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Abstract: We consider a between-host model for a single epidemic outbreak of an infectious disease.
According to the progression of the disease, hosts are classified in regard to the pathogen load. Specif-
ically, we are assuming four phases: non-infectious asymptomatic phase, infectious asymptomatic
phase (key-feature of the model where individuals show up mild or no symptoms), infectious symp-
tomatic phase and finally an immune phase. The system takes the form of a non-linear Markov chain
in discrete time where linear transitions are based on geometric (main model) or negative-binomial
(enhanced model) probability distributions. The whole system is reduced to a single non-linear
renewal equation. Moreover, after linearization, at least two meaningful definitions of the basic
reproduction number arise: firstly as the expected secondary asymptomatic cases produced by an
asymptomatic primary case, and secondly as the expected number of symptomatic individuals that a
symptomatic individual will produce. We study the evolution of infection transmission before and
after symptom onset. Provided that individuals can develop symptoms and die from the disease, we
take disease-induced mortality as a measure of virulence and it is assumed to be positively correlated
with a weighted average transmission rate. According to our findings, transmission rate of the
infection is always higher in the symptomatic phase yet under a suitable condition, most of the
infections take place prior to symptom onset.

Keywords: discrete-time epidemic model; asymptomatic transmission; renewal equation; basic
reproduction number; severity of pathogens; tradeoff
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1. Introduction

Epidemiological models are a powerful mathematical tool to study the spread of
infectious diseases, [1–6]. They can be used to predict the fraction of hosts in a population
who eventually will become infected during each epidemic outbreak of a transmissible
disease. Moreover, single-outbreak models can be concatenated to study a sequence of
waves for a disease like COVID-19. The epidemic model introduced is intended for human
or animal populations and for diseases with some sort of infection prior to symptom onset.
Examples of diseases with asymptomatic carriers are typhoid, HIV, C. difficile, influenza,
cholera, tuberculosis and COVID-19. Some people can be infected with flu viruses, for
instance, and have no symptoms but may still be able to spread the virus to their close
contacts. See also [7] for a paper on the emergence and spread of SARS-CoV-2 variants
of concern.

We choose discrete time for the ease of the implementation of the models, [8,9]. It
could be said that continuous-time and discrete-time models are the two faces of the same
coin, the former being more popular in general. However, the leverage of the latter is
that you do not need to discretize when doing numerical simulations and the probabilistic
background of the models are easier to uncover. Discrete-time models are typically finite
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dimensional, as the one considered in here since the we assumed six different disease stages
including two degrees of symptoms. However, discrete-time models can be also infinite
dimensional when dealing with continuously structuring variables. See, e.g., [10] for the
theory and implementation of Integral Projection Models, which are useful for studying
ecological problems.

On the other hand, epidemiological models are the base to undertake evolutionary
studies of a disease or a pathogen, [11–14]. From the epidemiological point of view,
one could think that the appearance of symptoms of a disease enhances or depresses
transmission success, [14–17]. On the one hand, symptoms could enhance transmission,
for example if coughing and sneezing increases spread beyond what would be predicted
for a given pathogen load. On the other hand, symptoms could alter host behavior to
reduce transmission, e.g., via isolation or avoidance of individuals showing obvious signs
of infection. Interestingly, both effects can happen together and we wonder which one is
most important, that is, if one of them dominates the other. To answer this question we
follow a simple approach consisting in the maximization of the fitness of the pathogen (e.g.,
basic reproduction number of the disease, [18]) under a tradeoff between disease-induced
mortality (virulence, [19]) and transmission of the infection. More precisely, by evolution in
the present paper we mean the competition of pathogens with different virulence levels
and accordingly different infection transmission, as virulence is assumed correlated with
the average transmission rate along infection phases, and all other traits and parameters
of the model are fixed. Moreover, it is assumed that evolution leads to the maximization
of the reproduction number of infectives rather than other epidemiological indicators like
the initial growth rate of the infection. At evolutionary equilibrium, one would expect an
intermediate modest level of virulence.

See for instance [12,13,19–21] for other evolutionary studies using tradeoffs. For
evolutionary epidemiology using the adaptive dynamics approach see, e.g., [11,17]. It is
worth to mention that to check the robustness of the outcomes, we have used three different
definitions of the basic reproduction number, giving the same optimal virulence value, [19].
Those definitions depend on what is understood as infection event.

