval boundaries defined in
nown data (i.e. the start and endpoints of time intervals are on
xisting observations).
Given a normalised variable v in the scope of a sequence

id, yZv (sid) = ⟨yZv (sid, 1), . . . , y
Z
v (sid, nsid)⟩, data is divided into

ime intervals of duration δ in the framing step, where the start
ime I.s and end time I.e is marked by the first and last point
nown inside the δ frame. For example, in Fig. 3(b), the start
ime of the real first time-interval is 2016-10-04 07:59:42, and
he real end time is 2016-10-04 19:00:22 (not the 2016-10-
5 07:59:42 marked by δ). Values from 2016-10-04 19:00:22
o 2016-10-05 07:59:41 are missing. The output of the frag-
entation stage is yfv(sid) = ⟨yfv(sid, 1), . . . , y

f
v(sid,msid)⟩, where

f
v(sid, j) = ⟨sj, ej,meanj⟩, |sj − ej| ≤ δ, and sj < sj+1∀j. Observe
hat nsid − msid is the data reduction achieved in this stage. Note
hat msid indicates the number of intervals after framing, while
he ‘f ’ is to indicate the result of framing. For example, yfv is the
v after applying framing.
The fact that TA4L defines the time interval boundaries with

nown values greatly impacts discovering TIRP patterns in the
uture and presents some advantages from previous approaches
s SAX [5]. For example, Fig. 4 illustrates the difference between

N. Mordvanyuk, B. López and A. Bifet Knowledge-Based Systems 244 (2022) 108554

a
m
o
n
t
t
t
f
m
I
w
e
b

4

t
t
a
m
y

−

l
s
a

Fig. 4. SAX and TA4L over a signal. The algorithm parameters used in this example have been: Σ = 3, δ = 15 min.
t
‘
a
s

a
t
d

4

c
t
c
t
m
o
o
w
s
t

4

pplying SAX and TA4L to a signal. Note that the boundaries
arked in black in Fig. 4(b), last δ (15 min). However, in the case
f the presence of missing values, the final time of the interval is
ot the one marked by the delta (black line), but by the real final
ime (blue line), and in an analogous way, it is done with the start
ime (red line). In addition, the next limit (9:35) is calculated from
he new real start time (9:20). SAX splits the original signal into
ive segments with the same amount of samples; its fourth seg-
ent contains unknown values, representing a 45′ time interval.

n contrast to SAX, TA4L will characterise the fourth time interval
ith a 5′ duration. Consequently, a TIRP mining algorithm could
ventually find the pattern ‘‘A before B before C’’ thanks to TA4L,
ut that will not be the case when using SAX.

.3. Discretisation

Discretisation is the process of replacing themeanj value of the
ime intervals with symj ∈ Σ . To that end, TA4L uses by default
he SAX approach [5], but other methods are also available, such
s EWD [22] and KBTA [17]. Therefore, the output of the frag-
entation stage is ydv(sid) = ⟨ydv(sid, 1), . . . , y

d
v(sid,msid)⟩, where

d
v(sid, j) = ⟨sj, ej, v.symj⟩, |sj − ej| ≤ δ, sj < sj+1∀j, and symj ∈ Σ .
If discretisation is performed following the SAX approach, it

must first determine the breakpoints. Breakpoints are a sorted list
of numbers B = β1, ..βΣ−1 such that the area under a N(0,1)
Gaussian curve from βi to βi+1 =

1
|Σ |

(β0 and βΣ are defined as
∞ and +∞, respectively). These breakpoints are determined by

ooking them up in a statistical table computed from the data. The
tatistical table is used here to produce symbols with equiprob-
bility. Secondly, the mapping from mean to α , the j element
i j th l

6

of the alphabet (i.e., α1 = A and α2 = B), is obtained as follows:
symi = αj, iff βj−1 ≤ meani < βj. That means that all means
hat are below the smallest breakpoint are mapped to the symbol
‘A’’, all means greater than or equal to the smallest breakpoint
nd less than the second smallest breakpoint are mapped to the
ymbol ‘‘B’’ and so on.
If the EWD discretisation approach is used, the range of vari-

bles is divided into |Σ | breakpoints of equal size. Finally, when
he KBTA approach is used, the breakpoints are acquired from a
omain expert.

.4. Segmentation

If the type of a v variable is discrete, temporal abstraction
onsists of a segmentation process (see Algorithm 1): symbolic
ime intervals are generated with the start time of the interval
orresponding to the time a discrete value (symbol) appears, and
he end time when there is a symbol change, or when there is a
aximum distance with the start time of δ unit times. The output
f the segmentation stage is equivalent to the discretisation step
f the numerical variables, ydv(sid) = ⟨ydv(sid, 1), . . . , y

d
v(sid,msid)⟩,

here ydv(sid, j) = ⟨sj, ej, v.symj⟩, |sj − ej| ≤ δ, sj < sj+1∀j, and
ymj ∈ Σ . Although, in this case, the alphabet Σ is induced from
he data, we keep the Σ notation for the sake of simplicity.

.5. Sequence generation

Sequence generation is based on a data structure named sorted

ist with two main components: an LSTIS and the pointer to the

N. Mordvanyuk, B. López and A. Bifet Knowledge-Based Systems 244 (2022) 108554

i

l
w
i
a
i
p
s
f

4

i
w
t
t
r
t
s
i
o

w
i
t
i

<

⟨

⟨

p
d
s
c
t
b

4

s
a
s
t
t
s
i
t
L
e
o
i
t
t
t
h
t
p
l
b
b
o

c
o
c
o
p
i
T
p
A
o
i

5

p
p
a
f

Fig. 5. The difference between the original binary insert and an adapted binary
nsert that remembers the last inserted position applied to LSTISs.

ast inserted element into the list. The pointer is initialised to 1
hen the first interval of each variable is inserted. The remainder

ntervals are inserted following the binary search method [26]
dapted for LSTISs. Moreover, at the moment of the time-interval
nsertion into the LSTIS, a concatenation process is applied. The
urpose of merging the time series of the different variables of
equences is to obtain LSTISs for each sequence, which is the data
ormat needed to perform TIRP mining.

.5.1. Binary search for LSTISs
Binary search [26] works on sorted arrays, and it is theoret-

cally the optimal and the fastest in practice search algorithm,
hich order is O(log2N). The algorithm compares an element in
he middle of the array with the value to be inserted. If the value
o be inserted matches the element, its position in the array is
eturned; if it is less than the element, the search continues in
he lower half of the array; if it is greater than the element, the
earch continues in the upper half of the array. By doing this, each
teration of the binary search narrows the search interval by half
f the search interval of its previous iteration.
In the present work, an adapted version of the binary search

as employed to search the position into LSTISs to perform the
nsertion of time intervals. The difference is that (i) it is applied
o an LSTIS; and (ii) it takes advantage of the fact that data arrive
n sorted order by time, and (iii) it uses the =

ϵ and <ϵ relational
operators.

First, a binary search is applied to each LSTIS instead of to
an array of integers. Secondly, each variable time-interval is pro-
cessed according to time. Therefore, the insertion takes advan-
tage of that to start the search from the last inserted posi-
tion, as shown in Fig. 5(b), instead of from position 0 as shown
in Fig. 5(a). Finally, time intervals are compared with >ϵ and

ϵ epsilon-relational operators instead of > and < relational
operators.

4.5.2. Concatenation: Intervals of maximum duration
If there are two or more consecutive intervals with the same

symbol, these intervals are concatenated into a single interval,
where the start time is the time corresponding to the start time
of the first interval and the end time is the time corresponding
to the end time of the last interval. The advantage of that is

not only storing the memory but also providing a short, reliable

7

and meaningful summary of information to the final user. For
example, in the var1 of Fig. 3(b), the first four intervals correspond
to symbol B. Therefore, all of them are combined in a new time
interval where the start time is the start time of the first time
interval (2016-10-04 07:59:42), and the end time is the end time
of the last time-interval (2016-10-07 16:30:29).

