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A B S T R A C T

A new 3D elastoplastic damage model is proposed to predict the plastic deformation and the progressive
failure of unidirectional laminated composite materials at the meso-scale level. A non-associated flow rule is
employed to properly define the volumetric plastic strains. The damage evolution laws are defined to account
for the failure mechanisms on the longitudinal and transverse directions. Off-axis compressive and tensile tests
with different ply orientations and high plastic dependency are used to demonstrate the ability of the model
to capture the plastic response and the damage onset as well as the fracture planes. In addition, open-hole
compressive and tensile tests with different dimensions are carried out to demonstrate the capability of the
model to predict the failure strength. Good agreement is obtained between the numerical and experimental
data.
1. Introduction

Advanced fibre-reinforced polymer (FRP) composite materials are
increasingly used in complex structures in the mobility industry. In the
particular case of the aerospace industry, airworthiness certification is
required, which implies extensive experimental test campaigns to char-
acterise the mechanical response of composite structures. To reduce the
size of the test campaigns, efficient and reliable numerical tools are
required. One solution is to link constitutive models with Finite Element
(FE) simulations.

The nonlinearity due to plastic deformation of the FRP composite
materials causes a stress redistribution affecting the onset of the failure
mechanisms. Koerber et al. [1,2] studied the mechanical response of
a FRP composite material at different strain rates (quasi-static and
high strain rates). The authors carried out off-axis and transverse tests
in compression and in tension. While the experimental data showed
considerable plastic deformation for both strain rates and loading di-
rections, compression leads to higher plastic deformation. Chen et al.
[3] performed off-axis compressive and tensile tests with E-glass fibre-
reinforced polymer composite material. The experimental data also
showed significant plasticity. Moreover, the mechanical behaviour of
FRP composite materials depend on hydrostatic pressure [4,5]. This
dependency requires the use of elastoplastic material models with a
non-associative flow rule to properly capture the plastic dilatancy or
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contractility. In addition, out-of-plane stresses are insignificant when
laminated composite materials are used in thin structures where in-
plane stresses dominate the stress state away from free-edges. However,
composite laminates are used in complex geometries where it critical to
capture the effects of out-of-plane stresses [6]. Therefore, 3D material
models are needed to capture the inelastic deformation and fracture be-
haviour in out-of-plane stress states (e.g. shear yielding and the fracture
strengths affected by the hydrostatic pressure [4,5], three-dimensional
stress states effect the failure of pressure vessels [7], 3-point bending
tests to predict the out-of-plane tensile strength [8], bolted composite
joints with clamping pressure, in impact tests, in curved structures,
etc.), but also under the in-plane stress states (e.g. tests with in-
plane boundary conditions where interface damage plays a relevant
role). Plasticity models and continuum damage mechanics formulation
are often used to predict the nonlinear mechanical response of FRP
composite materials.

Chen et al. [9] developed an elastoplastic damage model to predict
the mechanical response of a unidirectional FRP composite material
assuming plane stress conditions. The plasticity model was based on the
model presented by Sun and Chen [10]. An isotropic yield function and
an associated flow rule were used. The damage model was based on the
Hashin’s failure criteria with three damage variables to capture: fibre
failure, matrix cracking due to a pure transverse load, and longitudinal
vailable online 30 September 2022
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shear stiffness degradation from fibre failure and matrix cracking. The
damage evolution was described with exponential softening laws. The
onset of damage was validated by comparing the numerical failure
predictions with the failure strength from open-hole tensile tests. In
general, good predictions were found, although the relative error was
higher than 15% for 4 of the 17 cases studied. In addition, an in-
plane shear test was simulated. The results showed a good prediction
of the plastic strain but an under-prediction of the failure strength.
Hoffarth et al. [11] proposed an elastoplastic damage model to predict
the mechanical behaviour of a unidirectional FRP composite material
under impact load. The yield function of the plasticity model was
defined using the Tsai–Wu composite failure criterion [12]. A new
non-associated flow rule was proposed to define the evolution of the
plastic strains. The onset and propagation of the damage were based
on the work of Matzenmiller et al. [13]. The authors compared the
out-of-plane displacement vs. time curve obtained from an impact
test with the numerical predictions. The predicted curve accurately
captured the positive and negative peak displacement values of the
first cycle and the displacement profile around the first peak. However,
the peak displacements were overestimated for the subsequent cycles.
Xie et al. [14] presented an elastoplastic damage model to describe
the mechanical response of a carbon fibre reinforced carbon–silicon
carbide (C/C-SiC) composite material in plane stress conditions. The
authors proposed a new yield function as a function of the in-plane
stresses and the material properties, and an associated flow rule was
used. Three damage variables were used to degrade the in-plane elastic
material properties. The evolution of each damage variable was defined
using an exponential function. The material model was validated by
comparing the plastic response to the one obtained from experimental
data. Off-axis tensile and in-plane shear curves were predicted with
a good agreement. The plastic deformations were correctly evaluated.
In addition, the load–displacement, load-plastic strain and load–strain
curves from a single open-hole tensile test were compared with the
corresponding predictions. Again, the material model properly captured
the plastic response. Holthusen et al. [15] developed a constitutive
model for unidirectional fibre composite materials. The plasticity model
was based on Von Mises yield criterion with an associated flow rule.
Three damage variables were used: two associated to the fibre (tension
and compression damage) and one for the matrix. The authors only
showed the simulated response of the material under cyclic uniaxial
tensile–compressive loading and the interaction between the fibre and
matrix damage. Open-hole virtual tests were also performed with differ-
ent conditions on the material model (activating/deactivating plasticity
and damage). Chen et al. [3] proposed an elastoplastic damage model
to describe the plastic hardening response and damage evolution. The
modified Drucker–Prager yield criterion proposed by Cho et al. [16]
was employed to account for the deviatoric and dilatational plastic
deformation. In addition, the authors added a term in the yield function
to prevent compressive stresses from generating shear yielding based on
the work of Daniel [17]. An associated flow rule was used. The damage
activation functions was based on the Puck failure criteria [18,19].
Exponential damage laws were used to model the degradation of the
elastic material properties in the principal directions. The model was
validated by simulating off-axis compressive and tensile tests. The
comparison with the experimental test showed good agreement of the
stress vs. strain curves and the failure strengths.

