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Abstract: Glycemia assessment in people with type 1 diabetes (T1D) has focused on the time spent in
different glucose ranges. As this time reflects the relative contributions to the finite duration of a day,
it should be treated as compositional data (CoDa) that can be applied to T1D data. Previous works
presented a tool for the individual categorization of days and proposed a probabilistic transition
model between categories, although validation has hitherto not been presented. In this study, we
consider data from eight real adult patients with T1D obtained from continuous glucose monitoring
(CGM) sensors and introduce a methodology based on compositional methods to validate the
previously presented probability transition model. We conducted 5-fold cross-validation, with both
the training and validation data being CoDa vectors, which requires developing new performance
metrics. We design new accuracy and precision measures based on statistical error calculations. The
results show that the precision for the entire model is higher than 95% in all patients. The use of
a probabilistic transition model can help doctors and patients in diabetes treatment management
and decision-making. Although the proposed method was tested with CoDa applied to T1D data
obtained from CGM, the newly developed accuracy and precision measures apply to any other data
or validation based on CoDa.

Keywords: compositional data; continuous glucose monitoring; prediction model; time in range;
type 1 diabetes

MSC: 62H99

1. Introduction

Diabetes mellitus is considered one of the chronic diseases, significantly impacting the
quality of life of the world population and constituting a real health problem. It belongs
to the group of diseases that cause physical disability because of its various multi-organ
complications, and has undoubtedly led to an increase in morbidity and mortality in recent
years [1]. Individuals with type 1 diabetes (T1D) rely on external insulin to regulate blood
glucose (BG) levels, which can be delivered through multiple injections of insulin or con-
tinuous subcutaneous insulin infusion. The different characteristics of patients with T1D
render it difficult for clinicians to adjust insulin doses to the patient’s activities appropri-
ately [2]. The integration of patient measurements into a decision support system could
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help clinicians in consultations or even guide the patient when using devices for insulin
or carbohydrate administration [3]. Different authors presented an exhaustive review of
decision support systems based on artificial and computational intelligence to manage
T1D [4–7], where the preceding information was continuous glucose monitoring (CGM).

The standardized clinical levels are defined as the percentage in each of the following
glucose ranges: hypoglycemia level 1: 54 ≤ BG < 70 mg/dL, hypoglycemia level 2:
BG < 54 mg/dL, hyperglycemia level 1: 180 < BG ≤ 250 mg/dL, hyperglycemia level 2:
BG > 250 mg/dL and time in range (TIR): 70–180 mg/dL [8]. Several studies have already
used different approaches to treat the times in each glucose range of people with T1D [9–12].
Given that these percentage of times in each of the ranges are codependent and only
provides relative information, log-ratio (logarithm of a ratio) techniques of compositional
data (CoDa) are appropriate to deal with this type of data [13].

The CoDa analysis has been studied and developed for several decades, and the
number of investigations continues to increase over the years [9,14–17], with applications
in medicine [10–12,18]. Biagi and colleagues [12] present a methodology based on CoDa
analysis to categorize the daily glucose profiles of patients with T1D. The CoDa analysis
involves positive component vectors describing the contribution of several parts to a
whole. For example, the time spent in different activities during a day are 24 h relative
contributions, and thus, are CoDa [10,11]. Similarly, the time spent in each glucose range is
CoDa [12].

Several statistical procedures exist for the validation of probabilistic models. According
to Mayer et al. [19], the empirical validation of comparing model predictions with real-
world observations must be performed using appropriate statistical methods. In this work,
we aim to complement the analysis of the results and validate the probabilistic transition
model presented in Biagi et al. [13]. First, a CoDa approach is used to categorize glucose
data of 24 h and 6 h duration, then a 5-fold cross-validation method is applied. The main
focus is to propose an accuracy metric based on CoDa, calculate the errors associated with
CoDa, and evaluate the model’s accuracy. We employ glucose data from eight real patients
for the validation of the model. The methodology allows the probabilistic prediction of
the glucose profile category for the next 6 h and can be used to help clinicians provide
individualized adjustments in their patient therapies.

2. Materials and Methods
2.1. Data Set

We analyzed data from eight patients with insulin pump therapy obtained from
a pilot study performed at the Hospital Clinic of Barcelona. We use data of 30 weeks,
approximately, recollected in different periods between 2020 and 2022. The demographic
characteristics of patients are presented in Table 1. All patients provided written informed
consent to participate in this study.

Table 1. Demographic characteristics of the cohort.

Variables Mean ± SD

Age (years) 36.3 ± 10.9
Weight (kg) 70.5 ± 6.4
Height (cm) 167.3 ± 5.5
HbA1c (%) 6.9 ± 0.9

Time with T1D (years) 25.2 ± 12.7
Time with pump (years) 13 ± 7.2

Sex 4 (M) 4 (F)

The recruited patients wore different sensors, including the Dexcom G6, the MiniMed
640G, and the FreeStyle Libre. The first two sensor models stored their measurements
every 5 min, while the third model stored its measurements every 15 min. First, CGM
measurements were preprocessed. Then, 24 h periods starting at 0 h, 6 h, 12 h, and 18 h and
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their corresponding subsequent period of 6 h were obtained (Figure 1). The measurements
in each period are divided into the five previously mentioned glucose ranges.

Figure 1. Distribution of the 24 h and 6 h periods.

The patients’ glucose profiles have unrecorded measurements. Data were linearly
interpolated when the gaps of missing data were not greater than two consecutive hours.
The missing data that was interpolated is actual missing data. Surely if smaller periods
were interpolated or not interpolated at all the quality of the data would improve. In this
procedure, the days that had more than 2 h of missing data in the same period of 6 h were
eliminated. Finally, a day was considered valid if each of its four 6 h periods had at least
75% of the data. Table 2 shows the total number of days analyzed, sensors, and valid
periods of 24 h and consecutive 6 h periods for each patient.