For a systematic approach to the analytical/numerical computation of the basic repro-
duction number in general structured population models, see [22,23] and the references
therein.

2. The Model: Markov Chain

With the aim of studying the evolution of infectious processes with transmission in two
different phases: a first phase with mild or no symptoms and a second phase where hosts
are showing up symptoms, let us consider a discrete-time model for each epidemic outbreak.
According to the viral load, we deal with hosts classified into the following phases: non-
infectious asymptomatic phase, infectious asymptomatic phase (mild or no symptoms),
infectious symptomatic phase and immune phase (natural immunity). For simplicity,
no demographic turnover is considered and neither non-pharmaceutical measures nor
vaccination are explicitly taken into account. Moreover, reinfections, that is, the loss of
immunity during the epidemic outbreak, will be considered at the end of the paper.

The system takes the form of a non-linear model in discrete-time t = 0, 1, 2, . . .
days, as a Markov chain for the fraction of Susceptible St, Exposed Et (latent who are not
infectious yet), infectious Asymptomatic At, Infectious symptomatic It, Removed Rt (alive
and immune) and (disease-related) Deceased Dt hosts. See the flow diagram in Figure 1 for
an explanation of the transitions considered in the present model. In words: susceptible
hosts, St, enter into the exposed class, Et, upon exposition to the pathogen by a contact
with infectious hosts, At or It. After a while, exposed hosts progress into the infectious but
asymptomatic class, At. Then, they either enter the symptomatic class, It, or recover from
the disease without showing symptoms. Eventually, symptomatic hosts either hopefully
survive and recover or they die from the disease.
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Figure 1. Flow diagram of the SEA-RID non-linear Markov chain in discrete time. Infection process
with probability ε = 1− e−(β1 A+β2 I)/(1−D) depending on the # of infectious hosts, either asymp-
tomatic or symptomatic, over alive population. No demographic turnover. Complete immunity
along each epidemic outbreak. 0 < α, δ, γ, p, q < 1 are the probabilities of the model and β1, β2 > 0
are rates of the infection transmission. Virulence is measured as disease-induced mortality qγ.

The total population is conserved over time, St + Et + At + It + Rt + Dt = 1, t ≥ 0,
and all processes but the infection one, are assumed to be based on geometric distributions,
i.e., P(X = k) = p(1− p)k−1, E[X] = 1

p , Var(X) = 1−p
p2 , for some generic probability p. We

recall that the geometric distribution describes the waiting time between successes in a
Binomial process, i.e., when counting the number of successes in independent tries at some-
thing. Specifically, the model has five fixed probabilities: 0 < α, δ, γ, p, q < 1 corresponding
to the mean latent period 1

α , the mean infectious period 1
δ and 1

γ for the asymptomatic and
symptomatic phases of infection, respectively, the probability of developing symptoms p,
and the proportion of symptomatic hosts that result in death q.

Regarding to the non-linear infection process, we assume a force of infection, that
is, the probability per unit of time of susceptible hosts being exposed to the pathogen,
as the probability

εt = 1− e−(β1 At+β2 It)/(1−Dt) (1)

where β1, β2 > 0 are transmission rates in the asymptomatic and symptomatic phases of
infection, respectively, and so depending on the number of infectious individuals over the
alive population—see [8]. Actually, the expression in (1) corresponds to a Poisson proba-
bility distribution for the number of contacts per day between pathogen and susceptible
host—see Chapter 9 in [6] for discrete-time models with a general force of infection.

According to the assumptions above, the discrete-time model equations for each
epidemic outbreak reads as:

St+1 = (1− εt)St

Et+1 = εtSt + (1− α)Et

At+1 = αEt + (1− δ)At

It+1 = pδAt + (1− γ)It

Rt+1 = (1− p)δAt + (1− q)γIt + Rt

Dt+1 = qγIt + Dt

, t ≥ 0 , (2)

with suitable initial conditions at t = 0.
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For a better understanding of the epidemic model, let us recall some well-known
definitions in regard to system (1) and (2):

• Incidence is the number of new cases per day in the interval (t, t + 1]: εtStN =
(St − St+1)N, where N would be the population size.