There is a need to develop an elastoplastic damage model using:
a non-associated plastic flow rule to capture the plastic dilatancy or
contractility, a 3D material model to account out-of-plane loading
conditions, and an extensive comparison of the numerical predictions
with experimental data. Therefore, the objective of this work is to
develop a reliable constitutive model to predict the plastic deformation
and the progressive failure of FRP composite materials at the meso-
scale level. The main features of the material model are: (i) the use of an
additive decomposition of the infinitesimal strain tensor to account for
2

the plastic effects, (ii) the plasticity modelling with a new plastic yield
Fig. 1. Schematic representation of uniaxial stress vs. strain curve response at the
material point level: (a) in the fibre direction, and (b) in the directions governed by
the matrix.

function and a non-associated flow rule, (iii) a 3D damage model based
on the model developed by Quintanas-Corominas et al. [20], (iv) the
coupling between the plasticity and damage model, and (v) the material
data cards can be measured from well-established experimental tests.
The constitutive model is described in Section 2 and its implementation
in Section 3. The capabilities of the model has been demonstrated by
comparing the numerical results with experimental data from off-axis
compressive and tensile tests and open-hole compressive and tensile
tests. Section 4 presents a detailed comparison of the stress vs. strain
curves, the failure strength and the fracture planes.

2. Constitutive model

The proposed material model is developed within the framework of
the infinitesimal strain theory. The strain tensor is composed as

𝜺 = 𝜺𝑒 + 𝜺𝑝 , (1)

where 𝜺𝑒 is the elastic strain tensor (it includes cracking strains) and
𝜺𝑝 is plastic strain tensor.

It is assumed that in the fibre direction of the homogenised compos-
ite materials no plasticity occurs, and the model describes the elastic
response until the onset of damage. Then, longitudinal fibre failure
occurs in the absence of plasticity deformation, see Fig. 1a. However,
in the directions governed by the matrix, the material model initially
represents an elastic behaviour until the onset of plasticity is reached.
It is assumed that when the matrix crack is initialised, plasticity cannot
grow at the material point level, see Fig. 1b.

A new plasticity model has been developed and combined with a
damage model (see Fig. 1b) based on the constitutive model presented
by Quintanas-Corominas et al. [20]. Therefore, the complementary
Gibbs free-energy density 𝑊 proposed in [20] is used. It depends on
four of the five invariants of the stress tensor (𝝈 ) at a rotation with
respect to the longitudinal axis: the longitudinal stress 𝜎𝓁 (i.e. fibre
direction); the transverse hydrostatic pressure 𝑝𝑡; 𝜏𝓁 and 𝜏𝑡 which are
related with the longitudinal shear stress and the transverse shear
stress, respectively. The function 𝑊 is defined as:

𝑊 ∶=
𝜎2𝓁

2(1 − 𝑑𝓁 )𝐸11
−

2𝜈12𝜎𝓁𝑝𝑡
𝐸11

+
𝑝2𝑡

2(1 − 𝑑𝑡 )𝐸𝑡
+

𝜏2𝑡
2(1 − 𝑑𝑠𝑡 )𝐺𝑡

+
𝜏2𝓁

2(1 − 𝑑𝑠𝓁 )𝐺12
+ 𝝈𝜺𝑝 , (2)

where 𝐸11 is the longitudinal elastic modulus, 𝜈12 is the longitudinal
Poisson’s ratio and 𝐺12 is the longitudinal shear elastic modulus. 𝐸𝑡
and 𝐺𝑡 are the bulk and shear elastic stiffness in the transverse isotropic
plane, respectively, which are defined as

𝐸𝑡 ∶=
𝐸22 (3)
2(1 − 𝜈23 )
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and

𝐺𝑡 ∶=
𝐸22

2(1 + 𝜈23 )
, (4)

here 𝐸22 is the transverse elastic modulus and 𝜈23 is the transverse
oisson’s ratio. The stress invariants are defined as:

𝓁 = 𝝈11 , (5)

𝑡 =
𝝈22 + 𝝈33

2
, (6)

𝜏𝓁 =
√

𝝈 2
12 + 𝝈 2

13 (7)

and

𝜏𝑡 =

√

(𝝈22 − 𝝈33 )
2 + 4𝝈2

23

2
, (8)

where 𝝈𝑖𝑗 are the Cartesian components of the stress tensor 𝝈 . The
calar variable 𝑑𝑀=𝓁,𝑡,𝑠𝓁,𝑠𝑡 describes the damage state in the corre-
ponding direction. The subscript 𝓁 refers to longitudinal (i.e. fibre),
refers to transverse (i.e. matrix) and 𝑠 refers to shear. The material is
ndamaged for 𝑑𝑀 = 0, it is damaged for 0 < 𝑑𝑀 ≤ 1, and it is fully
amaged for 𝑑𝑀 = 1.

The strain tensor is obtained from the Clausius–Duhem inequal-
ty [21,22] as the derivative of 𝑊 with respect to the mechanical
tresses as

=
𝜕𝑊
𝜕𝝈

= H𝝈 + 𝜺𝑝 , (9)

where H is the compliance tensor and it can be expressed in Voigt
Notation as

H =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

H11 H12 H12 0 0 0
H12 H22 H23 0 0 0
H12 H23 H22 0 0 0
0 0 0 H44 0 0
0 0 0 0 H55 0
0 0 0 0 0 H55

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(10)

with:

H11 = 1
(1 − 𝑑𝓁 )𝐸11

H12 = −
𝜈12
𝐸11

22 = 1
4(1 − 𝑑𝑡 )𝐸𝑡

+ 1
4(1 − 𝑑𝑠𝑡 )𝐺𝑡

23 = 1
4(1 − 𝑑𝑡 )𝐸𝑡

− 1
4(1 − 𝑑𝑠𝑡 )𝐺𝑡

44 = 1
(1 − 𝑑𝑠𝑡 )𝐺𝑡

H55 = 1
(1 − 𝑑𝑠𝓁 )𝐺12

.

(11)

2.1. Modelling plasticity

A scalar function is proposed as the yield function, which depends
on the stress invariants, and the equivalent plastic strain �̄�𝑝 since the
yield stresses are defined as a function of �̄�𝑝 . The yield function is
developed from the transverse loading function proposed by Quintanas-
Corominas et al. [20], because it is a convex function homogeneous
of degree one. In addition, it is a single function to define a closed
yield surface instead of using multiple equations as formulated in other
models (e.g. using one for compression and one for tension depending
3

on the hydrostatic pressure in the matrix [2]). Therefore, the yield
function reads

𝜙𝑝 (𝝈 , �̄�𝑝 ) ∶=

√

√

√

√

(

𝑌𝐶𝑃 + 𝑌𝑇𝑃
𝑌𝐶𝑃 𝑌𝑇𝑃

)2 𝜏2𝑡 + 𝜇𝑡𝑝𝑝2𝑡
1 + 𝜇𝑡𝑝

+
(𝜇𝑠𝓁𝑝
𝑆𝐿𝑃

𝜏𝓁

)2

+
𝑌𝐶𝑃 − 𝑌𝑇𝑃
𝑌𝐶𝑃 𝑌𝑇𝑃

𝑝𝑡 +
(1 − 𝜇𝑠𝓁𝑝)

𝑆𝐿𝑃
𝜏𝓁 − 1 ≤ 0,

(12)

where 𝑌𝑇𝑃 and 𝑌𝐶𝑃 are the transverse uniaxial tensile and compressive
yield stresses, respectively, and 𝑆𝐿𝑃 is the longitudinal shear yield
tress. 𝜇𝑠𝓁𝑝 and 𝜇𝑡𝑝 are the plastic envelope shape coefficients, whose
alibration is presented in Section 2.3. These parameters allow different
hapes of the yield surface to be defined, depending on the mechanical
esponse of the material to be analysed (see Fig. 2a and b replacing the
amage parameters by the corresponding plastic parameters, e.g. 𝑌𝑇 by
𝑇𝑃 ).