On the other hand, concatenation is controlled by the param-
eter max_duration, which aims to deal with particular situations
of application domains. For example, for the following up of a
person who suffers from diabetes, data analysed to evaluate her
state should be within one day (max_gap = 24h). Therefore,
two consecutive time-intervals of the same sequence and sym-
bol sorted by start time Ii(sid) = ⟨si, ei, v.sym⟩ and Ij(sid) =

sj, ej, v.sym⟩, are transformed into a single interval Ik(sid) =

si,max(ei, ej), sym⟩, iff (Ij.e − Ii.s) < max_gap and si ≤ sj.
This has some advantages when discovering TIRPs. For exam-

le, in Fig. 6(b), we can see that from 8.50 to 9:20, there is no
ata. If max_gap = 30′, both would not be concatenated into a
ingle interval, and as a consequence, a TIRP mining algorithm
ould eventually find the pattern ‘‘a before b before c before c’’
hanks to the maximum gap constraint in the TA4L (see Fig. 6(b)),
ut that will not be the case when using SAX (see Fig. 6(a)).

.6. Data structures and parallel strategies

The basic procedure of TA4L presented in Fig. 3 considers the
orted list data structure where time intervals are inserted in
sorted manner with an adapted version of binary search as

oon as they are obtained. In this context, sorted manner refers
o finding the appropriate time interval in the LSTIS after which
he input time interval is to be inserted (see Section 4.5.1). After
uch insertion, the existing LSTIS remain ordered following Def-
nition 3.6. With this data structure, parallelism can be applied
o sequences, i.e. the procedure of transforming time series to
STISs is executed as an independent asynchronous thread for
ach sequence of the TA4L algorithm, as shown in the first image
f Fig. 7. Concretely, from line 4 to line 11 of Algorithm 1 (that
s, all the procedure of transforming time series of a sequence
o LSTIS) is encapsulated within a function, where the input to
he function is the time series of a sequence, and the output is
he LSTIS the sequence. Then, the python multiprocessing Pool
as been used for parallel execution of that function across mul-
iple sequences, distributing the input data across processes (data
arallelism). In this sense, everything that goes from line 4 to
ine 11 (e.g. framing, discretisation, binary search, etc.) need not
e adapted to parallelisation because there is no communication
etween the processes, and its results are independent (i.e. LSTIS
f sequence 1 is independent of sequence 2).
On the other hand, an alternative simple list data structure

ould be considered, and applying a sorting procedure in the end,
pening the opportunity to other parallel strategies: parallelism
an be applied apart from sequences (see the second image
f Fig. 7) to the variables (see the third image of Fig. 7), i.e. the
rocedure of transforming a signal into LSTIS is executed as an
ndependent asynchronous thread for each variable in a sequence.
able 1 summarises all the parallelism strategies. In the case of
arallelism applied to the variables, from line 6 to line 10 of
lgorithm 1 (that is all the procedure of transforming time series
f a variable to LSTIS) is encapsulated within a function. The rest
s analogous to the parallelisation by sequence.

. Experimental setup

TA4L was implemented in Python 3.7.6. The different im-
lementations of the TA4L shown in Table 1 have been im-
lemented and labelled accordingly. Moreover, the state-of-the-
rt approach (Fig. 1) has been implemented according to the
ollowing configuration:

N. Mordvanyuk, B. López and A. Bifet Knowledge-Based Systems 244 (2022) 108554

Fig. 6. Concatenation example over a signal. The algorithm parameters used in this example have been: Σ = 3, δ = 15 min, and max_gap = 30′ .

Fig. 7. Parallelism strategies of TA4L.

8

N. Mordvanyuk, B. López and A. Bifet Knowledge-Based Systems 244 (2022) 108554

p
s

n
o
T
s
d
i
c
v
t
v

h
h
t
h
m

9

1

d

w

t
m

5

Table 1
Parallelism strategies of TA4L and corresponding data structures.
Name Data structure Parallelism strategy

TA4L_sl Sorted list Binary insert that remembers the last
inserted element (no parallelism)

TA4L_sl_paral_seq Sorted list Parallelism applied to sequences
(first image of the Fig. 7)

TA4L_se Simple list Sorts at the end (no paralellism).

TA4L_se_paral_seq Simple list Sorts at the end and parallelism
applied to sequences (second image
of the Fig. 7)

TA4L_se_paral_var Simple list Sorts at the end and parallelism
applied to variables (third image of
the Fig. 7)

• Z-normalisation
• Framing using a given amount of samples w

• Discretisation using the SAX approach
• Sequence generation with concatenation, without any gap

constraint (i.e. max_gap = ∞)

The state of the art approach is labelled as the Baseline in
the experiments. Is it possible to observe that these configura-
tions are close to the SAX approach; however, in a sensitivity
analysis, we also test the discretisation approaches of EWD and
KBTA, therefore covering a broad representation of the currently
available best approaches.

All of the experiments were carried out on a virtual machine,
Lubuntu 19.10, 64 bits, eight CPUs, and 12 GB of RAM. The ex-
periments were conducted with both synthetic and real datasets
under different scenarios, as described below.

5.1. Synthetic datasets

To better explore the efficiency of our algorithm, we generated
numerous synthetic datasets in which the following factors were
considered: (i) Percentage of missing values (PM); (ii) Number of
variables (n); (iii) Number of sequences (q); (iv) Number of sam-
les per sequence (nsid). The Vocabulary size (|Σ |) and Interval
ize (δ) are the parameters of our algorithm.
The synthetic datasets have been created as follows. Given n,

sid, and q, a dataset with this shape is created. A random part
f columns in the dataset are decimal, and the rest are numeric.
hen, each column from the dataset is populated with random
amples from a uniform distribution over [0, 1), in the case of
ecimal columns; and from the ‘‘discrete uniform’’ distribution
n the ‘‘half-open’’ interval [low, high) for integer columns. In the
ase of integer columns, the low value was set to 0, while a high
alue was chosen randomly from a range (0,1000000). Finally, in
he same way, a filter to delete the desired percentage of missing
alues for each column was applied.
In addition, synthetic datasets with different autocorrelations

ave been generated, and additional experiments to test the be-
aviour of the algorithm in the function of the autocorrelation of
ime series was performed. In this regard, no significant changes
ave been detected regarding the algorithm performance. For
ore details, address Appendix C.
We experimented with values for PM of 1%, 25%, 50%, 75% and

9%; values for |Σ | of 3, 10 and 20 (i.e. Σ ∈ [A, C]; Σ ∈ [A, J];
and Σ ∈ [A, T]); values for δ of 1%, 25% and 50% (this percentage
is in respect to the total time); values for n of 3, 167, 334 and
501; values for q of 3, 167, 334 and 501; and values for nsid of 3,
67, 334 and 501.
To analyse the complexity of the worst case, we generated
atasets with numeric variables.

9

Table 2
Dataset description. If a dataset does not have discrete variables, |Σ | is marked
ith ‘‘–’’; otherwise, |Σ | is the mean vocabulary size of the discrete variables.
Dataset q n nsid |Σ | PM MTPS (s)

CBLS 44 2 18.136 – 2.82 540742254.545
COVIDesp 11 8 51.727 – 0.0 4697018.182
SI 38 3 134.526 4.0 0.0 347068800.0
MAV 11 2 116.818 30.5 0.0 4 444193.636
COVIDall 188 14 332.761 188.0 0.918 25056000.0
HAR 30 562 343.3 6.0 0.0 876.288

5.2. Real datasets

The following public datasets were used for the experiments:

• Childhood Blood Lead Surveillance (CBLS) [27] dataset, which
contains data on blood levels of lead in children from be-
tween 1995 and 2015, from several U.S. states and local
health departments.