• Prevalence is the fraction of the population with infection or disease at a given time
point: Et + At + It.

• Force of infection εt is the probability per unit of time of a susceptible host becoming
infected (here specifically, being exposed to the virus but not infectious yet).

• Infection transmission rates [1/day]: β1, β2 are contact rate × infectiveness probability. If
At + It � 1, Dt < 1, then we have εt = 1− e−(β1 At+β2 It)/(1−Dt) ' β1 At + β2 It.

• Mean incubation period, i.e., average time to symptom onset, is 1
α + 1

δ days.
• Mean infectious period as either asymptomatic or symptomatic host is 1

δ +
1
γ days.

• Total number of cases until time t:
∞

∑
j=0

εt−jSt−jN = (S−∞ − St+1)N, where N would

be the population size.
• Final size of the epidemics: fraction of the initial susceptible population that eventu-

ally becomes infected during the outbreak (1− S∞)—see Section 6.
• Virulence, as a general concept [19,20], is the decrease in host fitness due to the

infection. A measure of virulence is typically taken as the disease-induced mortality
qγ, the severity of the pathogen.

• Case fatality ratio is the proportion of symptomatic cases that result in death q.
• Serial interval is the time between successive cases in a chain of transmission—see

Section 4.

It is straightforward to check that system (1) and (2) has the disease-free steady state:

(S∗, 0, 0, 0, R∗, D∗) , with S∗ + R∗ + D∗ = 1 , (3)

and as expected, no endemic equilibrium is possible because we have assumed no demo-
graphic turnover.

System (2) is inspired by the continuously structured model introduced in [24] where
time since infection for the asymptomatic hosts is considered. However, the system of
equations forms a discrete model for its own instead of being a simple discretization of a
continuous model, since the force of infection εt contains an exponential term instead of a
truncated approximation—see the discussion in [8] and Chapter 9 in [6].

3. Non-Linear Renewal Equation

In order to reduce the model to a single non-linear renewal equation, we need to
extend the initial conditions at t = 0 to discrete histories in (−∞, 0], i.e., the state variables
in the past, such that limj→∞ S−j = 1, and limj→∞ E−j = limj→∞ A−j = limj→∞ I−j =
limj→∞ R−j = limj→∞ D−j = 0.

Firstly, we can reduce system (1) and (2) to 4 state variables since the fraction of
removed and deceased hosts are given by

Rt = 1− (St + Et + At + It + Dt) and Dt = qγ
∞

∑
j=1

It−j , (4)

respectively. Then, using the model equations recursively we get to:
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St =
∞

∏
j=1

(1− εt−j) = exp
(
−∑∞

j=1
β1 At−j+β2 It−j

1−Dt−j

)
Et =

∞

∑
j=1

(1− α)j−1εt−jSt−j

At = α
∞

∑
j=1

(1− δ)j−1Et−j

It = pδ
∞

∑
j=1

(1− γ)j−1 At−j

, t ≥ 1 , (5)

Finally, plugging the equations one into another (formulas extended to any time t:
past, present or future), we end up with the following scalar non-linear discrete renewal
equation for the fraction of asymptomatic hosts At:

At = α
∞

∑
j=1

(1− δ)j−1
∞

∑
k=1

(1− α)k−1εt−j−k

∞

∏
n=1

(1− εt−j−k−n) (6)

with εt = 1− exp
(
− (β1 At + β2 pδ∑∞

j=1(1−γ)j−1 At−j)/(1−Dt)
)

and Dt = pqδγ∑∞
k=1(1−

γ)k−1∑∞
j=1 At−j−k. Even though, non-linear renewal Equation (6) seems to be awkward, it

has a clear and easy probabilistic interpretation. Indeed, rearranging the terms in (6), the
fraction of asymptomatic hosts at time t is given by adding up the product of the following
five terms:

At = ∑j,k≥1

[
∏n≥1(1− εt−j−k−n)

]
· εt−j−k · α(1− α)k−1 · δ(1− δ)j−1 · 1

δ = ∑j,k≥1

probability for a host of being susceptible until time t− j− k ×
probability per time-unit of becoming infected at t− j− k ×

probability latent period is k days ×
probability infectious asymptomatic period is j days ×

mean infectious asymptomatic period.