Table 2. Characteristics of the sensors and measurements of the eight patients.

Patient Valid days Sensor Periods 24 h to 6 h
0 h–0 h 6 h–6 h 12 h–12 h 18 h–18 h
0 h–6 h 6 h–12 h 12 h–18 h 18 h–0 h

1 90 Dexcom G6 85 83 83 84

2 90 MiniMed 640G 54 51 54 53

3 226 MiniMed 640G 57 44 62 56

4 90 Dexcom G6 74 81 81 75

5 134 Dexcom G6 83 82 85 81

6 232 Dexcom G6 76 68 72 73

7 115 MiniMed 640G 80 79 71 81

8 556 FreeStyle Libre 229 231 232 227

2.2. CoDa

A composition is a vector X = (x1, x2, . . . , xD), with D number of parts whose
components are all strictly positive and of constant sum (which can be the unit, 100% (as
is our case study), sum of the hours of the day (24 h) or some other constant sum defined
by the researcher), according to the “scale invariance” property the chosen value for k it is
irrelevant for the analysis and is only useful for the interpretation of the results:{

xi > 0, i = 1, 2, . . . , D.

∑D
i=1 xi = k k = cte.

(1)

Historically, CoDa have been identified with closed data, with the simplex being the
natural sample space for this data type, while the real Euclidean space is associated with
unrestricted data. The basic principles of CoDa analysis that are of special interest in this
study are as follows:

(1) scale invariance , which states that CoDa only contains relative information, im-
plying that any change in the scale of the original data do not affect the structure of
the composition;
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(2) subcompositional coherence , which implies that the results obtained for a subset
of parts of a composition, that is, a subcomposition, must be coherent with the results
obtained with the complete composition; and

(3) permutation invariance , which indicates that the results do not depend on the
order in which the parts appear in the composition [14].

In this work, the compositional vector X is defined as a composition where each D-part
corresponds to the percentage of time in each of the glucose ranges:

Hypoglycemia level 2 (X<54),
Hypoglycemia level 1 (X54−70),
Target BG (X70−180),
Hyperglycemia level 1 (X180−250), and
Hyperglycemia level 2 (X>250)

and is treated as the 5-part composition:

X = (X<54, X54−70, X70−180, X180−250, X>250). (2)

whose constant sum is 100%. Some of the parts of the composition would be zero if no
measurements were found in some of the glucose ranges. For example, a composition (0,
0, 100, 0, 0) would mean 100% TIR, another example could be (0, 10, 80, 10, 0) where it
would have 10% in hypo and hyper level 1 and 80% in TIR. As CoDa analysis is based
on log-ratios of parts, treating zeros appropriately and analyzing incidence patterns is
necessary [20]. In the analyzed measurements, three types of patterns of zeros were
identified: non-consecutive zeros, two consecutive zeros, and three consecutive zeros.

The detection limits (dl) matrix used in zero imputation was obtained consider-
ing 5- and 15-min fractions, as in Biagi and colleagues [12], depending on the posi-
tion of the zero in the compositions. For the sensors that save the measurements every
5 min, one day has 1440/5 = 288 measurement recordings , then the dl is calculated as
dl = 5/1440 = 1/288 = 0.0035; following the same procedure for the sensors that store the
samples every 15 min, 1440/15 = 96 measurements, then the dl = 15/1440 = 1/96 = 0.0104.
Measured values below the thresholds defined in the dl matrix cannot be distinguished
from a blank signal with a specified confidence level. We considered that the further the
zero is from the non-zero value, the smaller this value must be in the dl matrix, as presented
in Table A5 of Appendix A. In none of the periods, the glucose range was found to be
always zero for any patient. Therefore, we consider these zeros to be rounded zeros of
continuous data, not essential ones.

The replacement of zeros in the vector of times at each of the glucose ranges is
performed following Biagi and colleagues [12] using the robust expectation-maximization
(lrEM) [20,21]. This model-based function imputes left-censored data (e.g., values below the
dl, rounded zeros) by representing CoDa coordinates incorporating the relative covariance
structure information. When the matrix of zero patterns has a whole column of zeros,
the multiplicative replacement method (multRepl) [20,22] was considered. This method
preserves the covariance structure and is consistent with the properties of CoDa; it consists
of multiplicatively imputing the null values with a small preset value. The modification in
the values that are not zero is multiplicative; it is consistent with the basic operations in the
simplex and the structure of the compositions [23,24]. Figure 2 describes the methodology
for this work, first for proper preprocessing of BG measurements, then for the validation
of the model, and finally, the update of the probabilistic prediction model if it has already
been previously validated.
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Figure 2. Methodology for data analysis, validation, and update of the probabilistic transition model.

2.2.1. Log-Ratio Coordinates

CoDa can be translated into real space via clr-scores and olr-coordinates, in which,
traditional statistical methods can be applied [14], and are calculated using Equations (3)
and (4) [25], where g is the geometric mean (Equation (5)), r and s are the number of
parts in the i-th row of S (sign matrix of the sequential binary partition (SBP)) coded by
+1 (positive) and −1 (negative), which will be in the numerator and denominator of the
corresponding log-ratio, respectively. Egozcue and Pawlowsky-Glahn [26] defined the SBP
as a hierarchical grouping of parts of the original compositional vector, starting with the
complete composition as a group and ending with each part in a single group. If D is the
number of parts in the original composition, then the number of steps in the partition is
D− 1. In this study, we considered the SBP presented in Table 3, which was established
according to Biagi and colleagues [12].