The yield function of Eq. (12) allows a control of the activation of
he yielding for uniaxial loads in the transverse direction in tension
nd in compression, as well as for longitudinal shear loading states by
eans of the corresponding yield stresses. Furthermore, the plasticity

an be activated under other transverse loading conditions controlled
y 𝜇𝑡𝑝 and 𝜇𝑠𝓁𝑝. For example, shear yielding in the longitudinal or

transverse direction is affected by the transverse hydrostatic pressure
as observed in [4,5]: the higher the transverse compressive hydrostatic
is, the higher the shear yielding is.

The evolution of the equivalent plastic strain rate is defined as

̇̄𝜺𝑝 ∶=
√

1
2
‖

‖

‖

�̇�𝑝‖‖
‖

, (13)

where �̇�𝑝 is the plastic strain rate. The evolution of the plastic strains
is defined using the gradient of the potential function 𝜑𝑝, see Eq. (21).
Hence, a non-associated flow rule is applied in the present model. That
allows the volumetric plastic strains and the plastic Poisson’s ratios to
be imposed. Therefore, the plastic strain rate is defined as

�̇�𝑝 ∶= 𝜆𝜕𝝈𝜑
𝑝, (14)

where 𝜆 is the plastic multiplier parameter [25]. The loading/unloading
conditions are applied using the following Kuhn–Tucker conditions to
calculate 𝜆:

𝜙𝑝 ≤ 0, 𝜆 ≥ 0. (15)

Therefore, under plastic loading 𝜙𝑝 = 0 and 𝜆 > 0, and for unloading
𝜙𝑝 < 0 and 𝜆 = 0. Hence:

𝜙𝑝𝜆 = 0. (16)

These condition can be summarised in the consistency condition as:

�̇�𝑝𝜆 = 0. (17)

The plastic multiplier parameter 𝜆 can be calculated in case of plastic
loading (�̇�𝑝 = 0 and 𝜆 > 0) imposing the following condition

�̇�𝑝 = 𝜕𝝈𝜙
𝑝 �̇� + 𝜕�̄�𝑝𝜙

𝑝 ̇̄𝜺𝑝 = 0. (18)

Inserting Eqs. (13) and (14) in the previous conditions

�̇�𝑝 = 𝜕𝝈𝜙
𝑝C𝑒(�̇� − 𝜆𝜕𝝈𝜑

𝑝) + 𝜕�̄�𝑝𝜙
𝑝𝜆

√

1
2
‖

‖

‖

𝜕𝝈𝜑
𝑝‖
‖

‖

= 0, (19)

the plastic multiplier parameter yields

𝜆 =
𝜕𝝈𝜙𝑝C𝑒�̇�

𝜕𝝈𝜙𝑝C𝑒𝜕𝝈𝜑𝑝 −
√

1
2 𝜕�̄�𝑝𝜙

𝑝 ‖
‖

‖

𝜕𝝈𝜑𝑝‖
‖

‖

. (20)

Finally, the plastic potential function is defined as

𝜑𝑝(𝝈 ) ∶=

√

√

√

√

√

(

𝑌𝐶𝑃 + 𝑌𝑇𝑃
𝑌𝑇𝑃 𝑌𝐶𝑃

)2 𝜏2𝑡 + �̂�𝑡𝑝𝑝2𝑡
1 + �̂�𝑡𝑝

+

(

�̂�𝑠𝓁𝑝
�̂�𝐿𝑃

𝜏𝓁

)2

+
𝑌𝐶𝑃 − 𝑌𝑇𝑃 𝑝𝑡 +

(1 − �̂�𝑠𝓁𝑝) 𝜏𝓁 − 1.

(21)
𝑌𝑇𝑃 𝑌𝐶𝑃 �̂�𝐿𝑃
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Fig. 2. Schematic representation of the failure envelope for the stress space: (a) �̃�22 − �̃�33 , (b) �̃�22 − �̃�12 , (c) �̃�11 − �̃�22 , and (d) �̃�11 − �̃�12 . Note that, (b) and (d) are symmetric
with respect to their 𝑋-axis. The experimental data in (c) from [23] is used to propose Eq. (40), and (d) from [24] for Eq. (42), see Section 2.3.
H
Eq. (21) has the same form as the yield function but each yield stress
and plastic envelope shape coefficients are replaced by the correspond-
ing plastic potential parameters. The plastic potential stresses 𝑌𝐶𝑃 , 𝑌𝑇𝑃
nd �̂�𝐿𝑃 and the plastic potential envelope shape coefficients �̂�𝑡𝑝 and
̂𝑠𝓁𝑝 are defined as constant parameters. They do not have a physical

eaning, they are used to control the plastic dilatancy or contractility
n the plastic zone (these parameters define the direction of the plastic
low). For this reason, only the ratios between them are relevant and
ot their absolute values. Note that, if the plastic potential stresses are
et equal to the yield stresses, the plasticity would be modelled using
n associated flow rule.

The plastic dilatancy or contractility is defined using three plastic
oisson’s ratios: 𝜈𝑝23𝑇 and 𝜈𝑝23𝐶 are the transverse tensile and com-

ressive Poisson’s ratios, respectively, and 𝜈𝑝122 ∶= −
𝜺𝑝22
𝜺𝑝12

. They can

be measured by three tests: pure transverse tensile test (𝜈𝑝23𝑇 ), pure
ransverse compressive test (𝜈𝑝23𝐶 ) and pure longitudinal shear test
𝜈𝑝122 ). It should be noted that, these tests are also used to adjust the
ield function. Hence, the total number of tests required to calibrate
he plasticity input parameters does not increase. The plastic potential
atios are defined as

𝑌𝐶𝑃

𝑌𝑇𝑃
=

𝜈𝑝23𝐶 + 1

𝜈𝑝23𝑇 + 1

�̂�𝐿𝑃

𝑌𝑇𝑃
=

2𝜈𝑝122 (𝜈
𝑝
23𝐶 + 1)

𝜈𝑝23𝑇 − 𝜈𝑝23𝐶

�̂�𝑡𝑝 =
1 − 𝜈𝑝23𝐶 𝜈

𝑝
23𝑇

(𝜈𝑝23𝐶 + 1)(𝜈𝑝23𝑇 + 1)

(22)
4

�̂�𝑠𝓁𝑝 ∈ 𝐑.
owever, if there is no volumetric plastic strains (𝜈𝑝23𝑇 = 𝜈𝑝23𝐶 = 1 and
𝜈𝑝122 = 0), the plastic potential relationships are simplified to

𝑌𝐶𝑃

𝑌𝑇𝑃
= 1

�̂�𝐿𝑃 ∈ 𝐑
�̂�𝑡𝑝 = 0

�̂�𝑠𝓁𝑝 ∈ 𝐑.