• COVID-19 in Spain (COVIDesp) [28] dataset, which contains
data on daily increments split by age and gender of the
COVID-19 pandemic in Spain.

• Suicides in India (SI) [29] dataset, which contains annual
suicide records of all states of India with various parameters
from between 2001 and 2012.

• Mavlab (MAV) dataset [30], which contains activities re-
lated to daily living, was collected using the MavLab testbed
during March and April of 2003. This dataset captured an
inhabitant’s interactions with an intelligent home through
sensors placed in different rooms.

• COVID-19 by country — Daily update (COVIDall) [31] dataset,
which contains data on daily increments of the COVID-19
pandemy at the country level.

• Human Activity Recognition (HAR) dataset [32] built from the
recordings of 30 subjects performing activities of daily living
while carrying a waist-mounted smartphone with embed-
ded inertial sensors. This dataset can be found in the UCI
Machine Learning Repository [33].

• DEAP dataset (DEAP) [34,35] which consists of information
about 32 volunteers when watching 40 music videos. Each
video is labelled with affective tags. For each video of each
volunteer, there are 63 recordings seconds, including EEG
(32 channels) and up to 8 complementary physiological sig-
nals (electrooculography, electromyography, galvanic skin
response, respiration belt, plethysmography and tempera-
ture).

The datasets mentioned above are characterised in Table 2 in
erms of the factors considered for the synthetic datasets, plus the
ean total time per sequence (MTPS, in seconds).

.3. Experimental scenarios

Four types of experimental configurations were defined:

1. Performance in the function of the algorithm parameters. This
experimental configuration is directed to test the perfor-
mance of the algorithm based on its parameters, such as
| Σ |, δ and max_gap, and compare the results with the
state of the art approaches (i.e. Baseline). The correctness
of the outputs is analysed by using the Baseline approach
with a perfect scenario (PM set to 0). In so doing, the
number of time intervals found by the Baseline approach
and the TA4L should be the same. On the other hand,
when the PM increases, the number of intervals should
be reduced in TA4L. Moreover, the efficiency of the data

N. Mordvanyuk, B. López and A. Bifet Knowledge-Based Systems 244 (2022) 108554

i
w
t

t
w
e
g
i
(

m

structures proposed in TA4L is tested under the different
parallelism strategies. This experiment has been applied to
both synthetic and real datasets.

• To analyse the sensitivity to the size of δ, | Σ | was set
to the maximum value 20, and PM was set to 1. The
hypothesis is: as the smaller is the δ, the larger the
time and memory consumption.

• To analyse the sensitivity to the size of | Σ | , PM and δ
was set to 1. The hypothesis is: as larger is |Σ |, more
time and memory consumption will be required.

• To analyse the sensitivity to the length of max_gap,
| Σ | was set to 3. Since the effect of the max_gap
depends on the number of nulls in the database, PM
has been tested with 1%, 25%, 50%, 75% and 99%. The
hypothesis is: as smaller is the max_gap, the larger
the number of time intervals found, and consequently
larger the memory and time consumption.

2. Performance-based on the discretisation method. To analyse
the sensitivity to discretisation method, we compared the
symbol assignation from SAX, EWD and KBTA methods in
the Baseline and TA4L (TA4L_sl strategy) algorithms in the
function of q, nsid and |Σ | parameters. Note that when
we talk about applying SAX to TA4L, we are referring
only to the task of assigning the symbol (as explained in
Section 4.3). The hypothesis is: there should not be a signif-
icant difference between the runtimes of the discretisation
methods (since all methods assign the symbol based on
the range where the value falls), but regarding the memory
consumption, SAX will be the method that consumes more
memory, due to the storage of statistical tables, and the
breakpoints determination. Although note that the KBTA
will not go far from SAX either, as it also needs space to
keep the rules set by the experts; and to simulate this,
logical rules have been applied to each variable of datasets
and following a common sense.

3. Performance in the function of the dataset characteristics. This
other configuration aims to test the algorithm’s perfor-
mance based on the dataset characteristics, such as PM, q,
n and nsid. This experiment has been applied to synthetic
datasets. In particular, the PM analysis aims to validate
the approach followed in TA4L in which time intervals are
fragmented according to known data.

• To analyse the n sensitivity, |Σ | was set to 20; q, PM
and δ to 1. The discretisation method was SAX. The
hypothesis is that: as more n, more time and memory
will need the algorithm.

• To analyse the nsid sensitivity, |Σ | was set to 20; q, PM
and δ to 1. The discretisation method was SAX. The
hypothesis is: as more nsid, more time and memory
will need the algorithm.

• To analyse the q sensitivity, |Σ | was set to 20, δ
and PM to 1. The discretisation method was SAX.
The hypothesis is: as larger is the q, more time and
memory will need the algorithm.

4. Performance in terms of classification. This configuration
aims to analyse how TA4L impacts classification effective-
ness because, as mentioned in Section 4.2, TA4L generates
sequences different from previous approaches (SAX). Since
converting LSTISs to vectors of pattern characteristics to
classify is a complex process, which also changes depend-
ing on the dataset, we decided to reuse the work we have
in [36] prepared for the DEAP data. The idea is to apply

the method described in Section 3.B of [36], using SAX and

10
TA4L and then comparing the results. In this work, contrary
to the work in [36], the minimum support of the vertTIRP
algorithm was fixed to 0.7, and the Entropy threshold to
0.6 for all the labels. To cause the sequences found by the
two algorithms to be different, 10 per cent of the data
has been randomly deleted from the DEAP dataset. The
classifiers tested are Ada Boost, Decision Tree, Gaussian
Process, Naive Bayes, Nearest Neighbours, Neural Net, Ran-
dom Forest and Support Vector Classifier. In this study, the
parameters of the classifiers and the vertTIRP were not
tuned, as improving the model’s accuracy is beyond the
scope of this study.

In order to be compared to the baseline approach, the epsilon
parameter was set to 0.

6. Results

In this section, we estimate the cost of the TA4L algorithm,
both analytically and experimentally. The results were evaluated
in terms of computational runtime and memory usage.

6.1. Complexity

The complexity of the analysis has been carried out according
to the different components of the algorithm. Fist, Z normalisa-
tion cost for one variable of a sequence is nsid − nsid ∗ PM , which
when simplified upwards (when PM = 0) becomes O(nsid).

The cost of fragmentation and symbol assignation (which is
only applicable to numeric variables) is complex. Although the
algorithm loops through the values only once O(nsid), every 100/δ
times, it averages the accumulated values and assigns the symbol
value, where δ is represented as the percentage of time con-
cerning 100 per cent of the total time. The symbol assignation
cost is O(|Σ |). Therefore the cost of fragmentation and symbol
assignation is O(nsid+(100/δ)∗|Σ |). If the symbol of the previous I
s the same as the symbol of the actual I , the end of the previous I
ill be updated with the actual end. This assignation has constant
ime complexity O(1).