clr(x) = [clr1, clr2, . . . .clrD]=

[
ln

x1

g(x)
, ln

x2

g(x)
, . . . , ln

xD
g(x)

]
. (3)

olr(x) =
√

r ∗ s
r + s

∗ ln

(
g(x+)

1
r

g(x−)
1
s

)
. (4)

Table 3. Sequential binary partition.

i X<54 X54−70 X70−180 X180−250 X>250 r(+) s(−)

1 +1 +1 −1 −1 −1 2 3
2 +1 −1 0 0 0 1 1
3 0 0 −1 +1 +1 2 1
4 0 0 0 −1 +1 1 1

2.2.2. Compositional Measurements

The geometric mean is a representative measure of the center of the CoDa set and iden-
tifies the components that better discriminate in the composition. Let X = (x1, x2, . . . , xn)
be a compositional data set of SD. The compositional geometric mean (gk) of the set X is
defined as:

g(X) = {(g1, g2, . . . gD) =

(
g1

∑ gk
,

g2

∑ gk
, . . . ,

gD

∑ gk

)
, gk =

(
n

∏
i=1

xik

) 1
n

. (5)
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where gk represents the geometric mean represents the geometric mean of the k-th compo-
nent of the data. The variation matrix shows the pairwise log-ratio variance for all parts
of the composition. It allows the analysis of the data dispersion. This matrix is defined as
T = [Tij], and in its extended form, is equal to:

T =
[
Tij
]
=


var
[
ln x1

x1

]
· · · var

[
ln x1

xD

]
...

. . .
...

var
[
ln xD

x1

]
· · · var

[
ln xD

xD

]
. (6)

where Tij = var[ln(xi/xj)] represents the expected variance of the log-ratio of parts i and j.
This matrix is based on the contribution of variance for each pairwise log-ratio. However,
the variation array is usually preferred in practice. This array is based on the variation
matrix where the upper diagonal of the array contains the log-ratio variances and the lower
diagonal contains the log-ratio means. That is, the way we show the results in Table A2 of
the Appendix A, the ij-th component of the upper diagonal is var [ln(Xi/Xj)] and the ij-th
component of the lower diagonal is E[ln(Xi/Xj)], where i, j = 1, 2, . . . , D [14].

In real space, the most widely used measure of dispersion is the trace of the covariance
matrix associated with the ensemble. However, the interpretability of the direct covariance
matrix of a CoDa set is lacking. As this measure is not compatible with CoDa, Pawlowsky-
Glahn and Egozcue [16] defined a measure of variability totvar(X) equal to the trace of the
covariance matrix of the clr-transformed data set:

totvar(X) =
D

∑
k=1

var[clrk(x)]. (7)

An example of specific results of these measures for patient 1 (P1) can be observed in
Tables A1 and A2 of the Appendix A.

2.3. Probabilistic Model of Transition

The probabilistic transition model proposed by Biagi et al. [13] was implemented for 3,
4, and 5 clusters, where the categories from the previous 24 h period to the next 6 h period
are counted. The procedure is as follows: suppose the categories are defined as A, B, C,
D, and E. First find all the A categories, examine the period after these days and complete
a matrix with the counts of each column, as described in Table 4. Then, with the closure
operator defined in Equation (8), the transition probabilities are calculated at different times
of the day. Table A3 of the Appendix A shows a particular example of the model for P1.

{(X1, X2, . . . , XD) =

(
X1

∑D
i=1 Xi

,
X2

∑D
i=1 Xi

, . . . ,
XD

∑D
i=1 Xi

)
. (8)

Table 4. Methodology of the probabilistic transition model.

6 h
A B C D E

A AA AB AC AD AE
B BA BB BC BD BE

24 h C CA CB CC CD CE
D DA DB DC DD DE
E EA EB EC ED EE

To validate this probabilistic transition model, clusters 3, 4, and 5 mentioned previously
are analyzed. We consider 5-fold cross-validation, randomly selecting 75% of the data for
training and the remaining 25% for validation. We employ linear discriminant analysis to
assign groups to the validation data, following the methodology of Biagi et al. [13]. Both



Mathematics 2023, 11, 1241 7 of 17

the training and validation data of the model are CoDa vectors, whose constant sum is
100%. Therefore, a metric is needed to compare the training and validation results to obtain
the accuracy of the model.

2.4. Accuracy Metric

We propose the calculation of an accuracy metric based on CoDa. The first step is
to create the Training (T) and Validation (V) matrices (Equation (9)), which contain the
transition probabilities of the categories from one 24 h period to the next 6 h, where D is
the dimension of the vector. For this, the categories are counted, and the zero type counts
are substituted.

In Martín-Fernández et al. [27], count-type vectors are defined as categorical data in
which the counts represent the number of elements located in each of several categories.
This type of zeros is related to a sampling problem because the components may not be
observed given the limited size of the sample. The count-zero multiplicative replacement
is implemented in the R package “zCompositions” [20], following what was established
in Martín-Fernández et al. [27], where the multiplicative replacement by rounded zero
defined in Martín-Fernández and colleagues [24] was adapted for the case of counting
zeros. Although this method satisfies the condition that the imputed zero value does not
depend on the D parts of the composition, it is recommended only when the number of
zeros in the data matrix is insignificant.

T =

T11 · · · T1D
...

. . .
...

TD1 · · · TDD

V =

V11 · · · V1D
...

. . .
...

VD1 · · · VDD

. (9)

The accuracy is a difference measure between the training data (expected), and the
validation data (observed) for each k model created. The higher the accuracy, the more
similar the probability vectors between the transitions from one period to another; therefore,
it would also suggest the most appropriate number of groups for each patient. From the
analysis of the distances and the norms of the T and V vectors that are detailed below,
the accuracy metric is defined as Equation (10).