(23)

2.2. Modelling damage evolution

The evolution of the damage is based on the model developed
by Quintanas-Corominas et al. [20]. The model is based on the crack
band model of Bažant and Oh [26] to ensure the proper energy dis-
sipation when the crack propagates. The degradation of the elastic
properties is modelled by four softening laws. The evolution of the
damage variables is defined as a function of the corresponding elastic
domain threshold 𝑟𝑁=𝓁𝑇 ,𝓁𝐶,𝑡. 𝑑𝓁 (𝑟𝓁𝑇 , 𝑟𝓁𝐶 ) is associated to the first stress
invariant 𝜎𝓁 and model the longitudinal failure in tension (𝜎𝓁 > 0)
and in compression (𝜎𝓁 < 0); 𝑑𝑡 (𝑟𝑡 ) is related to the mode-I matrix
cracking associated to the second stress invariant 𝑝𝑡; 𝑑𝑠𝑡 (𝑟𝑡 ) describes
the mode-II matrix cracking associated to the third stress invariant 𝜏𝑡;
and 𝑑𝑠𝓁 (𝑟𝑡 , 𝑟𝓁𝑇 ) is linked to the longitudinal tensile and matrix damage
mechanisms associated to the stress invariant 𝜏𝓁 .

Three loading functions are employed to consider the previously
explained damage mechanisms: 𝜙𝓁𝑇 for the fibre breakage, 𝜙𝓁𝐶 for the
fibre kinking, and 𝜙𝑡 for the matrix cracking. They read

𝜙 ∶=
�̃�𝓁 − 2𝑣12�̃�𝑡

, (24)
𝓁𝑇 𝑋𝑇
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Fig. 3. Stress vs. opening crack curves of the cohesive law in the directions: (a)
ongitudinal and (b) transverse.

𝓁𝐶 ∶= 1
𝑋𝐶

(√

�̃� 2
𝓁 + 𝜂𝑞𝑡 �̃�

2
𝑡 + 𝜂𝑞𝑠𝓁 �̃�

2
𝓁 + 𝜂𝑡�̃�𝑡 + 𝜂𝑠𝓁 �̃�𝓁

)

(25)

and

𝜙𝑡 ∶=

√

√

√

√

(

𝑌𝐶 + 𝑌𝑇
𝑌𝑇 𝑌𝐶

)2 �̃� 2𝑡 + 𝜇𝑡�̃�2𝑡
1 + 𝜇𝑡

+
(

𝜇𝑠𝓁
𝑆𝐿

�̃�𝓁

)2

+
𝑌𝐶 − 𝑌𝑇
𝑌𝑇 𝑌𝐶

�̃�𝑡 +
(1 − 𝜇𝑠𝓁)

𝑆𝐿
�̃�𝓁 ,

(26)

here 𝑋𝑇 and 𝑋𝐶 are the longitudinal tensile and compressive str-
ngths, respectively; 𝑌𝑇 and 𝑌𝐶 are the transverse tensile and compres-
ive strengths, respectively; and 𝑆𝐿 is the longitudinal shear strength.
he effective stress invariants �̃�𝓁 , �̃�𝑡 , �̃�𝓁 and �̃�𝑡 are obtained from

the effective stress tensor �̃� using the elasticity tensor in the absence
of damage

(

C𝑒0 = H−1(𝑑𝑀 = 0)
)

. The damage envelope shape coef-
ficients: 𝜂𝑡 and 𝜂𝑞𝑡 are related to the transverse hydrostatic pressure
and the longitudinal compressive strength; 𝜂𝑠𝓁 and 𝜂𝑞𝑠𝓁 are associated
to the longitudinal compressive and longitudinal shear strengths; 𝜇𝑡 is
overned by the transverse shear and transverse biaxial strengths; and
𝑠𝓁 is linked to the transverse and longitudinal shear strengths, see
ig. 2. Section 2.3 describes how to adjust them.

The corresponding elastic domain threshold is calculated by inte-
rating its corresponding loading function with respect to time applying
he Kuhn–Tucker relations [22]. It can be explicitly integrated as

𝑁 = max
(

1, max
𝑠∈[0,𝑡]

(

𝜙𝑠
𝑁

)

)

, (27)

ince the loading functions are defined only as a function of the strain
ensor.

The expressions of the evolution of the damage variables as a
unction of the corresponding elastic domain threshold presented by
uintanas-Corominas et al. [20] are used, except for 𝑑𝑠𝑡 . The longitu-
inal damage variable 𝑑𝓁 is defined as

𝓁 ∶= 𝑑𝓁𝑇
⟨𝜎𝓁⟩
|𝜎𝓁|

+ 𝑑𝓁𝐶
⟨−𝜎𝓁⟩
|𝜎𝓁|

, (28)

here ⟨𝑥⟩ = (𝑥+ |𝑥|)∕2 is the McCauley operator. Therefore, if the first
tress invariant is positive (𝜎𝓁 > 0), then 𝑑𝓁 = 𝑑𝓁𝑇 , otherwise 𝑑𝓁 = 𝑑𝓁𝐶 .

This allows a different longitudinal damage evolution in tension than in
compression. The softening law in the longitudinal tensile direction 𝑑𝓁𝑇
is defined using a bilinear law, in the same way as in [27,28]. The first
segment is defined with a large drop stress due to the fibre breakage
followed by a large tail related to the fibre pull-out, see Fig. 3a.

The damage variable in the longitudinal compressive direction 𝑑𝓁𝐶
is defined using a bilinear cohesive law, in the same way as [27,28].
The first segment defines the kink-band onset using a large drop
followed by an horizontal asymptote related to kink-band broadening
and frictional contact.

