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Abstract: During the last few years, supervised deep convolutional neural networks have become
the state-of-the-art for image recognition tasks. Nevertheless, their performance is severely linked
to the amount and quality of the training data. Acquiring and labeling data is a major challenge
that limits their expansion to new applications, especially with limited data. Recognition of Lego
bricks is a clear example of a real-world deep learning application that has been limited by the
difficulties associated with data gathering and training. In this work, photo-realistic image synthesis
and few-shot fine-tuning are proposed to overcome limited data in the context of Lego bricks
recognition. Using synthetic images and a limited set of 20 real-world images from a controlled
environment, the proposed system is evaluated on controlled and uncontrolled real-world testing
datasets. Results show the good performance of the synthetically generated data and how limited
data from a controlled domain can be successfully used for the few-shot fine-tuning of the synthetic
training without a perceptible narrowing of its domain. Obtained results reach an AP50 value of
91.33% for uncontrolled scenarios and 98.7% for controlled ones.

Keywords: photo-realistic rendering; image synthesis; limited data; object recognition; deep learning

1. Introduction

The latest advances in object detection show the potential of machine learning, and
particularly of Convolutional Neural Networks (CNN), to expand automation efficiently
solving a wider range of repetitive, tedious or dangerous tasks. The most successful
approaches, based on supervised deep learning, have been used to solve ever-increasing
challenging automation problems, especially with an increasing number of classes and
wider scene domains [1–3]. Nevertheless, the efficacy of these techniques is still mostly
bounded to the quantity and quality of the training data [4].

For real-world applications, data gathering and labeling commonly involve a challeng-
ing process and a tremendous effort that complicates the usage of deep learning techniques
or limits their performance for most systems. In order to increase feasibility and reduce
development time, some authors have proposed automatized data acquisition and labeling
frameworks or the use of data from already available sources [5,6]. Nevertheless, these
solutions are very task-specific and subject to strong environmental constraints that highly
limit their real-world applicability. Therefore, at the end, most applications still require
tremendously laborious and non-generalist labeling processes.

Manually searching and identifying Lego®-like bricks for classification represents a
simple but monotonous and time-consuming process for a person. The large number of
existing different bricks, the high similarity between them, their relatively small size and
plain color patterns further adds to the tediousness of the job [7]. As such, the automation
of the problem can be a clear benefit for commercial applications. Some examples of
commercial applications are the identification of missing or extra bricks, verifying the
completeness of sets, construction based on recommendations and automatic inventory
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for reselling. While manual image data acquisition and labeling of bricks is a solution to
consider, especially for small subsets of data, it can easily become an unfeasible task that
clearly does not scale well. The enormous amount of existing variety of bricks and the
required effort for obtaining wide-domain data acquisition and annotation incur a rather
huge amount of expensive manual work. Although the problem could be simplified for
highly controlled environments, i.e., fixed background and single-brick classification, it
would limit its scalability and applicability for high production environments and would
still require a significant amount of work. In this regard, few related works have been
proposed for Lego bricks recognition.

An existing commercial solution, Instabrick [8], proposed a hardware-based solution
for keeping inventories and identifying single Lego pieces. The cloud-based system is
based on a neural network trained with images acquired through the years among all the
system users on a progressive training scheme.

Another existing project, named RebrickNet [9], proposed a multi-piece recognition
network also progressively trained by manually taken images and videos of single Lego
pieces with off-the-shelf cameras. The training data are gathered under a set of strong
capturing constraints, e.g., fixed angle, fixed background, with the help of their online
community. Although the project already collected a few images for each Lego part over
several years, these were shown not to be sufficient, and they are now requesting 10-second
videos of individual pieces to train the system.

In a different direction, the Brickit app [10] seems to show a much more flexible set-
up, where the focus is not on the exhaustive recognition of all appearing bricks but on
reliably identifying a subset of the bricks that can compose different complete models.
Unfortunately, to the best of the authors’ knowledge, details of the employed training
system have not been released by the company.