Z normalisation O(nsid), fragmentation with symbol assigna-
ion O(nsid + (100/δ) ∗ |Σ |), and symbol insertion into the LSTIS
ith its’ corresponding start and end times are repeated for
very variable n and sequence q. Therefore, the cost of the al-
orithm for numeric variables is q ∗ (n ∗ (nsid + (100/δ) ∗ |Σ |) +

nsertionCost + sortingCostIfAny), and for discrete variables is q ∗

n ∗ (insertionCost) + sortingCostIfAny).
The final cost depends on the symbol insertion and sorting

ethods:

• Sorted insert. To find the position to insert the I , we have
opted for an adapted version of binary search, that instead
of searching from the beginning, searches from the last
inserted position. The adapted binary search comes out at
almost the same price as a normal binary search if the
number of sequences is large, and the number of variables
and the number of samples per sequence is small. And since
this would be the worst-case scenario, we decided to count a
typical binary search cost. Therefore let us consider the cost
of an adapted version of binary search to be O(log(n ∗ nsid)),
such as in a typical binary search. Here and throughout,
log(n ∗ nsid) = log2(n ∗ nsid) denotes the binary logarithm of
(n∗nsid). Then, every time the algorithm inserts a value into
position x, all the r remaining elements from the position x
to the end of the list have to be moved 1 position. Therefore
the cost of the sorted insert of one element is O(r ∗ log(n ∗

nsid)). In the worst case, there will be (n ∗ nsid) insertions

(i.e. O((n ∗ nsid) ∗ (rlog(n ∗ nsid)))), and r will be (n ∗ nsid)

N. Mordvanyuk, B. López and A. Bifet Knowledge-Based Systems 244 (2022) 108554

F
F

d
s
a
l

Fig. 8. Synthetic datasets. How varying input parameters δ and |Σ | affects the performance of the algorithms.
h
d
v

m
a
e
1
u
1
M
e
i
1
r
t
t

t
p
t
o
h
c
i
s

6

S
b

(i.e. O((n ∗ nsid) ∗ (n ∗ nsid)log(n ∗ nsid)) or simplified O((n ∗

nsid)2log(n ∗ nsid))). So the cost of the algorithm in the case
where all the variables are discrete is O(q ∗ n ∗ ((n ∗ nsid)2 ∗

log(n∗nsid))). And the cost of the algorithm in the worst case,
when all the variables are numeric (which corresponds to
the final cost of the algorithm) is O(q ∗ (n ∗ (nsid + (100/δ) ∗
|Σ |) + (n ∗ nsid)2 ∗ log(n ∗ nsid))).

• Append elements normally and sort the list at the end.
Append element at the end of the list, has constant time
complexity i.e., O(1). Since this operation will be executed
nsid times for each sequence and variable, the insertionCost
in this case is O(nsid). The complexity of sorting the list with
mergesort at the end is O((n∗nsid)log(n∗nsid)), where (n∗nsid)
is the total number of elements into a sequence of the LSTIS.
So the cost of the algorithm in the case all the variables are
discrete is O(q∗((n∗nsid)+(n∗nsid)∗log(n∗nsid))). And the cost
of the algorithm in the worst case, when all the variables are
numeric is O(q ∗ (n ∗ (nsid + (100/δ) ∗ |Σ |)+ ((n ∗ nsid)log(n ∗

nsid)))).

6.2. Algorithm behaviour

In this section, we analyse experimentally the behaviour of
algorithms based on input parameters, such as Σ , δ and max_gap.
ig. 8 shows the results obtained with the synthetic datasets, and
igs. 9 and 10 for the real ones.
We can observe that in the case of both synthetic and real

atasets, time and memory increase with increasing vocabulary
ize and with decreasing interval size. In real datasets (Figs. 9
nd 10) the increase in time and memory is most noticeable with
arge datasets, such as HAR and COVID_all datasets.

Multithread version by sequence (TA4L_sl_paral_seq and
TA4L_se_paral_seq) consumes less time for both parameters (δ
and |Σ |).

The parallel version by variables is the structure that con-
sumes slightly more memory than the rest of the TA4L versions.
11
In general, in all real datasets, TA4L is significantly faster
than Baseline for all configurations, and in terms of memory
consumption, TA4L is more efficient than Baseline for relatively
large datasets, such as HAR, COVID_all and IS datasets.

Regarding the max_gap constraint (see Fig. 11), on the one
and, we can appreciate that time and memory consumption are
irectly proportional to the number of the constructed time inter-
als (|I|). The more |I|, the greater time and memory consumption.

For small values of max_gap, there are more |I| (1 624261 |I| for
ax_gap 1 and missing 25%), and for big values of max_gap there
re less |I| (1 341094 |I| for max_gap 10 and missing 25%). For
xample, in the case of 25% of missing values, for max_gap =

% the |I| is 1 624261, the runtime is 61.7 s, and the memory
sage is 552.7 MiB, while from the max_gap = 10% on the |I| is
341094, the runtime is 58.5 s, and the memory usage is 510.3
iB. On the other hand, this effect is less pronounced in cases of
xtreme missing values, that is, if the percentage of missing data
s too small (1%) or too large (99%). For example, in the case of
% of missing values, for max_gap = 1% the |I| is 1 546397, the
untime is 62.5 s, and the memory usage is 543.5 MiB, while for
he max_gap = 10% the |I| is 1531279, the runtime is 62.2 s, and
he memory usage is 541.42 MiB.

In the case of PM values, on the one hand, we can appreciate
hat Baseline discovers fewer time intervals than the TA4L ap-
roach (see Fig. 12), due to the effect of missing values. And on
he other hand, there is a decrease in time, memory and number
f time intervals with an increase of PM values, confirming the
ypothesis. And as for the number of Time intervals, we can
heck that when there are no missing values, the number of time
ntervals is the same for all versions, which indicates that the
egmentation is done correctly.

.3. Performance according to the discretisation method

This section presents the results of applying EWD, KBTA and
AX discretisation methods to the TA4L and Baseline approaches,
ased on the dataset characteristics such as n, q and n .
sid

N. Mordvanyuk, B. López and A. Bifet Knowledge-Based Systems 244 (2022) 108554

6

o
a
q
S
T
i
a
a

6

a
s
d
o

o
B
o
d
s
l

Fig. 9. Real datasets. How varying the δ affects the performance of the algorithms.
m
r

.3.1. Synthetic datasets
In the case of synthetic datasets, in general for small values

f q, n, and nsid SAX and KBTA consume significantly less time
nd memory than the EWD approach, while for large values of
, n, and nsid EWD consumes less memory and runtime than
AX (see Figs. 13–15). The baseline is significantly slower than
A4L (observe that time scales of plots in the figures are different
n TA4L from Baseline, due to the big difference in the results
chieved), and it also consumes more memory than the TA4L
pproach.

.3.2. Real datasets
In the case of real datasets, TA4L generally consumes less time

nd memory than Baseline (observe the differences on the time
cales of plots in the figures as happened with the synthetic
atasets). Nevertheless, in TA4L implementations, the behaviour
f the discretisation approach requires a deepening analysis.
For example, with respect to memory consumption, in the case

f the HAR dataset, for large q, n, and nsid values (Figs. 16–18),
aseline_KBTA is the one that consumes significantly more mem-
ry than Baseline_EWD. Whereas in the case of the COVID_all
ataset, for large values of q, n and nsid, Baseline_SAX consumes
ignificantly more memory than Baseline_EWD. In the case of
arge datasets (such as HAR and COVID_all datasets), for small
12
values of q, n and nsid, TA4L_SAX is the least memory consuming
than TA4L_EWD and TA4L_KBTA methods.

Regarding the time consumption (Figs. 19–21), in the case
of the COVID_all dataset, Baseline_EWD is significantly slower
than Baseline_KBTA, especially for nsid experiments. Regarding
the sensitivity to discretisation in TA4L, in the case of the HAR
dataset, in both n and nsid experiments, SAX is significantly slower
than the EWD and KBTA methods.

6.4. Performance according to the dataset characteristics

In this section, we analyse experimentally the cost of algo-
rithms based on dataset characteristics, such as q, n and nsid.

In the case of q (Figs. 22(d) and 22(c)), multithread version by
sequence consumes less time for both data structures, which is
around 3.8 s for q 501 (worst case). The state of the art approach
is that consumes more time (732.19 s for q 501). However, the
ultithread version of TA4L by variables also presents a great

untime concerning other versions of TA4L, which is 35.22 s for q
500. Therefore, if we have many sequences and few variables, it is
not useful to parallelise by variables. In the case of n (Figs. 22(b)
and 22(a)) and nsid (Figs. 23(b) and 23(a)) the two multithread
versions by sequence also present the shortest runtime (0.134 s
for n 501 and 1.39 s for PM 1), while the state of the art is

N. Mordvanyuk, B. López and A. Bifet Knowledge-Based Systems 244 (2022) 108554

Fig. 10. Real datasets. How varying the |Σ | affects the performance of the algorithms.