At this point we can compute the progression of the infection over time, either from
the six evolution Equations (1) and (2) or from the single non-linear renewal Equation (6).
On the one hand, we can compute the fraction of hosts in each disease stage from the model
equations, taking suitable initial conditions at t = 0 like

(S0, E0 ' 0, A0 ' 0, I0 ' 0, R0 = 0, D0 = 0) , with S0 + E0 + A0 + I0 = 1 .

On the other hand, we can also compute the fraction of asymptomatic hosts At, t ≥ 1,
from the renewal equation (6) assuming that its initial history

{A−j | j ≥ 0 , with lim
j→∞

A−j = 0}

is known. Then, we can compute the fraction of symptomatic hosts at time t ≥ 1 as

It = pδ
∞

∑
j=1

(1 − γ)j−1 At−j, with compatible initial condition I0 = pδ
∞

∑
j=1

(1 − γ)j−1 A−j.

Similarly, we can also compute the other state variables if needed.

4. Basic Reproduction Number

Taking advantage of the reduced systems (5) and (6), in this section we are going
to compute the basic reproduction number R0 which describes the initial phase of the
infection, [18,22,23,25,26].
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We can compute the basic reproduction number for the present model once we have
decided what is understood as an infection event. Here we have two natural points of view:

1. the infection event is meant as the exposition to the pathogen of a susceptible host
becoming an asymptomatic individual.

2. the infection event is meant as the onset of symptoms for a host who has been exposed
to the pathogen in the past.

Taking the first viewpoint, it is enough to linearize the renewal Equation (6), instead
of linearizing (1) and (2) around the disease-free equilibrium.

First of all, around the disease-free steady state (3), the force of infection becomes

εt ' β1 At + β2 pδ
∞

∑
j=1

(1− γ)j−1 At−j and from non-linear renewal Equation (6), computed

in the previous section, we get to the following linear discrete renewal equation:

At =
∞

∑
j=1

δ(1− δ)j−1
∞

∑
k=1

α(1− α)k−1
( β1

δ
At−j−k +

β2 p
γ

∞

∑
n=1

γ(1− γ)n−1 At−j−k−n

)
(7)

In this equation, the three geometric distributions of the model appear clearly, with prob-
abilities δ, α and γ, respectively. In other words, α(1− α)k−1 · δ(1− δ)j−1 is the probability
that the asymptomatic serial interval is k + j days and α(1− α)k−1 · δ(1− δ)j−1 · γ(1− γ)n−1

is the probability that the pre-symptomatic serial interval is k + j + n days and so, (7)
gives the asymptomatic hosts at time t computed from the asymptomatic ones in the past
s < t. As expected, the average time between successive cases, with or without showing
symptoms are 1

α + 1
δ +

1
γ and 1

α + 1
δ days, respectively. Taking the standard approach of

the next-generation matrix/operator—see [22–24,27,28], from the 1-dimensional renewal
Equation (7) we readily get the basic reproduction number as:

R0,a =
β1

δ
+

β2 p
γ

. (8)

It is interpreted as the expected secondary asymptomatic cases produced by an asymptomatic
primary case, since it is computed from the renewal equation for the asymptomatic hosts.
However, this expression could have been derived directly from the model ingredients
since, from a asymptomatic primary case,R0,a =

β1
δ + β2 p

γ traces the number of infections

during the asymptomatic phase β1
δ plus, provided that the host develops symptoms (p > 0),

the number of infections during the symptomatic phase β2
γ p.

Furthermore, we can compute the effective reproduction number, that is, the time-
dependent analog to the basic reproduction number (8), see [6], as

Rt,a =
1− e−β1 At/(1−Dt)

At
· St

δ
+ p

1− e−β2 It/(1−Dt)

It
· St

γ
. (9)

It is an indicator of the transmission potential at each day of the epidemic outbreak
and is analogously computed from the model ingredients as the expected number of new
cases produced by an asymptomatic case, provided that the situation at the t-th day is
unchanged.