It is assumed that the degradation of the matrix stiffness due to
5

mode-I matrix cracking is the same that the one generated by mode-II
matrix cracking when the crack opens (𝑝𝑡 > 0 → 𝑑𝑡 = 𝑑𝑠𝑡 ). However,
here is no degradation of the matrix stiffness in mode-I when the crack
loses (𝑝𝑡 < 0 → 𝑑𝑡 = 0). Therefore, the transverse damage variable
𝑡 is defined equal to the transverse shear damage variable 𝑑𝑠𝑡 when
he second invariant 𝑝𝑡 is positive, and equal to zero when the second
nvariant is negative,

𝑡 ∶= 𝑑𝑠𝑡
⟨𝑝𝑡⟩
|𝑝𝑡|

. (29)

The damage variable 𝑑𝑠𝑡 is defined assuming a linear cohesive law
from a pure transverse tensile test. The cohesive law is defined with a
slope of 𝑎𝑌𝑇 and an intercept of 𝑏𝑌𝑇 , see Fig. 3b. It is established as a
function of the elastic domain threshold 𝑟𝑡 in Eq. (26) as

𝑑𝑠𝑡 = −

√

√

√

√

√−
𝜅2𝑠𝑡
𝜅0𝑠𝑡

+
𝜅2
1𝑠𝑡

4𝜅2
0𝑠𝑡

−
𝜅1𝑠𝑡
2𝜅0𝑠𝑡

(30)

with:

𝜅0𝑠𝑡 =H
2
012

𝜅5𝑠𝑡
(

H022
−H023

)

+ 4𝑆2
𝑇 𝜅

2
4𝑠𝑡

𝜅1𝑠𝑡 =𝜅5𝑠𝑡𝜅6𝑠𝑡 − 4𝑆2
𝑇 𝜅4𝑠𝑡𝜅3𝑠𝑡

𝜅2𝑠𝑡 =
(

𝑆𝑇 𝜅3𝑠𝑡
)2

−
(

𝜇𝑡 + 1
)

(

𝑌𝐶𝑌𝑇 𝑏𝑌𝑇 𝜅6𝑠𝑡
)2

𝜅3𝑠𝑡 =2𝑌𝐶𝑌𝑇 𝜅6𝑠𝑡 𝑟𝑡 + 𝑏𝑌𝑇 𝜅7𝑠𝑡
(

𝑌𝐶 − 𝑌𝑇
)

𝜅4𝑠𝑡 =H
2
012

𝑏𝑌𝑇
(

H022
−H023

)

(

𝑌𝐶 − 𝑌𝑇
)

+ 𝑌𝐶𝑌𝑇 𝜅6𝑠𝑡 𝑟𝑡
(

H022
𝑎𝑌𝑇 𝑙

∗
𝑡 + 1

)

𝜅5𝑠𝑡 =𝜇𝑡
(

H023
−H022

)(

2H012
𝑌𝐶𝑌𝑇 𝑏𝑌𝑇

)2

𝜅6𝑠𝑡 =H011
(H2

022
−H2

023
) + 2H2

012
(H023

−H022
)

𝜅7𝑠𝑡 =2H
2
012

(

H022
−H023

)

+ (H022
+H023

)
(

H011
H023

−H011
H022

)

,

(31)

where 𝑙∗𝑡 is the transverse characteristic element length. The transverse
shear strength 𝑆𝑇 can be obtained from Eq. (37) for a given 𝜇𝑡. The
intercept of the cohesive law 𝑏𝑌𝑇 is equal to 𝑌𝑇 and its corresponding
slope reads

𝑎𝑌𝑇 = −
𝑌 2
𝑇

2𝑌𝑇
, (32)

where 𝑌𝑇 is the mode-I intralaminar fracture toughness in the trans-
verse tensile direction.

The longitudinal shear damage variable is defined as

𝑑𝑠𝓁 ∶= 1 − (1 − 𝑑𝑠𝓁∗ )(1 − 𝑑𝓁𝑇 ), (33)

where 𝑑𝑠𝓁∗ is the damage variable presented by Quintanas-Corominas
t al. [20] and it is related to the longitudinal shear stresses. 𝑑𝑠𝓁 allows
he introduction of the stiffness degradation in the longitudinal shear
irection due to longitudinal shear stresses 𝝈12 and 𝝈13 , but also due

to longitudinal tensile stress 𝝈11 .

2.3. Calibration of failure envelope

The calibration of the envelope shape coefficients of the plasticity
and damage model is described in this section for FRP composite mate-
rials. First, the identification of the damage envelope shape coefficients
is presented. Then, the same assumptions and approach can be used to
estimate the plastic envelope shape coefficients replacing the strengths
by the corresponding yield stresses.

The envelope shape coefficient 𝜇𝑡 controls the failure in the trans-
erse shear direction 𝑆𝑇 , but also in the biaxial compressive 𝑌𝐶𝐵
nd tensile 𝑌𝑇𝐵 directions, see Fig. 2a. It can be calculated using the
ollowing expressions:

𝑡(𝑆𝑇 ) =
(

𝑆𝑇 (𝑌𝐶 + 𝑌𝑇 )
𝑌𝐶𝑌𝑇

)2
− 1, (34)
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𝜇𝑡(𝑌𝐶𝐵) =

(

𝑌𝐶𝑌𝑇 − 𝑌𝐶𝐵(𝑌𝑇 − 𝑌𝐶 )
)2

𝑌 2
𝐶𝐵(𝑌𝐶 + 𝑌𝑇 )

2 −
(

𝑌𝐶𝑌𝑇 − 𝑌𝐶𝐵(𝑌𝑇 − 𝑌𝐶 )
)2

(35)

r

𝑡(𝑌𝑇𝐵) =

(

𝑌𝐶𝑌𝑇 − 𝑌𝑇𝐵(𝑌𝐶 − 𝑌𝑇 )
)2

𝑌 2
𝑇𝐵(𝑌𝐶 + 𝑌𝑇 )

2 −
(

𝑌𝐶𝑌𝑇 − 𝑌𝑇𝐵(𝑌𝐶 − 𝑌𝑇 )
)2

, (36)

where the expressions are obtained when 𝜙𝑡 = 0 and applying a pure
transverse shear stress state or the corresponding pure biaxial loading
state, respectively. Significant difficulties occur when testing composite
materials under transverse shear or biaxial loading [6]. Fenner and
Daniel [29] proposed a methodology for transverse shear loading using
a sandwich-beam under three-point bending test. Otherwise, 𝑆𝑇 can be
estimated from [30] as

𝑆𝑇 =
𝑌𝐶

2 tan(𝛼0)
, (37)

ssuming that the damage (or plasticity) occurs in the plane of max-
mum longitudinal shear stresses, where the value experimentally ob-
ained of the angle of this plane 𝛼0 is equal to 53◦, see [31].

The failure envelope for the 𝝈22 − 𝝈12 stress space is defined using
𝑠𝓁 , see Fig. 2b. It can be calibrated by imposing that the slope at
22 = 0 must be equal to the longitudinal matrix friction coefficient 𝜂𝓁 ,
s the Coulomb fracture line in the Mohr–Coulomb criterion. Therefore,
t reads

𝑠𝓁 =
2𝜂𝓁𝑌𝐶𝑌𝑇 + 𝑆𝐿(𝑌𝐶 − 𝑌𝑇 )

4𝜂𝓁𝑌𝐶𝑌𝑇
, (38)

𝓁 can be approximated from [31] as

𝓁 ≈ −
𝑆𝐿 cos(2𝛼0)
𝑌𝐶 cos(𝛼0)

. (39)

Alternatively, 𝜇𝑠𝓁 can be estimated from off-axis tests fitting the fail-
ure envelope (or yield surface) shape with the experimental data.
Moreover, from the yield surfaces reported by Daniel [17] and failure
envelopes from [17,30,32], 𝜇𝑠𝓁 and 𝜇𝑠𝓁𝑝 must be defined close to one.