Accuracy = 100− ||~V 	 ~T||a
||~V||a + ||~T||a

∗ 100. (10)

To implement this Equation (10), mathematical operators defined for CoDa were
considered. The T or V matrix vectors where no transitions were found from one period
to another were treated as null or empty (∅). Then, the difference perturbation operator
introduced by Martín-Fernández and their colleagues [9] is applied as:

X	Y = {
[

X1

Y1
,

X2

Y2
, . . . ,

XD
YD

]
. (11)

Applying Equation (11) to the previously defined matrices T and V leads to Equation (12).
The perturbation difference operation is analogous to subtraction in Euclidean space.
Therefore, the process is performed row-wise.

V 	 T =

V11 · · · V1D
...

. . .
...

VD1 · · · VDD

	
T11 · · · T1D

...
. . .

...
TD1 · · · TDD

 = {


V11
T11

· · · V1D
T1D

...
. . .

...
VD1
TD1

· · · VDD
TDD

. (12)

The difference perturbation operation also includes the closure operator ({), as defined
in Equation (8). This is a technique to simplify the use of closed-form compositions, that
is, positive vectors whose parts add up to a constant positive k (in our case, k = 100%,
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percentage type data). In this context, the triangular inequality theorem of Euclidean
geometry is applied, which has been generalized to normed vector spaces, obtaining:

||~V 	 ~T||a ≤ ||~V||a + ||~T||a. (13)

where the Aitchison norm || · ||a of a composition can be calculated as the Euclidean norm
|| · || of the clr-scores [25].

||~V 	 ~T||a = ||clr(~V 	 ~T)|| =

√√√√ D

∑
i=1

clri(~V 	 ~T)2. (14)

||~V||a = ||clr(~V)|| =

√√√√ D

∑
i=1

clri(~V)2. (15)

||~T||a = ||clr(~T)|| =

√√√√ D

∑
i=1

clri(~T)2. (16)

Rearranging Equation (13), we obtain:

0 ≤ ||~V 	 ~T||a
||~V||a + ||~T||a

≤ 1. (17)

The Aitchison distance [28] between two compositions is known as da(X, Y) (Equation (18)),
which is the norm of the difference perturbation operation of these compositions; therefore,
in the numerator of Equation (17), the Aitchison distance of the composition created be-
tween the components of the training vector and those of the validation vector is calculated.

da(X, Y) = ||~X	 ~Y||a. (18)

2.5. Precision Metric of the Transition Model

In this work, we also propose the adaptation of known statistical errors in terms of
CoDa. This is achieved through the transformation of basic Euclidean operations of the
mathematical equations to their corresponding operation in the simplex, as follows:

MAE = ea =
1

total

total

∑
k=1
||~VD 	 ~TD||a. (19)

MRE = er =
ea

||~TD||a
. (20)

RMSE = ec =

√
∑total

k=1 ||~VD 	 ~TD||2a
total

. (21)

where:
ea: mean absolute error (MAE)
er: mean relative error (MRE)
ec: root mean square error (RMSE)
D is the number of parts of the composition
VD: is the observed composition (that is, the data validation)
TD: is the expected composition (the training data)
total: is the number of corresponding vectors for each 5-fold
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k= 3, 4 or 5: corresponds to the number of clusters being analyzed
The precision of the model is calculated according to:

Precision =


100− ea
100− er
100− ec

. (22)

3. Results

The median accuracy after 5-fold validation for 3, 4, and 5 clusters are presented in
Table 5 for the cohort. Accuracy greater than 50% is considered exceptionally good, indicat-
ing that at least half of the parts of the composition coincided satisfactorily (i.e., the data
of V with the data of T). Clarifying that as the clusters increase, the T vector and the V
vector also increase, is necessary. Therefore, more probabilities of dissimilarity exist among
the parts of the vectors, which causes the result of the accuracy measurement to decrease.
As evident from Table 5, the accuracy results for 3 clusters are larger than those for 5 clus-
ters . The probabilistic model has been successfully validated because the validation data
confirms what was predicted by the training data. The Appendix illustrates an example of
the application of this proposed metric for P1.

Table 5. Accuracy results after 5-fold cross-validation for the cohort.

Cluster At 0 h At 6 h At 12 h At 18 h

3
A 56.4 (43.4–69.7) 67.8 (54.6–76.9) 57.9 (37.6–73.4) 58.1 (39.1–72.1)
B 56.6 (35.2–65.6) 67.3 (55.0–73.2) 50.5 (43.2–72.4) 57.9 (40.5–66.9)
C 48.8 (25.4–64.3) 63.3 (48.1–71.0) 58.2 (48.2–63.9) 48.3 (31.5–57.7)

4
A 56.3 (39.1–69.6) 68.6 (49.1–75.1) 59.7 (38.3–72.7) 55.9 (40.2–66.2)
B 65.0 (44.9–76.8) 62.5 (50.7–68.1) 60.9 (45.2–68.1) 46.9(36.6–62.2)
C 37.5 (26.5–54.6) 57.3 (45.9–65.2) 50.5 (40.2–58.5) 45.6 (28.7–57.1)
D 35.9 (17.5–51.6) 40.8 (27.3–50.2) 43.2 (31.9–54.5) 40.5 (28.1–51.5)

5
A 55.3 (34.8–64.3) 48.4 (37.9–59.8) 46.6 (31.0–62.6) 48.8 (28.8–61.1)
B 56.9 (41.2–70.2) 50.4 (38.8–62.5) 38.8 (23.1–53.8) 43.8 (21.5–53.3)
C 40.1 (29.7–54.2) 57.6 (44.2–66.9) 59.2 (36.9–62.8) 36.6 (24.0–48.4)
D 38.1 (24.4–48.1) 45.7 (33.0–52.0) 42.2 (31.1–52.8) 32.6 (18.0–44.7)
E 34.1 (24.3–48.9) 47.8 (30.1–57.5) 38.3 (33.8–46.8) 39.6 (29.9–46.5)

The result is the median (interquartile range (25th–75th)) of the accuracy for the validation of the probabilistic
transition model for the cohort.