It can be noticed that in addition to the existing amount of Lego pieces, the continuous
expansion of the product line, with new bricks released periodically [7], further increases
the necessity of a flexible and scalable solution to the problem.

Based on these requirements, an ideal solution should adhere to the following:

• Not require manually annotated data or, alternatively, a very limited amount.
• Be scalable, flexible and automatic in order to be extended to all Lego bricks and sets,

and even other items.
• Work on a wide domain of scenes, with different backgrounds and illuminations.

Synthetic data, obtained by rendering a computer simulation of real-world scenes, are
a highly efficient and flexible way of obtaining training data, see Figure 1.

Figure 1. Synthetic image generated by the proposed rendering.

Recent advances in GPU hardware and 3D rendering algorithms provide a powerful
setup for photo-realistic image synthesis. Although computer simulation is nowhere
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near capturing real-world fine details, it can effectively generate synthetic images with
convincing scene details and light patterns. These so-called photo-realistic images have
a high level of detail on light, physics and textures and can provide a strong base of
perfectly annotated training data. Therefore, with high flexibility and scalability, synthetic
data can be a tremendous cost-efficient solution to both acquisition and precise labeling,
generating large training datasets at near no cost. In addition, it can also help to generate
real-world unobserved outliers and pretrain complex systems such as semi-automatic
labeling processes.

In this paper, an image synthesis solution is proposed for recognizing Lego-like bricks
in a limited data scenario for a real-world application. Based on a Mask Regions with
CNN (Mask R-CNN) deep learning model, a 3D photo-realistic rendering environment is
proposed to substitute (and boost) real data. Initially, the training value of a limited set
of manually annotated real data is evaluated for both random weight initialization and
a transfer learning scheme using the COCO dataset [5]. These results are later compared
with the results obtained from the proposed fully synthetic photo-realistic training. Finally,
the real data are used for the few-shot fine-tuning of the synthetic training to help to
compensate the synthetic-to-real gap. Therefore, we proposed the following steps:

• Synthetic photo-realistic data generation using the 3D CAD models of the bricks.
• Train a Mask R-CNN, pretrained with COCO, using the synthetic data.
• If real data are available, use few-shots fine-tuning on the synthetically trained network.

It is important to notice that the recognition of Lego bricks has several good conditions
for this study. First, the Lego bricks are probably the most complete extensive collection
of 3D CAD modeled real-world objects publicly available. Second, the recognition of lego
bricks is challenging as there exist different objects sharing very similar features. Third, the
problem is accessible by the broader public at a low budget. Fourth, the scalability of the
solution is a key point of this problem.

Finally, the contributions of the presented solution can be summarized by the follow-
ing points:

• Propose and evaluate a photo-realistic image synthesis approach to solve the short-
comings found on real-world applications with limited data.

• Present a leveraging set of state-of-the-art techniques to provide a cost and labor-efficient
solution to the challenges of manual annotation while reaching top performance.

• Show how few-shots fine-tuning can help to fill the synthetic-to-reality gap without
decreasing the working domain on real-world applications.

• Present a novel, scalable and automatic deep learning solution to Lego bricks detection
and classification.

• Create and publicly release a dataset with semantic segmentation labels for real images
of a Lego product in a controlled and uncontrolled environment.

The rest of the paper is organized as follows. Section 2 describes the network and
learning techniques utilized. Section 3 describes the generation of synthetic data with
annotations. Section 4 describes the different datasets used in learning, validation and
testing. Section 5 describes the results obtained from the different tests and discusses them.
Finally, in Section 6, conclusions are presented.