Fig. 11. Synthetic datasets. How varying the PM and max_gap parameters affects the performance of the algorithms, where |I| is the total number of time intervals.

Fig. 12. How varying PM affects the performance of the algorithms, where |I| is the total number of time intervals.

13

N. Mordvanyuk, B. López and A. Bifet Knowledge-Based Systems 244 (2022) 108554

t
r
c
c
v
T

Fig. 13. Synthetic datasets. Sensitivity to discretisation methods while varying n.
Fig. 14. Synthetic datasets. Sensitivity to discretisation methods while varying q.
Fig. 15. Synthetic datasets. Sensitivity to discretisation methods while varying nsid .
Fig. 16. Real datasets. Sensitivity to discretisation methods in terms of memory while varying q.
he longest one (23.75 s for n 501 and 321.33 for PM 1). And
egarding memory consumption, the state of the art approach
onsumes more memory. In the TA4L versions, all algorithms
onsume approximately the same memory, except the parallel
ersions that consume more, especially the parallel version of
A4L by variables.
14
6.5. Performance in terms of classification

In this section, we analyse whether TA4L improves the effec-
tiveness of the pre-processing in terms of classification compared
to SAX.

N. Mordvanyuk, B. López and A. Bifet Knowledge-Based Systems 244 (2022) 108554

d
o
c
b

g
b
w
b
o
m
B

6

g
i
c
v
v
t
d

Fig. 17. Real datasets. Sensitivity to discretisation methods in terms of memory while varying n.
Fig. 18. Real datasets. Sensitivity to discretisation methods in terms of memory while varying nsid .
i
m
a
t
a
o
F
a
d
i

r
a
s
i
n
t

Note that there is a graph for each class (see Fig. 24): arousal,
ominance, liking, valence. The graph’s Y -axis is the accuracy
f the algorithms, and the X-axis of the graph is the different
lassification algorithms used to make the predictions. The blue
ars are the Baseline, and the oranges are the TA4L.
Because the sequences generated with TA4L vary from those

enerated with Baseline, the results also vary. The best com-
ination for dominance, liking, and valence was TA4L + SVC,
ith 70.8182, 76.8479 and 68.1222 scores. And the best com-
ination for the arousal was TA4L/Baseline + SVC, with a score
f 61.63793. In general (that is, in 80 per cent of all experi-
ents), better or equal results were obtained with TA4L than with
aseline.

.6. Discussion

One of the first insights from the experimental analysis re-
arding the dataset characteristics is that it is observed that there
s a decrease in time, memory and number of time intervals
onstructed with an increase in PM values, since as larger is PM
alues, fewer data per interval, and therefore, fewer time inter-
als constructed, memory usage and runtime. This also applies
o the state-of-the-art algorithm, in which, first, each value is
iscretised and then concatenated. Another point to highlight
 c

15
regarding missing values is that in the presence of missing values,
previous algorithms (SAX) generate the sequence AB for the same
series (Fig. 4) generates the sequence AB, while TA4L ABCB. That
means that the patterns found from this input by any TIRP mining
algorithm will differ.

Regarding the algorithm parameters, as smaller is the δ, more
ntervals are generated, and therefore the algorithm performs
ore mean computations, symbol assignations and insertions,
nd therefore more time and memory consumption. Differently,
he larger the delta, the more critical information is lost, and
small delta value will not remove noise enough. The choice
f the delta should be established empirically and progressively.
or example, suppose a posteriori is intended to do TIRP mining
nd classification. In that case, one could start with a small
elta (i.e. 2% of total time) and increase it progressively until an
mprovement in accuracy is achieved.

And as larger is the |Σ |, more iterations performs the algo-
ithm in the symbol assignation stage, and therefore more time
nd memory consumption. This behaviour is reflected in all ver-
ions of datasets and algorithms. Concerning max_gap, as smaller
s the max_gap parameter, the algorithm performs fewer concate-
ations between the adjacent intervals, and therefore more in-
ervals are generated, and consequently, more time and memory

onsumption is required. As expected, this effect is less noticeable

N. Mordvanyuk, B. López and A. Bifet Knowledge-Based Systems 244 (2022) 108554
Fig. 19. Real datasets. Sensitivity to discretisation methods in terms of time while varying q.
if the dataset has a very small percentage of missing values (there
are no gaps) or a very large number of missing values (low
number of time intervals). In case of knowing the problem, the
max_gap is the maximum time allowed between two consecutive
events so that these two successive events can be considered one
single event. The correct choice of the size of the sigma and the
max_gap parameter without expert knowledge could be made in
a similar way to the selection of the delta.

In terms of discretisation, in the case of synthetic datasets,
for large q, n, and nsid values EWD is the more memory efficient
method, while for small values of q, n and nsid, SAX is that
consumes less time nor memory. In the case of real datasets,
we were able to verify that, in general, there is no significant
difference between the methods in terms of time and memory
consumption. However, concerning memory consumption, in the
case of large datasets (such as HAR or COVID_all datasets), for
large q, n, and nsid values, EWD is the more memory efficient
method, while for small values of q, n and nsid, SAX is the least
memory consuming method.

The cost is greater for numeric variables and a sorted-list
like structure. Sorting all at once has a lot more design freedom
than maintaining the ordering incrementally since an incremental
16
update has to maintain a complete order at all times, which
represents more time and memory consumption. And regarding
multithreading, if we have a sudden processor and RAM, the best
option is to parallelise the TA4L algorithm per sequence instead
of per variable.

And in terms of classification, TA4L does not always have to be
better than the Baseline in downstream tasks. TA4L is suitable for
datasets where situations like the one described in Fig. 4 occur.
A priori, it could be datasets with missing values, and where the
duration of events plays an essential role in the prediction.

7. Conclusions

This paper presented the TA4L algorithm that converts mul-
tivariate time series into sequences known as LSTISs (symbolic
time-intervals sorted by time and symbols). In the literature, it is
not easy to find a specific pre-processing algorithm. Usually, pre-
processing is explained in a subsection of a TIRP mining algorithm
description. On the one hand, the TA4L algorithm aims to make
the process explicitly and provide a solution based on a temporal
abstraction and a sequence generation method to accelerate the
pre-processing time, merging all the pre-processing tasks to be

N. Mordvanyuk, B. López and A. Bifet Knowledge-Based Systems 244 (2022) 108554
Fig. 20. Real datasets. Sensitivity to discretisation methods in terms of time while varying n.
executed together in a single algorithm. On the other hand, in
TA4L, instead of reducing the dimensionality (from time points
to time-intervals) based on the number of samples (as is done in
the state of the art algorithms, as SAX [5]), it is reduced based
on a time duration that is adjusted to the real known values,
guaranteeing a reliable posterior TIRP mining application with
the LSTISs obtained. Moreover, the size of the time intervals is
managed by a given max_gap constraint that enables controlling
the maximum separation of two points to be considered part of
the same event (i.e. symbol), a property of particular interest in
different application domains.

Finally, TA4L considers a sorting list data structure together
with several parallelism strategies (variable and sequence multi-
threads) that make the whole pre-processing efficient.

The experimentation carried out in different synthetic and
real datasets show that the TA4L cost varies in function of the
data structure used and the type of the variables in the dataset
(numeric or discrete). In general, TA4L provides a noticeable
reduction in time and memory than the state of the art algorithm.
Multithread version by variables is useless in the case the dataset
has few variables and many sequences. On the contrary, the
multithread version by sequence consumes less time for all the
experiments.