The box plot of Figure 3 shows the summary of the precision based on the errors of
the validation of the probabilistic transition model for clusters 3, 4, and 5 of each one of
the patients and the cohort in general. The top of the box (third quartile) illustrates that
75% of the values are less than or equal to this (98%), the bottom of the box (first quartile)
shows that 25% of the values are less than or equal to this value (94%. The median (second
quartile) divides the distribution into two equal parts. For cluster 3, only P1 has a symmetric
precision distribution (mean, median, and mode coincide), although for the remaining
patients, as well as the cohort, the median has a negative asymmetry or is skewed to the
left (the longest part below the median). Thus, the data is concentrated in the upper part of
the distribution and the mean is less than the median. This same behavior is evident for
all the clusters, indicating that in all cases, the lower part of the boxes is larger (the data is
more dispersed). Notably, the respective clusters of each patient exhibit similar behavior.
However, cluster 5 of patients 3 and 4 stands out—their minimum precision was close
to 94% and this was due to the variability of the patients (43% and 39.6%, respectively).
In all cases, the dimensions of the boxes determined by the distance of the interquartile
range grew as the clusters increased, which evidences the dispersion of the data around the
median, and in turn, reflects how it coincides with the results of the accuracy (the greater
the number of clusters, the lower the number of samples per group).
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Figure 3. Precision of the probabilistic transition model for each patient and the cohort.

These results are relevant for the research, application, and validation of CoDa method-
ologies in any branch of science. The metrics obtained allow the comparison of dissimilar
compositions, the disregard of parts of the composition that are not significant, the vali-
dation of models, and the identification of patterns. However, it is important to highlight
that the researcher is the one who proposes, based on their experience in the field, the parts
of the composition and the constant to be added according to the characteristics of CoDa,
so they must also interpret the results obtained. Furthermore, as previously mentioned,
the more parts the composition vector has, the greater the possibility that the accuracy
metric will be lower. Therefore, the percentage obtained by this metric will be associated
with the interpretation given by the researcher.

4. Discussion

Data-driven decision support systems have always helped physicians and patients [4,5].
This work is the continuation of previous studies to characterize glucose profiles of times
in different ranges applying CoDa. Biagi and colleagues [12] created a methodology for the
categorization of glucose profiles of six T1D patients who were monitored for eight weeks.
Then, the k-means algorithm was applied to the clr-scores, obtaining different groups.
Subsequently, Biagi et al. [13] obtained a discriminant model to determine the category of
24 h periods, achieving an average of more than 94% correct classification. Furthermore,
the authors proposed a probabilistic transition model to predict the future 6 h period.

These two investigations set the path to the CoDa analysis tool applied to the glucose
profiles of patients with T1D. However, a validation of the probabilistic transition model ob-
tained in Biagi et al. [13] was not presented, which is considered a limitation of the study by
the authors. This model would serve as a decision support tool to manage T1D for patients
and physicians. In this study, the limitations of [12] are minimized by comprehensively
analyzing the compositional statistics of these data, which provides valuable information
on the behavior of glucose, traceability, and improvement of the patient’s glucose profiles.
Thus, the characteristics of the classificatory groups are identified not only qualitatively
but also quantitatively, as stated in [12]. In addition, other methodologies were tested to
determine the detection limits matrix of the data set; however, placing a lower dl on zero
parts farther from the non-zero parts had less effect on variability.

Finally, the probabilistic prediction model is validated to ensure its reliability. Notably,
during the validation of the model, the greater the number of groups, the fewer the
observations per group, which suggests lower percentages for each part because of the
distribution of the category counts. Hence, the relevance of accuracy. A new accuracy
metric based on the difference in compositional vectors was proposed in this work, which
allowed the validation of the proposed prediction model. The validation of the model
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provides an idea of what the correct amount of cluster should be for each patient to achieve
the highest accuracy in the prediction.

In some cases, the measure of the accuracy of some transition probabilities was not
high. This happens fundamentally because of the few days, which leads to sufficient
transitions not being always counted in some cases, creating a model where the probability
percentages are dispersed. Similarly, we consider that the update of the model and incorpo-
ration of more recent data improves the reliability of prediction, including predicting for
a shorter period. This would help clinicians to assess patient outcomes and to customize
their insulin dosing profile.

This methodology is designed for an individualized probabilistic transition model
and not for the cohort. As mentioned in [13], in this study, we did not intend to present
the prediction of BG values or trends but a probability of the behavior of glucose in
the following 6 h as a decision support tool for the management of T1D. Furthermore,
considering that glucose sensors lack of accuracy, patients’s insulin sensitivity and the
dynamic of insulin response in the body are also estimations, there is not a method that
could guarantee the verification of the effects of insulin in the glucose drop. In that
way, the prediction of the behavior of the patient through the category obtained from
composition of times in different glucose ranges in future periods could decrease the effects
of intrinsic inaccuracies of devices used for diabetes management that can jeopardize
patient care. The intent was that, as the model suggests the patient, it will be updated and
adjusted considering the habits and characteristics of individual patients over time.