2. Recognition Method

Supervised deep learning solutions based on CNN were first applied solely to the
classification problem [11]. Based on these classification networks, Girshick et al. [12]
presented Regions with CNN (R-CNN) features, extending the concept to detection by
employing a recognition using regions paradigm. The detection is achieved by individually
classifying candidate regions given by a category-independent region proposal method,
i.e., selective search. In detail, the solution used a pretrained CNN to extract features of
the fixed-size affine wrapped candidate regions, which were classified using category-
specific linear SVMs. The method was later improved by Girshick [13], in a variant named
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Fast R-CNN, for which a single feature image is generated from the source image and
fixed-size feature vectors are obtained by max pooling each region candidate. Then, each
feature-vector is fed into a sequence of fully connected layers that output both a soft-max
probability estimate and a refined bounding-box. Commonly, the feature extraction network
is known as the backbone, and the output network is known as the head. Ren et al. [14]
further improved the method, named Faster R-CNN, by replacing the classical greedy
region proposal methods with a new Regional Proposal Network (RPN) that outputs region
proposals directly from the feature image. Finally, He et al. [15] proposed a Mask R-CNN
variant, extending the Faster R-CNN network head to output a binary mask for each region;
see Figure 2.

Figure 2. Architecture of the Mask R-CNN framework.

In this paper, a Mask R-CNN network is used, consisting of a ResNet-50 [16] backbone
with Feature Pyramid Network (FPN) alongside a RPN head. A batch-size of 2 and
a Stochastic Gradient Descent (SGD) optimizer [17] with a 10−3 learning rate and 0.9
momentum are used.

3. Synthetic Data Generation

Synthetic data are generated with Blender [18], an open-source 3D modeling and
rendering packages, through BlenderProc [19]. BlenderProc is a modular procedural
pipeline that runs within the Blender’s environment, providing a set of tools for the
semi-automatic procedural generation of scenes. The provided modules include tools for
data loading, camera definition, scene characterization, illumination, physics-based object
placement, rendering and data labeling. The modular nature of the pipeline allows the
development of additional tool-specific functionalities. Once a scene is constructed, photo-
realistic rendering is achieved using Blender’s physically-based path tracer for production
rendering, named cycles.

In this work, a standard scene was constructed as a square room with a ceiling plane
acting as a light emission shader. Different random scenes were generated by randomly
changing the camera positions, bricks placement, background and light position. In detail,
bricks were uniformly sampled, for each scene, on a 3D region above the floor plane with
different initial poses and physically located on the floor by the simulation of gravity.
As floor textures, Physically Based Rendering (PBR) textures were used, representing a
wide range of backgrounds, including textures found in nature, house-hold and industrial
environments. A point light was also randomly set to different positions, levels of intensity
and colors. Finally, each scene was rendered from 20 different random camera locations
following a spherical shell distribution around the center of the room. This process is
repeated until enough synthetic data have been generated (Figure 3). Figure 1 shows an
example of a synthetic rendering.
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Figure 3. Synthetic data generation flowchart.

Finally, for labeling, an additional flat single-color per object instance rendering is per-
formed to generate a segmentation map. This segmentation map is in turn post-processed
to extract an object annotation for each color, following the COCO dataset format [5], which
is supported by most deep learning frameworks.

4. Datasets

For this work, two datasets of Lego pieces are used: a synthetic dataset and a real
dataset. The synthetic dataset, generated by the method described in Section 3, is only
used for training. The real dataset, created manually with camera images, includes two
different sets of data, named controlled and uncontrolled, and is split into training, validation
and testing. The testing dataset has been made publicly available (www.tramacsoft.com/
brickognize, accessed on 18 December 2022). Both datasets consist of annotated RGB
images with a variable amount of 76 distinct Lego bricks (Table 1) located on top of a planar
surface (all the used data were captured and annotated by the authors).

The controlled training data (20 images) and controlled validation data (5 images)
would be the only required datasets to be manually annotated in the case of a real-world
application. This paper, however, also includes the uncontrolled data, to test the approach
against a much broader domain than the provided training images, and the controlled test
data, to compare the broad application of the model to a more concrete case that could be
applicable to industry.

Table 1. Set of 76 different bricks used in this work (bricks and colors are identified by their Lego
identification).