An interesting direction for future work involves adapting the
TA4L algorithm to an incremental version. However, an immi-
nent future work includes classifying the TIRPs discovered from
17
the intervals obtained with TA4L and those obtained from the
Baseline and comparing the results. This experiment would allow
us to power the results regarding the reliability of the intervals
obtained from TA4L.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

This project received joint funding from ERDF, the Spanish
Ministry of the Economy, Industry and Competitiveness (MINECO)
and the National Agency for Research, under grant no. RTC 2017-
6071-1 (SERAS). The work was carried out with support from
the Generalitat de Catalunya 2017 SGR 1551, a predoctoral grant
from the University of Girona (grants for researchers in train-
ing/IFUdG2017) and a mobility grant (additional support for the
mobility of UdG researchers/MOB2019).

Appendix A. Implementation of TA4L

Our implementation of TA4L is available from the Bitbucket
repository at ‘‘git clone https://invited2bynatalia@bitbucket.org/

https://invited2bynatalia@bitbucket.org/natalia_mordvanyuk/td4l.git
https://invited2bynatalia@bitbucket.org/natalia_mordvanyuk/td4l.git

N. Mordvanyuk, B. López and A. Bifet Knowledge-Based Systems 244 (2022) 108554

Fig. 21. Real datasets. Sensitivity to discretisation methods in terms of time while varying nsid .

Fig. 22. Synthetic datasets. How varying n and q affects the performance of the algorithms.

18

https://invited2bynatalia@bitbucket.org/natalia_mordvanyuk/td4l.git
https://invited2bynatalia@bitbucket.org/natalia_mordvanyuk/td4l.git
https://invited2bynatalia@bitbucket.org/natalia_mordvanyuk/td4l.git
https://invited2bynatalia@bitbucket.org/natalia_mordvanyuk/td4l.git
https://invited2bynatalia@bitbucket.org/natalia_mordvanyuk/td4l.git
https://invited2bynatalia@bitbucket.org/natalia_mordvanyuk/td4l.git

N. Mordvanyuk, B. López and A. Bifet Knowledge-Based Systems 244 (2022) 108554

A

T

m
i

Fig. 23. Synthetic datasets. How varying nsid affects the performance of the algorithms.
Fig. 24. How TA4L impacts the performance of classification. In this chart, SVC refers to the Support Vector Classifier. The blue bars are the Baseline, and the oranges
are the TA4L.
natalia_mordvanyuk/td4l.git’’. The following username and pass-
word can be used to log in:

username: invited2bynatalia
email: invited2bynatalia@gmail.com
password: 2wGW4hxgMVUtGkF..,

ppendix B. Auxiliar functions of TA4L

This section provides auxiliary functions used in the main
A4L algorithm. The first one is the FDC function.
The inputs of the FDC algorithm include time-series TS, the

aximum gap max_gap allowed between two consecutive time
ntervals, the minimum duration of time intervals duration, and
19
LSTISseq, that is the LSTIS for the sequence seq. The algorithm
returns LSTISseq updated with all new time intervals.

The first step of the algorithm consists of obtaining the first
two TIs (the previous TI and the actual TI). If the previous and
the actual TI have the same symbol, the end of the previous TI
will be updated with the end of the actual TI unless the gap
between them is greater than max_gap. The algorithm intro-
duces the previous TI to the LSTIS in each iteration. The cur-
rent TI is inserted when there are no more elements in the
series.

The inputs of the SCS algorithm include time-series TS, the
maximum gap max_gap allowed between two consecutive time

https://invited2bynatalia@bitbucket.org/natalia_mordvanyuk/td4l.git
https://invited2bynatalia@bitbucket.org/natalia_mordvanyuk/td4l.git
https://invited2bynatalia@bitbucket.org/natalia_mordvanyuk/td4l.git
https://invited2bynatalia@bitbucket.org/natalia_mordvanyuk/td4l.git

N. Mordvanyuk, B. López and A. Bifet Knowledge-Based Systems 244 (2022) 108554
Fig. C.25. Synthetic datasets. How varying the auto-correlation of the time series affects the performance of the algorithm.
Algorithm 2: FDC
input: TS: multivariate time series

max_gap: the maximum gap constraint
duration: duration of the interval
LSTISseq: list of LSTIs

1 output: LSTISseq: list of LSTIs for the sequence ’seq’

2 i = 1
3 <TIprev , i> = updateTI(TS, i, duration, NULL, max_gap)
4 <TIcurr , i> = updateTI(TS, i, duration, TIprev ,max_gap)
5 while i < len(TS) do
6 while (TIcurr != NULL) and (TIprev.sym == TIcurr .sym) do
7 <TIcurr , i> = updateTI(TS, i, duration, TIprev ,max_gap)
8 LSTISseq = insert(TIprev , LSTISseq)
9 if (i >= len(TS)) and TIcurr != NULL then

/* last element */
10 if (TIprev != TIcurr) then
11 LSTISseq = insert(TIcurr ,LSTISseq)

12 TIprev = TIcurr
13 return LSTISseq

intervals and the LSTISseq, that is the LSTIS for the sequence
seq. The algorithm returns LSTISseq updated with all new time
intervals.

We can see that in the loop, in each iteration, a new TI is being
added within LSTISs. To create the TI, you need the symbol, the
start time, and the end time of the TI. The symbol and the initial
time are set at the beginning of the loop. If the current symbol
is equal to the previous symbol and the maximum gap is not
exceeded, the counter is incremented to determine the final time.
If any of these conditions are not met, the final time is set.

When we reach the end of the time series, it must be decided
whether to change the final time of the last TI or whether to
create a new TI and insert it into LSTISs. This decision is made
in the lines 17–23.

Appendix C. TA4L on autocorrelated time series

This section includes the experiments related to the behaviour
of the algorithm on autocorrelated time series. Fig. C.25 shows
the consumption of time and memory as a function of the dif-
ferent degrees of time series autocorrelation. In this regard, no
significant changes have been detected regarding the algorithm
performance.
20
Algorithm 3: SCS
input: TS: multivariate time series

max_gap: the maximum gap constraint
LSTISseq: list of LSTIs

1 output: LSTISseq : list of LSTIs for sequence ’seq’

2 i = 1
3 while i < (len(TS)-1) do
4 symcur = getValue(TS, i)
5 symnext = getValue(TS, i+1)
6 startTI = getTimestamp(TS, i)
7 gap = getTimestamp(TS, i+1) - getTimestamp(TS, i)
8 while (i < (len(TS)-1)) and (symcur == symnext) and

gap<max_gap do
9 i = i+1

10 symcur = getValue(TS, i)
11 symnext = getValue(TS, i+1)
12 gap = getTimestamp(TS, i+1) - getTimestamp(TS, i)
13 endTI = getTimestamp(TS, i)
14 TIcurr = TI(symcur , startTI ,endTI)
15 LSTISseq = insert(TIprev ,LSTISseq)
16 if i > 1 and i < (len(TS) then
17 last_time = getTimestamp(TS, i)
18 gap = getTimestamp(TS,i)-getTimestamp(TS,i-1)
19 if (getValue(TS,i) == getValue(TS,i-1) and gap <=

max_gap then
20 LSTISseq = changeEnd(TIcurr , last_time, LSTISseq)
21 else
22 TIcurr = TI(symcur , last_time, last_time)
23 LSTISseq = insert(TIprev ,LSTISseq)

24 return LSTISseq

References

[1] P. Fournier-Viger, J.C.-W.L. School, R.U.K. University, Y.S. Koh, R. Thomas,
A survey of sequential pattern mining, in: Data Science and Pattern
Recognition, Vol. 1, 2017, pp. 54–77.

[2] P.-s. Kam, A.W.-c. Fu, Discovering temporal patterns for interval-based
events, in: Y. Kambayashi, M. Mohania, A.M. Tjoa (Eds.), Data Warehousing
and Knowledge Discovery, Springer Berlin Heidelberg, Berlin, Heidelberg,
2000, pp. 317–326, http://dx.doi.org/10.1007/3-540-44466-1_32.