5. Conclusions

In this work, a novel methodology was presented to validate the probabilistic transition
model presented in [13]. New measures of accuracy and precision based on CoDa were
proposed. Glucose measurements from eight T1D patients were processed. Obtaining
satisfactory average results with accuracy and precision greater than 50% and 95% for the
entire cohort, respectively, suggests the reliability of the model. This methodology can be
extended to CoDa analysis for other studies that need to be validated or for comparisons
between compositions where the components represent parts of a whole. The novelty of
this work stems from the absence of this type of measure in the extant literature.
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Abbreviations
The following abbreviations are used in this manuscript:

T1D Type 1 diabetes
TIR Time in range
BG Blood glucose
MDI Multiple daily injections
CSII Continuous subcutaneous insulin infusion
CGM Continuous glucose monitoring
CoDa Compositional Data
clr Centered log-ratio
ilr Isometric log-ratio
SBP Sequential binary partition
BGV Blood glucose variation
CHO Carbohydrate
SD Standard deviation
SEM Standard error of the mean
MAE Mean absolute error
MRE Mean relative error
RMSE Root mean square error
P1 Patient 1

Appendix A. Specific Results for P1

Appendix A.1. Compositional Statistics of the Data

Once the 24 h and 6 h consecutive data have been categorized with the k-means
method, the different groups are obtained (in this example, 4 groups were set). The compo-
sitional geometric mean is calculated for each of these groups (Equation (5)). This vector
provides a quantitative interpretation of each of the groups (Table A1). The 24 h and 6 h
periods were qualitatively characterized in terms of the relative time spent in the different
glucose ranges, according to the log-ratio approach. Although groups of different patients
may present comparable characteristics in terms of the relative interpretation of the time
spent in different glucose ranges, the results must be interpreted individually and in a
relative sense and not in an absolute manner. Both the 24 h and 6 h periods were classified
taking into account the standardized metrics [8] where the following glucose targets are
pursued: <54 mg/dL (<1%), 54–70 mg/dL (<4%), 70–180 mg/dL (>70%), 180–250 mg/dL
(<20%) and >250 mg/dL (<5%). If we analyze the example shown in (Table A1) we can
see that group 1 has an average of 2.61% in hypo level 1, 87.38% in TIR and 10% in hyper
level 1. In view of these data, we assign classification A, which we will qualitatively define
as periods with a moderate percentage of hypo and hyper level 1. Following this logic,
for this example, the groups are classified as follows:

The 24 h periods were classified as:
• A—periods with percentages in hyperglycemia and moderate hypoglycemia of level 1.
• B—periods with high percentages of level 1 and level 2 hyperglycemia.
• C—periods with high percentages of time in range with slight occurrences of level 1 hy-
poglycemia.
• D—periods with percentages of level 1 hyperglycemia.

The 6 h periods were classified as:
• A—periods with percentages in level 1 hyperglycemia and hypoglycemia.
• B—periods with very high percentages of level 1 and level 2 hyperglycemia.
• C—periods with high percentages of time in range.
• D—periods with percentages of level 1 hyperglycemia.
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Table A1. Compositional center of each of the parts by a group of P1.

Compositional center of each group of 24 h periods for group 4
G_A(179) G_B(96) G_C(23) G_D(37)

<54 [mg/dL] 0.00 0.00 0.00 0.00
54–70 [mg/dL] 2.61 0.99 0.22 0.00

70–180 [mg/dL] 87.38 76.18 99.77 86.47
180–250 [mg/dL] 10 18.79 0.00 13.52

>250 [mg/dL] 0.00 4.02 0.00 0.00
Compositional center of each group of the next period of 6 h for group 4

G_A(67) G_B(33) G_C(119) G_D(116)

<54 [mg/dL] 0.00 0.00 0.00 0.00
54–70 [mg/dL] 5.65 0.00 0.00 0.00

70–180 [mg/dL] 80.00 51.23 99.95 83.28
180–250 [mg/dL] 14.34 32.54 0.00 16.72

>250 [mg/dL] 0.00 16.21 0.00 0.00
Median and percentile (25th,75th) of each of the parts by group

G_A(246) G_B(129) G_C(142) G_D(153)

<54 [mg/dL] 0.00 (0.00–0.69) 0.00(0.00–0.69) 0.00(0.00–0.00) 0.00(0.00–0.00)
54–70 [mg/dL] 3.47(1.39–5.56) 1.39(0.00–3.47) 0.00(0.00–5.21) 0.00(0.00–0.00)

70–180 [mg/dL] 83.33(74.31–89.58) 68.06(55.21–77.43) 100(94.44–100) 83.33(72.22–91.67)
180–250 [mg/dL] 12.15(6.60–19.79) 20.83(15.28–26.74) 0.00(0.00–0.00) 16.67(8.33–27.78)

>250 [mg/dL] 0.00(0.00- 0.00) 5.90(2.43- 13.89) 0.00(0.00- 0.00) 0.00(0.00- 0.00)

Group (Number of observations per group).

Table A2 shows the variation array of the data for P1 (according to Equation (7)).
The greatest compositional variability is associated with the parts (180–250) with (54–70)
(41.9), (180–250) with (<54) (34.8), and (>250) with (54–70) (29.9) (bold font) . According
to [29], the components with the greatest variability turn out to be adequate to obtain a
subcomposition of three parts and illustrate the data dispersion. The total variance (TV)
for this data set was 49.28, and (54–70) with 12.8, (180–250) with 14.14, and (>250) with
8.9 being the parts with the largest contribution (see column clr variances in Table A2).

Table A2. Variation array of P1.