Brick Color Brick Color Brick Color Brick Color Brick Color

2780 0 3707 0 44809 4 32525 71 63869 71
2815 0 3708 0 59443 4 32526 71 64178 71
32013 0 3737 0 32123b 14 3649 71 64179 71
32014 0 41678 0 32523 14 3673 71 6536 71
32034 0 45590 0 32009 15 3713 71 87082 71
32072 0 60483 0 32278 15 4019 71 99773 71
32184 0 60484 0 32348 15 40490 71 10928 72
32269 0 6629 0 32526 15 41239 71 3648b 72
32270 0 32523 1 32556 19 44294 71 4185 72
32291 0 43093 1 3749 19 4519 71 42003 72
32449 0 6558 1 6589 19 4716 71 55013 72
32498 0 32523 2 6587 28 48989 71 87083 72
32523 0 32054 4 32073 71 55615 71

33299a 0 32062 4 32271 71 57585 71
3705 0 32140 4 32316 71 60485 71
3706 0 32523 4 32524 71 62462 71

4.1. Training Data

Two different datasets are provided for training.

4.1.1. Real

The real dataset is an easy-to-annotate 20 real-world images dataset with controlled
lighting and camera angles, designed for fast acquisition and labeling. Images were taken

www.tramacsoft.com/brickognize
www.tramacsoft.com/brickognize
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perpendicularly on a fixed white background. The dataset was acquired with a standard
cellphone camera and manually annotated (Figure 4). A non-occlusion criterion was forced
in order to simplify the hand-made labeling process.

Figure 4. Real dataset with real-world images taken perpendicularly, with controlled light and fixed
white background.

4.1.2. Synthetic

The synthetic dataset was generated with the synthetic data generation process de-
scribed in Section 3 using the 3D CAD models of the bricks (Figure 5). The training dataset
includes 1K different scenes with 20 images per scene, summing up to more than 20,000
rendered images. All the images were rendered with a size of 512 × 512. Overall, the
dataset has more than 1.1 million annotated items.

Figure 5. Synthetic dataset, showing synthetically generated images with different backgrounds and
camera and light positions.

4.2. Validation Data

A five-images dataset is provided for validation, taken in the same conditions as the
real training dataset.

4.3. Testing Data

Two different datasets are provided for testing.
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4.3.1. Uncontrolled

This set is focused on a real-world broad testing scenario, where training is done on
a single domain but usage is not constrained to other domains. It consists of 100 images
with 6700 annotations collected with 5 different randomly chosen indoor and outdoor
household scenes (Figure 6), with different camera positions and illuminations, acquired
with a conventional smartphone camera and manually annotated.

Figure 6. Uncontrolled dataset with real images and different backgrounds with different camera
positions and illuminations.

4.3.2. Controlled

This set is focused on real-world industrial application, where training and testing are
done on a single domain. It consists of 160 images acquired with the same setup as the
controlled training data.

5. Experiments and Results

In this section, several experiments are performed to study the advantages of using
synthetic data generation and also few-shot fine-tuning with real data to overcome the
limited data problem (Figure 7). First, in {1}, the available limited data are trained with a
random weights initialization. Then, in {2}, the network is initialized with the well-known
COCO dataset [5]. Both experiments include the evaluation of different numbers of training
images: 1, 5, 10, 15 and 20. These two experiments establish the base of what is achievable
using only limited real data.

Initial weights Train Test

{1} Random

{2}

{3} Synthetic

{4}

{5} Controlled

COCO

Real
1,5,10,15,20

Synthetic
+ Real

Fine-tuning
1,5,10,15,20

Uncontrolled

Figure 7. Schematic of differences between test results.

Then, the proposed synthetic training data generation is used on {3} showing a huge
performance increase. Finally, few-shot fine-tuning is used on top of the synthetic training,
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testing the results on two different domains for a final product. In {4}, the network is
tested against a broader domain than the real labeled data used for training, showing the
results of a generalist application fine-tuned with data from a controlled domain. In {5}, the
tests are conducted against the same controlled domain as the training data, showing the
results of a dedicated controlled application, similar to what could be applied in industrial
environments. Those two last experiments also evaluate the effects of the number of real
training images used for fine-tuning.