The envelope shape coefficients 𝜂𝑡 and 𝜂𝑞𝑡 are the coefficients of
the linear and quadratic terms, respectively, related to the hydrostatic
transverse pressure in 𝜙𝓁𝐶 . Therefore, they define the failure envelope
for the �̃�11 − �̃�22 stress space, see Fig. 2c. The experiments carried out
y Soden et al. [24] suggest that these two parameters can be estimated
or carbon FRP composite materials as

𝜂𝑡 =
𝑋𝐶 (𝑌𝐶 − 𝑌𝑇 )

𝑌𝐶𝑌𝑇
𝑞
𝑡 =

(

𝑋𝐶 (𝑌𝐶 + 𝑌𝑇 )
𝑌𝐶𝑌𝑇

)2
.

(40)

oreover, others envelopes can be defined, such as the slope equals to
𝑇 ∕𝑋𝐶 , where

𝜂𝑡 =
2𝑋𝐶
𝑌𝑇

𝑞
𝑡 =0.

(41)

The linear and quadratic terms related to the longitudinal shear
stresses in 𝜙𝓁𝐶 are 𝜂𝑠𝓁 and 𝜂𝑞𝑠𝓁 , respectively. They define the failure
envelope for the �̃�11 − �̃�12 stress space, see Fig. 2d. They can be
tuned for carbon FRP composites from the experimental data reported
by Soden et al. [24] as

𝜂𝑠𝓁 =
𝑋𝐶
2𝑆𝐿

𝜂𝑞𝑠𝓁 =0,
(42)

hence, the slope is defined as 2𝑆𝐿∕𝑋𝐶 . Furthermore, others envelopes
can be defined: with the slope equals to 𝑆𝐿∕𝑋𝐶 , where

𝑠𝓁 =
𝑋𝐶
𝑆𝐿

𝑞
(43)
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𝑠𝓁 =0;
or with perfect parabolic curve, where

𝜂𝑠𝓁 =0

𝜂𝑞𝑠𝓁 =
(

𝑋𝐶
𝑆𝐿

)2
.

(44)

Alternatively, the failure envelopes (or yield surfaces) can be esti-
mated from the simulation of a representative cell (modelling polymer
and fibres) under multiple multi-axial loading conditions combined
with a data-driven approach [33,34]. After that, the envelope shape
coefficients can be adjusted.

3. Implementation

The constitutive model presented in Section 2 is solved at the
Gauss-point level using an explicit FE solver. The evolution of the
plasticity internal variables (𝜺𝑝 and �̄�𝑝 ) is discretised in time using the
backward Euler integration scheme and the operator split method: (i)
an initial elastic predictor step, and (ii) a posterior plastic corrector
step. However, the evolution of the internal damage variables (𝑟𝑁 ) is
carried out by integrating 𝑟𝑁 into time using Eq. (27), therefore, they
can be explicitly solved.

The algorithm of the material model time discretisation 𝑡
(𝑛+1)

is
resented in this section. The known data with respect to the previous
ncrement of the time 𝑡

(𝑛)
are the current total strain tensor at the end

of the increment 𝜺
(𝑛+1)

and the internal variables at the beginning of the
increment 𝜺𝑝

(𝑛)
, �̄�𝑝

(𝑛)
and 𝑟𝑁 (𝑛)

.
Firstly, the damage model is evaluated to determine if the dam-

age variables associated with the matrix cracking (𝑑𝑡 , 𝑑𝑠𝓁 and 𝑑𝑠𝑡 ) are
activated in the current time interval. If they are greater than zero,
plasticity does not develop. However, if the matrix is undamaged (𝑑𝑡 =
𝑑𝑠𝓁 = 𝑑𝑠𝑡 = 0), plasticity can evolve, see Fig. 1b. It is possible that
the initiation of the matrix damage and an increase of the plastic strain
tensor occur at the same time interval. In this case, the model assumes
that the strain increment is only due to damage instead of damage and
plasticity. This assumption produces a negligible error in the results,
because very small time increments are used in explicit simulations.

Secondly, if the matrix is undamaged, the model calculates the
increment of the plastic strains. For that, the elastic trial stress tensor
is obtained assuming that there is no increase in the plastic strain
tensor in the current time step

(

𝝈𝑡𝑟
(𝑛+1)

= 𝝈
(𝑛+1)

(𝛥𝜺𝑝
(𝑛+1)

= 0)
)

. Then, the
ield function is evaluated with 𝝈𝑡𝑟

(𝑛+1)
and �̄�𝑝

(𝑛)
. If the yield function is less

than zero (in this case, the bound is defined using a tolerance tol),
here are no increment of plastic strains in the current time interval.
owever, if the yield function is greater than tol, the plastic strains

increase in the current time interval. Therefore, the equivalent plastic
strain that meets the condition in Eq. (12) must be found.

Applying the backward Euler algorithm at 𝑡
(𝑛+1)

to be updated with
𝛾

(𝑛+1)
= 𝜆

(𝑛+1)
(𝑡

(𝑛+1)
− 𝑡

(𝑛)
), where 𝛾

(𝑛+1)
is the consistency parameter.

Therefore, the evolution of the plasticity equations read:

𝜺𝑝
(𝑛+1)

=𝜺𝑝
(𝑛)
+ 𝛾

(𝑛+1)
𝜕𝝈

(𝑛+1)
𝜑𝑝

𝝈
(𝑛+1)

=𝝈𝑡𝑟
(𝑛+1)

− 𝛾
(𝑛+1)

C𝑒𝜕𝝈
(𝑛+1)

𝜑𝑝

�̄�𝑝
(𝑛+1)

=�̄�𝑝
(𝑛)
+ 𝛾

(𝑛+1)

√

1
2
‖

‖

‖

‖

𝜕𝝈
(𝑛+1)

𝜑𝑝‖
‖

‖

‖

.