[3] R. Moskovitch, Y. Shahar, Classification of multivariate time series via
temporal abstraction and time intervals mining, Knowl. Inf. Syst. 45 (1)
(2015) 35–74, http://dx.doi.org/10.1007/s10115-014-0784-5.

[4] R. Moskovitch, Y. Shahar, Classification-driven temporal discretization of
multivariate time series, Data Min. Knowl. Discov. 29 (2015) 871–913,
http://dx.doi.org/10.1007/s10618-014-0380-z.

[5] J. Lin, E. Keogh, S. Lonardi, B. Chiu, A symbolic representation of time series,
with implications for streaming algorithms, in: Proceedings of the 8th ACM

http://refhub.elsevier.com/S0950-7051(22)00246-5/sb1
http://refhub.elsevier.com/S0950-7051(22)00246-5/sb1
http://refhub.elsevier.com/S0950-7051(22)00246-5/sb1
http://refhub.elsevier.com/S0950-7051(22)00246-5/sb1
http://refhub.elsevier.com/S0950-7051(22)00246-5/sb1
http://dx.doi.org/10.1007/3-540-44466-1_32
http://dx.doi.org/10.1007/s10115-014-0784-5
http://dx.doi.org/10.1007/s10618-014-0380-z

N. Mordvanyuk, B. López and A. Bifet Knowledge-Based Systems 244 (2022) 108554
SIGMOD Workshop on Research Issues in Data Mining and Knowledge
Discovery, 2003, pp. 2–11.

[6] E. Winarko, J.F. Roddick, ARMADA - an algorithm for discovering richer
relative temporal association rules from interval-based data, Data Knowl.
Eng. 63 (1) (2007) 76–90, http://dx.doi.org/10.1016/j.datak.2006.10.009.

[7] L. Hui, Y.C. Chen, J.T.Y. Weng, S.Y. Lee, Incremental mining of temporal pat-
terns in interval-based database, Knowl. Inf. Syst. 46 (2) (2016) 423–448,
http://dx.doi.org/10.1007/s10115-015-0828-5.

[8] R. Agrawal, R. Srikant, Mining sequential patterns, in: Proceedings of the
Eleventh International Conference on Data Engineering, 1995, pp. 3–14,
http://dx.doi.org/10.1109/ICDE.1995.380415.

[9] R. Moskovitch, Y. Shahar, Medical temporal-knowledge discovery via
temporal abstraction, in: AMIA 2009 Symposium Proceedings, 2009, pp.
452–456, URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2815492/.

[10] R. Moskovitch, Y. Shahar, Fast time intervals mining using the transitivity
of temporal relations, Knowl. Inf. Syst. 42 (1) (2013) 21–48, http://dx.doi.
org/10.1007/s10115-013-0707-x.

[11] S.Y. Wu, Y.L. Chen, Mining nonambiguous temporal patterns for interval-
based events, IEEE Trans. Knowl. Data Eng. 19 (6) (2007) 742–758, http:
//dx.doi.org/10.1109/TKDE.2007.190613.

[12] D. Patel, W. Hsu, M.L. Lee, Mining relationships among interval-based
events for classification, in: Proceedings of the 2008 ACM SIGMOD In-
ternational Conference on Management of Data, SIGMOD ’08, Association
for Computing Machinery, New York, NY, USA, 2008, pp. 393–404, http:
//dx.doi.org/10.1145/1376616.1376658.

[13] Y.C. Chen, W.C. Peng, S.Y. Lee, Mining temporal patterns in interval-based
data, in: 2016 IEEE 32nd International Conference on Data Engineering, in:
ICDE 2016, vol. 27, IEEE, 2016, pp. 1506–1507, http://dx.doi.org/10.1109/
ICDE.2016.7498397.

[14] C.W. Yang, B.P. Jaysawal, J.W. Huang, Subsequence search considering
duration and relations of events in time interval-based events sequences,
in: Proceedings - 2017 International Conference on Data Science and
Advanced Analytics, in: DSAA 2017, vol. 2018-Janua, 2018, pp. 293–302,
http://dx.doi.org/10.1109/DSAA.2017.47.

[15] J.-W. Huang, B.P. Jaysawal, K.-Y. Chen, Y.-B. Wu, Mining frequent and top-
k high utility time interval-based events with duration patterns, Knowl.
Inf. Syst. 61 (3) (2019) 1331–1359, http://dx.doi.org/10.1007/s10115-019-
01333-6.

[16] P. Papapetrou, G. Kollios, S. Sclaroff, D. Gunopulos, Mining frequent ar-
rangements of temporal intervals, Knowl. Inf. Syst. 21 (2) (2009) 133–171,
http://dx.doi.org/10.1007/s10115-009-0196-0.

[17] Y. Shahar, A framework for knowledge-based temporal abstraction, Arti-
ficial Intelligence 90 (1) (1997) 79–133, http://dx.doi.org/10.1016/S0004-
3702(96)00025-2, URL https://www.sciencedirect.com/science/article/pii/
S0004370296000252.

[18] R. Azulay, R. Moskovitch, D. Stopel, M. Verduijn, E. de Jonge, Y. Shahar,
Temporal discretization of medical time series-a comparative study, in:
Proceedings of IDAMAP2007: Intelligent Data Analysis in Biomedicine and
Pharmacology, Vol. 43, 2007, pp. 48–58.

[19] E. Keogh, S. Chu, D. Hart, M. Pazzani, Segmenting time series: A survey and
novel approach, in: Data Mining in Time Series Databases, World Scientific,
2004, pp. 1–21, http://dx.doi.org/10.1142/9789812565402_0001.

[20] F. Mörchen, A. Ultsch, Optimizing time series discretization for knowledge
discovery, in: Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2005, pp. 660–665, http://dx.doi.
org/10.1145/1081870.1081953.
21
[21] S.S. Titarenko, V.N. Titarenko, G. Aivaliotis, J. Palczewski, Fast implemen-
tation of pattern mining algorithms with timestamp uncertainties and
temporal constraints, J. Big Data 6 (1) (2019) 37, http://dx.doi.org/10.1186/
s40537-019-0200-9.

[22] J. Dougherty, R. Kohavi, M. Sahami, Supervised and unsupervised
discretization of continuous features, in: A. Prieditis, S. Russell
(Eds.), Machine Learning Proceedings 1995, Morgan Kaufmann, San
Francisco (CA), 1995, pp. 194–202, http://dx.doi.org/10.1016/B978-1-
55860-377-6.50032-3, URL https://www.sciencedirect.com/science/article/
pii/B9781558603776500323.

[23] C. Antunes, A.L. Oliveira, Generalization of pattern-growth methods for
sequential pattern mining with gap constraints, in: International Workshop
on Machine Learning and Data Mining in Pattern Recognition, Springer,
2003, pp. 239–251, http://dx.doi.org/10.1007/3-540-45065-3_21.

[24] C. Li, J. Wang, Efficiently mining closed subsequences with gap constraints,
in: Proceedings of the 2008 SIAM International Conference on Data Mining,
SIAM, 2008, pp. 313–322, http://dx.doi.org/10.1137/1.9781611972788.28.

[25] N. Mordvanyuk, B. López, A. Bifet, vertTIRP: Robust and efficient vertical
frequent time interval-related pattern mining, Expert Syst. Appl. (2020)
114276, http://dx.doi.org/10.1016/j.eswa.2020.114276.

[26] P.-V. Khuong, P. Morin, Array layouts for comparison-based searching, J.
Exp. Algorithmics 22 (2017) 1–39, http://dx.doi.org/10.1145/3053370.

[27] Centers for Disease Control and Prevention, Childhood blood lead surveil-
lance, 2017, accessed: 10-10-2020. URL https://www.kaggle.com/cdc/
childhood-blood-lead-surveillance.

[28] D. García, Kaggle, 2020, accessed: 10-10-2020. URL https://www.kaggle.
com/danigarci1/covid19-in-spain.