Variances ln( Xi
Xj
)

Xi
Xj

<54 54-70 70-180 180-250 >250 clr variances

<54 14.5736 18.7269 34.8205 16.6793 7.1033
54–70 3.7926 26.8440 41.9360 29.9660 12.8072
70–180 11.0020 7.2094 15.6085 19.6058 6.3003

180–250 7.3020 3.5094 −3.7001 27.6585 14.1479
>250 0.3664 −3.4262 −10.6357 −6.9356 8.9251

Mean ln( Xi
Xj
) TV: 49.28

Appendix A.2. Compositional Biplot for P1 Categorized for 4 Clusters

Akin to classical statistical analysis, CoDa analysis requires data visualization tools;
one tool is the compositional biplot [30]. The biplot is a dimensional reduction technique
used to represent data with three or more variables. This technique aims to approximate the
elements of a matrix from vectors called markers associated with the rows and columns [31].

In this work, the rows correspond to the days and are displayed as points in the
compositional clr-biplot. The columns correspond to the times in each of the glucose ranges,
represented as rays. The quality of the representation depends on the percentage of variance
that is retained with the two axes that are represented. It is constructed by obtaining a
singular value decomposition of the covariance matrix using the clr transformation. The
interpretation is based on the links between the rays: each ray represents a clr variable,
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and its length is associated with the variance explained in the projection. The directions of
the rays indicate those observations with a greater domain of the compositional part [29].
Figure A1 illustrates the distribution of days when they have been categorized into four
clusters from different perspectives and the retained variance.

Figure A1. Compositional biplot in space for P1: (a) XY plane; (b) YZ plane, and (c) XZ plane.
The three axes of the biplot retain 51%, 77%, and 90% of the TV, respectively.

Appendix A.3. Probabilistic of Transition Model

Table A3 shows the probabilities of transition at different times of the day (0 h, 6 h,
12 h, and 18 h) for P1. Let us consider the patient at 18 h when they have been categorized
with four clusters. First, we analyze the glucose composition of the previous 24 h period
using Table A1 (Compositional center of each group of 24 h periods) and verify that this
period is categorized as type D (86.47% in normoglycemia and 13.52% in hyperglycemia,
no hypos observed). Then the probability that the category of the next 6 h period (from
18 h to 0 h) is of type D 75% can be known. Table A1 (Compositional center of each group
of 6 h periods) demonstrates how group D was characterized by having 83.28% time in
normoglycemia and 16.72% in hyperglycemia. In other words, P1 is expected to continue
in normoglycemia with a tendency to hyperglycemic excursions for the next 6 h.

Table A3. Probabilistic transition model for clusters 3, 4, and 5 for P1.

At 0 h At 6 h At 12 h At 18 h

A B C D E A B C D E A B C D E A B C D E
A 23.0 46.1 30.7 31.1 31.1 37.7 40.4 23.4 36.1 50.9 21.5 27.4
B 28.0 48.0 24.0 20.6 31.0 48.2 30.7 26.9 42.3 46.1 30.7 23.0
C 25.0 12.5 62.5 22.2 33.3 44.4 50.0 40.0 10.0 14.2 14.2 71.4
A 10.6 17.0 44.6 27.6 13.9 2.3 46.5 37.2 29.5 4.5 29.5 36.3 37.7 6.6 28.8 26.6
B 4.3 21.7 52.1 21.7 16.0 20.0 12.0 52.0 17.3 13.0 26.0 43.4 36.0 12.0 32.0 20.0
C 0.0 0.0 42.8 57.1 0.0 0.0 60.0 40.0 0.0 20.0 60.0 20.0 16.6 0.0 50.0 33.3
D 12.5 0.0 25.0 62.5 10.0 10.0 40.0 40.0 36.3 9.0 36.3 18.1 12.5 0.0 12.5 75.0
A 5.0 20.0 15.0 25.0 35.0 0.0 0.0 7.1 35.7 57.1 0.0 0.0 42.1 21.0 36.8 16.6 0.0 16.6 33.3 33.3
B 4.3 21.7 0.0 52.1 21.7 0.0 20.8 12.5 12.5 54.1 13.6 13.6 4.5 22.7 45.4 8.0 12.0 28.0 32.0 20.0
C 0.0 14.8 3.7 59.2 22.2 3.3 3.3 16.6 50.0 26.6 0.0 7.6 19.2 38.4 34.6 14.8 11.1 25.9 25.9 22.2
D 0.0 0.0 0.0 42.8 57.1 0.0 0.0 0.0 60.0 40.0 0.0 20.0 0.0 60.0 20.0 16.6 0.0 0.0 50.0 33.3
E 0.0 0.0 12.5 25.0 62.5 10.0 10.0 0.0 40.0 40.0 0.0 9.0 36.3 36.3 18.1 0.0 0.0 12.5 12.5 75.0

Appendix A.4. Analysis of the Result of the Accuracy Metric for P1

The median accuracy and interquartile range after 5-fold validation for 3, 4, and
5 clusters for P1 is shown in Table A4. It was observed that considering 3 clusters in



Mathematics 2023, 11, 1241 15 of 17

the evaluation resulted in higher accuracy compared to the evaluation with 5 clusters.
Furthermore, it was found that the median accuracy for this particular patient significantly
exceeded the cohort median, approaching 90% in the 75th percentile.

Table A4. Accuracy results after 5-fold cross-validation for P1.