All networks are trained for 20 epochs, and a validation-based early stopping is
used. For validation, the controlled validation data are used with the segm-AP50 metric
(see Section 5.1.1) for all trainings. When using few-shot fine-tuning, the network is first
trained on the synthetic dataset and then on the controlled training data.

5.1. Evaluation Metrics

The trained networks are evaluated using two different metrics: a more standard
recognition metric and an application-oriented metric.

5.1.1. Segm-Ap50

Segm-AP50 is a well-known metric used to evaluate the performance of an object
detector. It is widely used in PASCAL-VOC [6] and COCO [5] challenges. The metric
computes the area under the precision-recall curve, counting detections as true positives
when the Intersection over Union (IoU) is larger than 50%. The results are averaged over
all classes to provide the final value of the metric.

5.1.2. Application-Oriented Metrics

This metric is defined by the authors of this paper to account for the expected result
of a brick-detection application, which produces a brick classification probability for each
image region. To compute this metric, the first step is to apply a non-maximal suppression
of the detections produced by the network. For each pair of detections that overlap each
other by more than 10% of the area of the smallest one, only the one with the highest
detection score is kept. After the non-maximal suppression, each detection is matched
against the annotated ground truth (Figure 8). For the comparison with the ground truth,
the detection with the largest overlap area (minimum of 10%) is associated with it. If the
predicted class is the same as the ground truth class, then the brick is correctly classified. If
the class is different, the prediction is considered misclassified. If no overlap is found for
a ground truth annotation, it is considered as not detected. The score is computed as the
total number of ground truth annotations minus both the detection and classification errors
divided by the total number of ground truth annotations (Figure 8 for a detection example).

Figure 8. (left) Ground truth annotations for an image. (center) Detections from the trained network.
(right) Correctly detected and classified bricks in blue (76 bricks), not detected bricks in red (2 bricks,
2.2%) and misclassified in green (12 bricks, 13.3%). The obtained application-oriented metric score
is 84.5%.

5.2. Results
5.2.1. Standard Training with Limited Data

Initially, the Mask R-CNN network is trained using the limited controlled training
data and tested against the uncontrolled testing data. This evaluation shows the baseline
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performance of a standard method for extreme limited data cases on highly uncontrolled
real-world scenarios. The training is performed using both initial random weights {1} and
transfer learning with pretrained weights {2} from the COCO dataset [5].

Looking at the segm-AP50 metric results (Table 2), it is clear that both networks fail to
provide any useful result with the limited training data, even when using transfer learning.
Therefore, they do not show any application-oriented metric value.

Table 2. Segm-AP50 results, comparing {1} and {2}.

Training
Images 1 5 10 15 20

{1} Real 0.0% 0.0% 0.0% 0.0% 0.0%
{2} COCO+Real 0.0% 0.40% 0.64% 1.45% 4.25%

5.2.2. Training Using Synthetic Data

As seen before, limited training data have almost no value on a standard supervised
training scheme. Here, these real-data training results are compared against a Mask R-CNN
network solely trained on the synthetic training data {3}. Both networks are again tested on
the uncontrolled dataset with real-world scenarios.

The obtained results clearly show the tremendous value of the proposed synthetic
data generation (Table 3), reaching a segm-AP50 value of 83.3%, improving significantly
over the results obtained with standard training with the limited data, whose results were
4.25% for the best case with 20 images.

Table 3. Segm-AP50 results comparing {2} and {3}.

Segm-AP50

{2} COCO+20-Real 4.25%
{3} Synthetic 83.3%

Looking at the application-oriented metric results (Table 4), the much higher value
of the synthetic solution is again validated with a 82.1% score, against the much lower
22.58% for the real training data. In depth, the not detected and misclassified results show
the incapacity of the COCO+20-Real network to learn enough information to detect most
pieces and also classify them properly. As suspected, for cases with limitation in training
data, a synthetic solution can provide an alternative solution at virtually no cost.

Table 4. Application-oriented metric results, comparing {2} and {3}.