[29] R. Ilangovan, Kaggle, 2017, accessed: 10-10-2020. URL https://www.kaggle.
com/rajanand/suicides-in-india.

[30] J. Bugeja, Smart home datasets and a realtime internet-connected home,
2019, accessed: 10-10-2020. URL https://hyperionsec.wordpress.com/2019/
06/03/smart-home-datasets-and-a-realtime-internet-connected-home/.

[31] J.C.S. Culebras, Kaggle, 2020, accessed: 10-10-2020. URL https:
//www.kaggle.com/jcsantiago/covid19-by-country-with-government-
response?select=covid19_by_country.csv.

[32] D. Anguita, A. Ghio, L. Oneto, X. Parra, J.L. Reyes-Ortiz, A public domain
dataset for human activity recognition using smartphones, in: Esann, 2013,
pp. 437–442, URL https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/
es2013-84.pdf.

[33] D. Dua, C. Graff, UCI machine learning repository, 2017, accessed:
10-10-2020. URL https://archive.ics.uci.edu/ml/datasets/human+activity+
recognition+using+smartphones.

[34] S. Koelstra, C. Muhl, M. Soleymani, J. Lee, A. Yazdani, T. Ebrahimi, T.
Pun, A. Nijholt, I. Patras, Deap: A database for emotion analysis using
physiological signals, IEEE Trans. Affect. Comput. 3 (1) (2012) 18–31,
http://dx.doi.org/10.1109/T-AFFC.2011.15.

[35] S. Koelstra, C. Muhl, M. Soleymani, J. Lee, A. Yazdani, T. Ebrahimi, T.
Pun, A. Nijholt, I. Patras, DEAP dataset, 2012, accessed: 12-02-2022. URL
https://www.eecs.qmul.ac.uk/mmv/datasets/deap/index.html.

[36] N. Mordvanyuk, J. Gauchola, B. López, Understanding affective behaviour
from physiological signals: Feature learning versus pattern mining, in: 34th
IEEE CBMS International Symposium on Computer-Based Medical Systems,
2021, pp. 438–443, http://dx.doi.org/10.1109/CBMS52027.2021.00049.

http://dx.doi.org/10.1016/j.datak.2006.10.009
http://dx.doi.org/10.1007/s10115-015-0828-5
http://dx.doi.org/10.1109/ICDE.1995.380415
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2815492/
http://dx.doi.org/10.1007/s10115-013-0707-x
http://dx.doi.org/10.1007/s10115-013-0707-x
http://dx.doi.org/10.1007/s10115-013-0707-x
http://dx.doi.org/10.1109/TKDE.2007.190613
http://dx.doi.org/10.1109/TKDE.2007.190613
http://dx.doi.org/10.1109/TKDE.2007.190613
http://dx.doi.org/10.1145/1376616.1376658
http://dx.doi.org/10.1145/1376616.1376658
http://dx.doi.org/10.1145/1376616.1376658
http://dx.doi.org/10.1109/ICDE.2016.7498397
http://dx.doi.org/10.1109/ICDE.2016.7498397
http://dx.doi.org/10.1109/ICDE.2016.7498397
http://dx.doi.org/10.1109/DSAA.2017.47
http://dx.doi.org/10.1007/s10115-019-01333-6
http://dx.doi.org/10.1007/s10115-019-01333-6
http://dx.doi.org/10.1007/s10115-019-01333-6
http://dx.doi.org/10.1007/s10115-009-0196-0
http://dx.doi.org/10.1016/S0004-3702(96)00025-2
http://dx.doi.org/10.1016/S0004-3702(96)00025-2
http://dx.doi.org/10.1016/S0004-3702(96)00025-2
https://www.sciencedirect.com/science/article/pii/S0004370296000252
https://www.sciencedirect.com/science/article/pii/S0004370296000252
https://www.sciencedirect.com/science/article/pii/S0004370296000252
http://dx.doi.org/10.1142/9789812565402_0001
http://dx.doi.org/10.1145/1081870.1081953
http://dx.doi.org/10.1145/1081870.1081953
http://dx.doi.org/10.1145/1081870.1081953
http://dx.doi.org/10.1186/s40537-019-0200-9
http://dx.doi.org/10.1186/s40537-019-0200-9
http://dx.doi.org/10.1186/s40537-019-0200-9
http://dx.doi.org/10.1016/B978-1-55860-377-6.50032-3
http://dx.doi.org/10.1016/B978-1-55860-377-6.50032-3
http://dx.doi.org/10.1016/B978-1-55860-377-6.50032-3
https://www.sciencedirect.com/science/article/pii/B9781558603776500323
https://www.sciencedirect.com/science/article/pii/B9781558603776500323
https://www.sciencedirect.com/science/article/pii/B9781558603776500323
http://dx.doi.org/10.1007/3-540-45065-3_21
http://dx.doi.org/10.1137/1.9781611972788.28
http://dx.doi.org/10.1016/j.eswa.2020.114276
http://dx.doi.org/10.1145/3053370
https://www.kaggle.com/cdc/childhood-blood-lead-surveillance
https://www.kaggle.com/cdc/childhood-blood-lead-surveillance
https://www.kaggle.com/cdc/childhood-blood-lead-surveillance
https://www.kaggle.com/danigarci1/covid19-in-spain
https://www.kaggle.com/danigarci1/covid19-in-spain
https://www.kaggle.com/danigarci1/covid19-in-spain
https://www.kaggle.com/rajanand/suicides-in-india
https://www.kaggle.com/rajanand/suicides-in-india
https://www.kaggle.com/rajanand/suicides-in-india
https://hyperionsec.wordpress.com/2019/06/03/smart-home-datasets-and-a-realtime-internet-connected-home/
https://hyperionsec.wordpress.com/2019/06/03/smart-home-datasets-and-a-realtime-internet-connected-home/
https://hyperionsec.wordpress.com/2019/06/03/smart-home-datasets-and-a-realtime-internet-connected-home/
https://www.kaggle.com/jcsantiago/covid19-by-country-with-government-response?select=covid19_by_country.csv
https://www.kaggle.com/jcsantiago/covid19-by-country-with-government-response?select=covid19_by_country.csv
https://www.kaggle.com/jcsantiago/covid19-by-country-with-government-response?select=covid19_by_country.csv
https://www.kaggle.com/jcsantiago/covid19-by-country-with-government-response?select=covid19_by_country.csv
https://www.kaggle.com/jcsantiago/covid19-by-country-with-government-response?select=covid19_by_country.csv
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2013-84.pdf
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2013-84.pdf
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2013-84.pdf
https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
http://dx.doi.org/10.1109/T-AFFC.2011.15
https://www.eecs.qmul.ac.uk/mmv/datasets/deap/index.html
http://dx.doi.org/10.1109/CBMS52027.2021.00049

	TA4L: Efficient temporal abstraction of multivariate time series
	Introduction
	Related work
	The pre-processing in the TIRPs mining field
	Temporal abstraction in the TIRPs mining field
	How the present work fits within the context of existing literature?

	Problem statement
	Input parameters
	Output: LSTISs

	The TA4L algorithm
	Normalisation
	Framing
	Discretisation
	Segmentation
	Sequence generation
	Binary search for LSTISs
	Concatenation: Intervals of maximum duration

	Data structures and parallel strategies

	Experimental setup
	Synthetic datasets
	Real datasets
	Experimental scenarios

	Results
	Complexity
	Algorithm behaviour
	Performance according to the discretisation method
	Synthetic datasets
	Real datasets

	Performance according to the dataset characteristics
	Performance in terms of classification
	Discussion

	Conclusions
	Declaration of competing interest
	Acknowledgements
	Appendix A. Implementation of TA4L
	Appendix B. Auxiliar functions of TA4L
	Appendix C. TA4L on autocorrelated time series
	References