(45)

The yield function condition from Eq. (12) gives an algebraic con-
straint that has to be fulfilled at the end of the current time step
(𝜙𝑝

(𝑛+1)
(𝝈

(𝑛+1)
, �̄�𝑝

(𝑛+1)
) = 0). It is solved with Newton–Raphson method

for 𝛾
(𝑛+1)

. The residual equation is developed in a Taylor-series and
linearised as

Lin[𝑅(𝑛+1)] = 𝜙𝑝
(𝑛+1)

+
𝑑𝜙𝑝

(𝑛+1) 𝛥𝛾
(𝑛+1)

= 0. (46)

𝑑𝛾

(𝑛+1)
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Therefore, the linearisation of the residual is solved for the increment
of the consistency parameter

𝛥𝛾
(𝑛+1)

= −
𝜙𝑝

(𝑛+1)

𝑑𝜙𝑝
(𝑛+1)

𝑑𝛾
(𝑛+1)

. (47)

Finally, the evolution of the plasticity internal variables is evaluated
with the general convex cutting-plane algorithm presented by Simo and
Hughes [25]. Algorithm 1 in Appendix summarises the workflow to
implement the constitutive model using an explicit solver in a nonlinear
FE framework.

4. Numerical predictions

Four cases are used to demonstrate the capabilities of the material
model to predict not only the plastic deformation of composite materi-
als, but also the onset and propagation of damage. Off-axis compressive
and tensile tests with different ply orientations and high plastic de-
pendency are used to demonstrate the ability of the model to capture
the plastic response in Section 4.1. In addition, they are selected to
demonstrate the capabilities of the model to predict the damage onset
as well as the fracture planes when the failure mechanisms are matrix
dominated. Open-hole tests under compressive and tensile loadings are
used to present the potential of the model to predict the failure strength
when the failure mechanisms are fibre dominated [35], see Section 4.2.

The experimental data are compared to the results of the corre-
sponding FE models using the Abaqus/Explicit solver [36]. 3D eight-
node C3D8R solid elements with reduced integration are used. The
in-plane mesh element size is defined less or equal to 0.24 mm around
the areas where damage is expected to occur to prevent snap-back
of the constitutive softening laws for each failure mode [27]. Three
elements through the thickness of each ply are used. In addition, elastic
elements are defined in the regions where the damage is not expected to
occur to reduce the computational time in the open-hole specimens, see
Fig. 4b. Vertical displacement is applied on the top face at low velocity
to avoid dynamic effects during the simulation.

In both loading cases, the laminates are manufactured using a
carbon FRP composite material, IM7/8552 unidirectional prepreg sys-
tem with a nominal thickness of 0.131 mm [35]. Table 1 summarises
the model input parameters. The plastic envelope shape coefficients
are fitted from the yield surface developed by Vogler et al. [37]. In
addition, the plastic yield vs. equivalent plastic strain relationships are
obtained from [37].

The transverse Poisson’s ratio 𝜈23 is assumed considering the value
from [38], where the same polymer with different carbon fibre was
used. The effect of 𝜈23 on the numerical results is analysed. Different
virtual tests are carried out with 𝜈23 = {0.3, 0.35, 0.40, 0.45}: off-axis in
compression with a fibre orientation of 30◦ and another at 75◦ (see
below section), and open-hole in compression with a hole diameter
equal to 2 mm and in tensile with a diameter of 8 mm (see Section 4.2).
No significant differences are found neither in the failure strength (the
higher coefficient of variation from the numerical results is less than
0.4%) nor in the strains at the failure strength (the higher coefficient
of variation is less than 2.5%) and in the stress–strain curves.

4.1. Off-axis tests

The off-axis compressive tests carried out by Koerber et al. [1]
with the fibre angle orientations 𝜃 = 15◦, 30◦, 45◦, 60◦, 75◦ and 90◦ are
simulated. In the numerical model, only the vertical displacements are
fixed at the ends of the specimens. Additional boundary conditions
are defined to avoid rigid body motions, see Fig. 4a. The in-plane
dimensions of the specimens are 10 mm × 20 mm with 32 plies.

The stress vs. axial strain curves from the numerical simulations are
compared with the experimental data in Fig. 5. The predicted failure
strength of the specimens is in very good agreement with the test
data at 𝜃 = 15◦, 30◦, 75◦ and 90◦. However, failure is underestimated

◦ ◦
7

at 𝜃 = 45 and 60 . An explanation is that the experimental data
Fig. 4. Schematic representation of the applied boundary conditions and the meshes
used in the: (a) off-axis simulations, and (b) open-hole simulations. 𝜃 is the fibre angle
orientation.

Table 1
Model input parameters for an IM7/8552 unidirectional prepreg system.

Symbol Value Unit Source

Elastic

𝐸11 171 420.00 MPa [35]
𝐸22 9 080.00 MPa [35]
𝐺12 5 290.00 MPa [35]
𝜈12 0.32 – [35]
𝜈23 0.45 – Assumed

Plastic

𝑌𝐶𝑃 (�̄�𝑝 ) Curve [37]
𝑌𝑇𝑃 (�̄�𝑝 ) Curve [37]
𝑆𝐿𝑃 (�̄�𝑝 ) Curve [37]
𝜇𝑡𝑝 0.47 – Adjusted in Section 4
𝜇𝑠𝓁𝑝 1.00 – Adjusted in Section 4
𝜈𝑝23𝑇 1.00 – [37]
𝜈𝑝23𝐶 1.00 – [37]
𝜈𝑝122 0.00 – [37]

Damage

𝑋𝐶 1 017.50 MPa [39]
𝑓𝑋𝐶

𝑋𝐶 203.50 MPa [20]
𝑋𝐶

106.30 N/mm [35]
𝑓𝑋𝐶

𝑋𝐶
26.58 N/mm [20]

𝑋𝑇 2 323.50 MPa [39]
𝑓𝑋𝑇

𝑋𝑇 464.70 MPa [20]
𝑋𝑇

97.80 N/mm [40]
𝑓𝑋𝑇

𝑋𝑇
48.90 N/mm [20]

𝑌𝐶 253.70 MPa [20]
𝑌𝑇 62.30 MPa [35]
𝑌𝑇 0.28 N/mm [35]
𝑆𝐿 92.30 MPa [35]
𝑆𝐿

0.80 N/mm [35]
𝜇𝑡 0.90 – [20]
𝜇𝑠𝓁 1.00 – [20]
𝜂𝑠𝓁 9.50 – [20]
𝜂𝑞𝑠𝓁 0.00 – [20]
𝜂𝑡 12.00 – [20]
𝜂𝑞𝑡 350.00 – [20]

are out of the damage envelope, see Fig. 6. To obtain more accurate

predictions, 𝜙𝑡 could be modified to fit the experimental data. The

value defined here for 𝜇 is in its upper bound (𝜇 =1). Moreover,
𝑠𝓁 𝑠𝓁
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t
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Fig. 5. Numerical–experimental comparison of the remote stress vs. axial strain curves of the off-axis compressive tests performed by Koerber et al. [1].
three material properties are required to define the failure envelope:
𝑌𝐶 , 𝑌𝑇 and 𝑆𝐿, where the latter can be experimentally estimated using
different methods. Camanho et al. [35] estimated 𝑆𝐿 using the ASTM D
3518/3518M-94 test standard [41]. Therefore, 𝑆𝐿 was estimated from
n in-plane shear test using a [±45◦] laminate when 5% of the axial
train is reached (it is not physically measured). However, Koerber
t al. [1] estimated 𝑆𝐿 by decomposing the failure strength into the
ransverse normal stress and shear stress in the material direction
rom off-axis compressive tests at 𝜃 = 15◦ and 30◦, see [42]. Conse-