Not Detected Misclassified Score

{2} COCO+20-Real 31.76% 45.66% 22.58%
{3} Synthetic 4.3% 13.6% 82.1%

5.2.3. Few-Shot Fine-Tuning of Synthetic Training

In order to improve the results of the synthetic training, a few-shot fine-tuning is
proposed {4}. The main idea is to use the available limited real data to help fill the synthetic-
to-real domain gap, even though the training data were acquired on a different domain,
i.e., a partially controlled environment.

The obtained results show that for the larger number of shots used for fine-tuning,
the results obtained in both segm-AP50 and application metric increase rapidly, showing
a saturation behavior at around 20 shots (Tables 5 and 6). Results improve significantly
with respect to the purely synthetic ones, closing the synthetic-to-real gap with a minimum
effort in terms of manual annotation.
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Table 5. Segm-AP50 results comparing {3} with few-shot fine-tuning against the uncontrolled
dataset {4}.

n-shots (Synthetic) 1-Real 5-Real 10-Real 15-Real 20-Real

Segm-
AP50 83.3% 83.26% 88.39% 89.79% 91.03% 91.33%

Table 6. Application-oriented metric results comparing {3} with few-shot fine-tuning against the
uncontrolled dataset {4}.

n-Shots Not Detected Misclassified Score

Synthetic 4.30% 13.60% 82.10%

Synthetic+1-Real 4.30% 13.55% 82.15%
Synthetic+5-Real 3.97% 8.73% 87.30%

Synthetic+10-Real 2.92% 7.09% 89.99%
Synthetic+15-Real 2.66% 6.31% 91.03%
Synthetic+20-Real 2.58% 6.21% 91.21%

5.2.4. Performance on a Partially Controlled Environment

Using 20 shots fine-tuning on top of a synthetic training, the system reaches a per-
formance of 91.33% for segm-AP50 and 91.21% for the application metric, for the highly
uncontrolled test scenario of the uncontrolled test dataset. Although this performance is
high for most generalist applications, it may not be enough for other solutions that re-
quire more exhaustive detections, such as industrial applications. In this direction, the
Synthetic+20-Real is tested against the controlled test data {5}.

The obtained results show again that the more images are used for fine-tuning, the
better the results obtained in both segm-AP50 and application metric (Tables 7 and 8).
In detail, although the results start at a lower score with respect to the previous testing
against the uncontrolled dataset, the scores improve rapidly and improve significantly, after
only five images, over the synthetic results. Finally, they show almost perfect results
against the controlled test dataset, with the same manual annotation effort required in the
previous results.

Table 7. Segm-AP50 results comparing purely-synthetic training with few-shot fine-tuning against
the controlled dataset {5}.

n-shots (Synthetic) 1-Real 5-Real 10-Real 15-Real 20-Real

Segm-
AP50 74.77% 74.77% 94.17% 97.36% 98.48% 98.7%

Table 8. Application-oriented metric results comparing purely-synthetic training with few-shot
fine-tuning against the controlled dataset {5}.

n-Shots Not Detected Misclassified Score

Synthetic 0.88% 24.75% 74.37%

Synthetic+1-Real 0.88% 24.77% 74.35%
Synthetic+5-Real 0.23% 7.10% 92.67%

Synthetic+10-Real 0.10% 3.17% 96.73%
Synthetic+15-Real 0.06% 2.20% 97.74%
Synthetic+20-Real 0.04% 1.96% 98.00%

This shows that good results can be obtained by leveraging the power of synthetic
data generation that is applied either to a generalist application with good results or to a
more specialized one with significantly better results.