Cluster At 0 h At 6 h At 12 h At 18 h

3
A 67.2 (66.3–77.2) 83.9 (55.6–84.6) 80.1 (78.2–83.8) 80.4 (72.2–83.3)
B 54.6 (2.1–68.7) 75.1 (66.9–76.7) 61.7 (52.6–73.2) 69.1 (39.3–71.0)
C 55.6 (44.8–69.9) 86.1 (62.8–86.7) 40.3 (19.4–48.5) 58.6 (52.6–65.6)

4

A 59.8 (45.7–72.0) 83.7 (24.3–88.6) 74.3 (39.7–78.9) 69.8 (67.5–75.3)
B 56.7 (44.9–63.1) 64.9 (58.4–67.8) 46.1 (28.2–47.9) 45.3 (33.7–63.0)
C 47.7 (42.8–49.4) 64.6 (60.2–66.4) 35.8 (18.6–46.6) 43.9 (31.8–56.7)
D 45.7 (32.2–66.1) 38.8 (24.1–54.8) 20.6 (13.8–37.6) 54.6 (39.3–64.7)

5

A 44.0 (29.2–55.2) 44.8 (36.3–61.9) 25.4 (18.2–60.5) 43.8 (11.1–57.4)
B 60.9 (47.1–65.8) 51.3 (42.4–62.1) 33.9 (6.6–44.5) 48.3 (31.9–60.5)
C 50.7 (39.8–58.6) 46.2 (30.8–71.3) 58.8 (39.3–62.5) 48.8 (33.5–58.2)
D 36.2 (30.7–36.7) 60.6 (34.6–64.7) 30.8 (21.0–34.6) 35.5 (22.7–53.9)
E 20.5 (16.4–40.8) 28.3 (8.6–46.9) 13.0 (10.2–23.5) 48.8 (37.9–54.1)

The result is the median (interquartile range (25th–75th)) of the accuracy for the validation of the probabilistic
transition model for P1.

Below is an example of the accuracy metric for P1, for k-fold = 2, when the transitions
at 0 h to the next period of 0–6 h are counted. After categorizing with k-means the clr-scores
corresponding to the times in the range. The categories from the 24 h to the next 6 h period
of the T and V data are counted, which in this case, were T = [19 16 7] and for V = [6 2 6].
Then, these vectors are verified as not having zeros; in case they do, they are replaced as
explained in Section 2.4. Subsequently, Equation (8) is applied, whose constant sum is
100% and can be treated as a CoDa, and T =[45.23 14.28 40.47] and V = [42.85 14.28 42.85]
are obtained.

Calculating the numerator for Equation (10): Applying the difference operator
(Equation (11)) and then the closure operator (Equation (8)):

~V 	 ~T = {
[

V1

T1
,

V2

T2
,

V3

T3

]
=

[
42.85
45.23

,
14.28
14.28

,
42.85
40.47

]
= {[0.9474, 1, 1.0588] = [0.3151, 0.3326, 0.3522]. (A1)

Then, the clr-scores are calculated according to Equation (3) and the denominator of
the clr-scores (the geometric mean) is calculated according to Equation (5).

clr(~V 	 ~T) = clr(0.3151, 0.3326, 0.3522) =
[

ln
0.3151
0.3330

, ln
0.3326
0.3330

, ln
0.3522
0.3330

]
= [−0.0551,−0.0010, 0.0561]. (A2)

Applying Equation (14), the norm of the clr-scores is calculated as:

||~V 	 ~T||a =
√
(−0.0551)2 + (−0.0010)2 + (0.0561)2 = 0.0786. (A3)

Calculating the denominator: According to Equation (3), the clr-scores are first
calculated, where the geometric mean g(~V) = 27.70 and g(~T) = 29.67 according to
Equation (5). Subsequently, the Aitchison norm of the vectors V and T is calculated
(Equations (15) and (16)).

clr(~V) =

[
ln

42.85
29.70

, ln
14.28
29.70

, ln
42.85
29.70

]
= [0.3663,−0.7326, 0.3663]. (A4)

clr(~T) =
[

ln
45.23
29.67

, ln
14.28
29.67

, ln
40.47
29.67

]
= [0.4214,−0.7315, 0.3102]. (A5)

||~V||a = ||clr(~V)|| =
√
(0.3663)2 + (−0.7326)2 + (0.3663)2 = 0.8972. (A6)
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||~T||a = ||clr(~T)|| =
√
(0.4214)2 + (−0.7314)2 + (0.3102)2 = 0.8994. (A7)

Finally substituting in Equation (10):

Accuracy = 100− ||~V 	 ~T||a
||~V||a + ||~T||a

∗ 100 = 100− 0.0786
0.8972 + 0.8994

∗ 100 = 95.62%. (A8)

Figure A2 shows the previously discussed example of accuracy in compositional
biplot, where: A_T, B_T, and C_T correspond to the training data and A_V, B_V, and C_V
to the validation data when the data have only been categorized for three clusters. How
related the T and V data are in each cluster is evident. In addition, the length of all the
pairwise links between the rays suggests no redundant information. That is, amalgamating
parts is not recommended. The variance retained by the two first axes in the biplot is 79%,
implying that it has high quality, thus suggesting caution in the interpretations.

Figure A2. Example of visualization of training and validation data for P1.

Appendix A.5. Detection Limits

Table A5 shows the detection limits for different patterns of zeros.

Table A5. Detection limits for different patterns of zeros.

For measurements recorded every 5 min. 1440 min/5 min = 288 measurements dl = 1/288 = 0.0035

Consecutive zeros Position 1 Position 2 Position 3 Position 4

1 dl = 0.0035
2 dl/3 = 0.0012 2dl/3 = 0.0023
3 dl/9 = 0.00038 2dl/9 = 0.00077 2dl/3 = 0.0023
4 dl/27 = 0.00012 2dl/27 = 0.00026 2dl/9 = 0.00077 2dl/3 = 0.0023

For measurements recorded every 15 min. 1440 min/15 min= 96 measurements dl = 1/96 = 0.010

1 dl = 0.010
2 dl/3 = 0.0033 2dl/3 = 0.0067
3 dl/9 = 0.0011 2dl/9 = 0.0022 2dl/3 = 0.0067
4 dl/27 = 0.00037 2dl/27 = 0.00074 2dl/9 = 0.0022 2dl/3 = 0.0067
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