quently, there are discrepancies when setting 𝑆𝐿, hence, the value can
be adjusted within a range (𝑆𝐿 = [92.3, 99.9] MPa) to improve the
failure strength predictions. In this study, 𝑆𝐿 is defined from Camanho
et al. [35], to be consistent with the definition of the input damage
parameters of the polymer coming from the same work. In addition, it
should be mentioned that a small discrepancies in the failure strength
8

produces a large disagreement in the ultimate axial strain.
A good accuracy of the predicted plastic deformation with respect
to the experimental data is obtained, except at 𝜃 = 60◦ where the hard-
ening response is slightly underpredicted. This numerical-experimental
discrepancy at 𝜃 = 60◦ is because the yield surface does not properly
fit the experimental data at that orientation, similar to the damage
envelope at 𝜃 = 45◦ and 60◦ in Fig. 6.

The predicted fracture planes are compared with those experi-
mentally obtained in Fig. 7, where the fully damaged elements are
represented with a dark transparent colour. The predicted fracture
planes are in good agreement with the experimental data reported,
except for 𝜃 = 15◦. For this angle, the damage growth is consistent
with the experimental data until the peak load, then the fracture angle
suddenly changes. The prediction of the fracture planes for 𝜃 = 15◦ can
be improved by orienting the mesh with the fibre angle.

The comparison between the numerical and experimental data from
off-axis tensile tests performed by Koerber et al. [2] is carried out. The

◦
in-plane dimensions of the specimens for 𝜃 = 15 are 8 mm × 72 mm
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Fig. 6. Failure envelope for the 𝝈22 − 𝝈12 stress space with 𝑆𝐿 from Camanho et al.
[35] and with 𝑆𝐿 from Koerber et al. [1], and compressive and tensile experimental
data from Koerber et al. [1,2], respectively.

and for 𝜃 = 30◦, 45◦ and 90◦ are 8 mm × 62 mm. The specimen are
made with 12 plies. The same boundary conditions as the previous sim-
ulations are used applying tension instead of compression, see Fig. 4a.
Good correlation between the numerical and experimental data for the
plastic deformation is obtained, see Fig. 8. However, the numerical
model underpredicted the failure strength for 𝜃 = 15◦, 30◦ and 45◦,
since the experimental data are outside the failure envelope, see Fig. 6.
9

4.2. Open-hole tests

The experimental data from the open-hole compressive and tensile
tests carried out by Bessa [43] and by Camanho et al. [35], respectively,
are used to further evaluate the accuracy of the proposed constitutive
model. The hole diameters used in the tests were: 2 mm, 3 mm, 4 mm
and 5 mm in compression, and 2 mm, 4 mm, 6 mm and 8 mm in ten-
sion. The in-plane dimensions were defined using a width-to-diameter
ratio equals to 6 and the laminate thickness with a stacking sequence
of [90/0/±45]3S. The ends of the virtual specimens are clamped to
reproduce the boundary conditions of the tests, see Fig. 4b.

The predicted remote failure strengths are compared with the ex-
perimental data in Fig. 9. The numerical results for the tensile tests are
within the experimentally measured dispersion, except for the test with
a hole diameter equals to 2 mm where a relative error of 2.8% is ob-
tained. The numerical results of the compressive simulations with small
hole diameters (2 mm and 3 mm) are within the experimental data
scatter, but for higher hole diameters (4 mm and 5 mm) overpredictions
are obtained (the highest relative error is 1.9%).

The influence of the plasticity on the numerical results of the open-
hole compressive tests with hole diameters equal to 2 mm and 3 mm is
analysed, since the rest of the configurations have a large dependence
on the longitudinal direction where the plasticity is not considered,
see the experimental data reported by Camanho et al. [44]. Similar
numerical values of the failure strength are obtained when plasticity is
not considered (difference less than 5%). However, the ultimate strain
presents large discrepancies (difference within 11% and 13%). The
smallest ultimate strains are obtained when plasticity is not considered.
Fig. 7. Numerical-experimental comparison of the fracture planes obtained from the off-axis compressive tests.
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Fig. 8. Numerical-experimental comparison of the remote stress vs. axial strain curves of the off-axis tensile tests performed by Koerber et al. [2].
Fig. 9. Numerical-experimental comparison of the failure strength of the open-hole
compressive and tensile tests measured by Bessa [43] and by Camanho et al. [35],
respectively. The error bars denote the standard deviation of the experimental data
and numbers are the relative error between the numerical result and experimental
data.

5. Conclusions

A new 3D constitutive model to predict the plastic deformation and
the progressive failure of unidirectional laminated composite materials
was developed and implemented. A new yield function and a new
plastic potential function were proposed in conjunction of existing
loading functions. The shape of the yield surface can be modified by
10
setting the plastic envelope shape coefficients. The new non-associated
flow rule used in the plasticity modelling enables the plastic Poisson’s
ratios and the volumetric plastic strains to be imposed. In addition,
the failure criteria can be modified by setting the damage envelope
shape coefficients. The main novelty of this work is that using a
single constitutive model can be described the plastic deformation and
fracture of a large range of materials.

The constitutive model was implemented in a commercial finite
element code. Guidelines were provided to calibrate the numerical
parameters of the model. The remaining input model parameters can
be experimentally obtained from standard tests. The capabilities of
the formulation proposed were demonstrated with four tests: off-axis
compressive and tensile tests, and open-hole compressive and tensile
tests. The comparison between the numerical and experimental data
showed a satisfactory agreement of the plastic deformation and the
failure strength. In addition, the model properly predicted the fracture
plane from off-axis compressive tests.

The material model can be used to simulate the mechanical response
of thermoset-based composite materials under quasi-static loading con-
ditions, as well as for thermoplastic-based composites at which the
plastic behaviour could be more significant. The present constitutive
model can also be applied for the prediction of cases where the out-
of-plane stress state governs the mechanical response of the structure,
such as filled hole specimens with a preloaded bolt, interlaminar shear
strength test, etc. These capabilities will be demonstrated as future
work. The model will be extended to account for the viscous effects
and capture the strain rate dependencies. This is particularly important
for thermoplastic-based composites materials that show a strong depen-
dence on the strain rates. This can be done in a straightforward way
based on the generalised Maxwell model for the visco-elastic effects

and the Perzyna overstress function for the visco-plastic effects.
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Appendix. Algorithm for explicit finite element solver

This appendix presents the algorithm of the present constitutive
model used within an explicit finite element solver at Gauss-point level
in Algorithm 1.
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