Sensors 2023, 23, 1898 11 of 13

5.3. Discussion

Overall, the obtained results show the great value of the proposed image synthesis for
practical cases with limited data and also how limited data can be used to boost performance
with a few-shot fine-tuning (Figure 9). This study has focused on using a maximum of 20
training images, based on scalability and feasibility considerations of practical real-world
applications. However, if a larger amount of images is considered (240 training and 80
validation images), preliminary testing results still show segm-AP50 values substantially
lower (56.9%) for real data than synthetic training. Therefore, purely synthetic (83.3%) and
the few-shot fine-tuning (91.33%) still clearly exceed the results of training datasets up to 10
times larger. In the same direction, results for few-shot fine-tuning saturate for more than
20 shots, improving less than 1% even using 10 times more images. These results also show
that fine-tuning with real data from a fixed controlled domain improves results for the
uncontrolled scenes, effectively reducing the synthetic-to-real gap, without the unwanted
effect of reducing the scene domain.
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Figure 9. Overall results of the different tests with segm-AP50 and application metrics.

Analyzing the errors of the proposed system in more detail, most of the not detected
errors are on bricks that are touching each other on the image and for which it is difficult to
discern one from the other, specifically when they are of the same color and their boundaries
are not clearly distinguishable. Most of the misclassified errors are between bricks that are
almost identical from a certain point of view or have the same shape but can have different
lengths; even for a human annotator, these are difficult to differentiate without using other
bricks in the image to have a sense of scale between them.

Compared with existing solutions, the presented approach shows clear advantages.
On the one hand, the proposed method has the ability to be trained with synthetic data,
reaching high performance scores on uncontrolled environments using a scalable and
effortless data generation process. This point clearly improves upon past approaches, such
as Instabrick [8] and RebrickNet [9], that require a larger amount of time and effort to obtain
training data. On the other hand, the presented method can also be fine-tuned with real
data to obtain higher performance without reducing its working domain. Compared with
other methods, the proposed few-shot fine-tuning process only requires a much smaller
and limited set of less than 20 images, which can be captured in a controlled environment
specially designed to simplify the task.

The paper has focused on what could be regarded as a very specific problem: the
detection and classification of Lego bricks. However, no assumptions on the type of objects,
data and acquisition scenarios have been established, for which the overall framework,
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results and benefits of using synthetic with limited annotated data could be extrapolated to
other applications, particularly for industry and quality control.

For the particular application of Lego brick detection and classification of this paper,
the annotation of each real image took an average of 50 min using a dedicated software.
This further illustrates the value and cost-efficiency of using synthetic data, which is
automatically annotated, compared to real world annotations.

Finally, these are the main limitations found:

• Not all objects can be easily rendered; non-rigid objects such as chains, transparent
materials, flexible objects made of rubber.

• Challenging cases for recognition are axes of similar lengths and identical-looking
objects from specific view points.

• Although the synthetic-to-real gap was reduced by means of the real data few-shots
fine-tuning, there is still need for real-world data, and the problem is not yet fully
solved, which could be a challenge for very highly demanding tasks.

6. Conclusions

A framework for photo-realistic data rendering has been proposed to generate realistic
synthetic data for the task of recognizing Lego-like bricks to overcome the problem of
limited available annotated real data.

A deep learning recognition method based on Mask R-CNN and trained with different
number of real images with and without a pre-training on synthetic images is tested against
a generalist real-wold dataset.

It has been shown that, when trained with the limited real images, although the
transfer learning method outperforms the one with random weights, both methods achieve
no usable results. In addition, the benefits of using synthetically generated images have
been shown, obtaining results that clearly outperform the real data-only-trained network at
virtually no cost for data acquisition. Finally, the combination of synthetic with real data in
order to close the synthetic-to-real gap has been shown to obtain the best results, needing
only 10 images to overpass 90% in the segm-AP50 metric.

For more industry-oriented applications, it has also been shown that, when testing
against the same domain as the limited training data, the combination of real and synthetic
data also improves the performance, achieving 98.7% segm-AP50, providing competitive
results with a small effort on the annotation side.
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Abbreviations
The following abbreviations are used in this manuscript:

AP Average Precision
CNN Convolutional Neural Networks
COCO Common Objects in Context
FPN Feature Pyramid Network
GPU Graphics Processing Unit
IoU Intersection over Union
PBR Physically Based Rendering
R-CNN Regions with CNN
RGB Red Green Blue
RPN Regional Proposal Network
SVM Support Vector Machine
VOC Visual Object Classes
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