See Figure 2 for an illustration of the progression over time of the three types of
infected hosts (exposed→ asymptomatic→ symptomatic), computed from (1) and (2) with
suitable initial conditions, as well as the effective reproduction numberRt,a that starts at
t = 0 as the basic reproduction number.
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Figure 2. Progression over time of the percentage of hosts in each infected stage Et, At, It, t ≥ 0 (right
axis) and the effective reproduction numberRt,a—see (9) (left axis) giving the transmission potential
of the disease at the t-th day. Size of the peaks: E60 = 1.93%, A64 = 7.5%, I67 = 3.89%. Parameter
values: α → 1, incubation period 1/α + 1/δ = 5 days, infectious period 1/δ + 1/γ = 7 days,
probability of developing symptoms p = 0.7, virulence qγ = 6.6%, transmission rates β1 = 0.75 δ

and β2 = 0.5, and basic reproduction numberR0,a = 1.8—see (8).

As we have already said at the beginning of the section, different reproduction num-
bers can be defined depending on what is understood as the infection event of the disease—
see the discussion in [22]. Before tackling the computation of the basic reproduction number
from the second viewpoint stated above, let us consider the following 2-dimensional linear
discrete renewal equation:

It = pδ
∞

∑
j=1

(1− γ)j−1 At−j

At =
∞

∑
j=1

(1− δ)j−1
∞

∑
k=1

α(1− α)k−1
(

β1 At−j−k + β2 It−j−k

) (10)

for the symptomatic and asymptomatic hosts (It, At) (the ensemble of infectious hosts).
It comes from last equation in (5), and (7). From system (10) we can get a joint basic

reproduction number as the spectral radius of the 2-dim. matrix:

 0 pδ
γ

β2
δ

β1
δ

 which turns

out to be R̃0 = β1
2δ +

√( β1
2δ

)2
+ β2 p

γ but it lacks of a clear epidemiological interpretation.
However, we can use (10) to obtain a renewal equation for the symptomatic hosts. We
proceed as follows. On the space of sequences (initial histories), we can define the linear
operator (Kφ)t := ∑∞

j=1(1− δ)j−1∑∞
k=1α(1− α)k−1φt−j−k. Then, the second equation in (10)

becomes At = β1(KA)t + β2(KI)t. If β1
δ < 1, we can isolate At = β2

(
(Id− β1K)−1K I

)
t

and (10) reduces to the following single renewal equation for It :

It = β2 pδ
∞

∑
j=1

(1− γ)j−1
(
(Id− β1K)−1K I

)
t−j

.
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Although we do not have the explicit expression of the inverse of the operator K,
again, from this 1-dimensional linear discrete renewal equation we readily get the basic
reproduction number as:

R0,s =
β2 p
γ

1
1− β1/δ

whenever
β1

δ
< 1 (11)

where we have used that constant sequences are the eigenvectors of operators K and
K−1. The expression above is interpreted as the expected number of symptomatic individuals
that a symptomatic individual will produce. Taking into account that R0,s = β2 p

γ
1

1−β1/δ =

β2
γ p

∞

∑
n=1

( β1
δ )n−1, its direct derivation form the model ingredients would be as follows: from

a symptomatic primary case,R0,s is the sum of all pre-symptomatic cases generated from

that primary case in their symptomatic phase: β2
γ

(
p + p β1

δ + p
(

β1
δ

)2
+ . . .

)
, provided

that β1
δ < 1. On the contrary, if β1

δ ≥ 1 then the quantityR0,s would not be bounded. We
recall that p is the probability of developing symptoms.

As expected, the three expressions of the basic reproduction number: R0,a in (8) from
the asymptomatic viewpoint,R0,s in (11) from the symptomatic viewpoint and R̃0 above
from the joint viewpoint, are such that

sign(R0,a − 1) = sign(R0,s − 1) = sign(R̃0 − 1),

and they are related via a function of β1
δ and β2 p

γ and are independent of probabilities α, q.
Let us remark that the expression in (8) is the one that the reader would expect intuitively,
as it is for many reasons actually.

4.1. Initial Growth Rate

For the sake of completeness, let us determine the growth rate of the initial phase of
the outbreak and check its expected relationship with the basic reproduction number of
the infection. Let the initial growth rate of the disease be denoted by ρ > 0. Looking for
solutions of (7) as geometric progressions At = ρ0 · ρt, we get to the following characteristic
equation for ρ > ρm := max{1− δ, 1− α, 1− γ}:

1 =
α

(ρ + δ− 1)(ρ + α− 1)

(
β1 +

β2 pδ

ρ + γ− 1

)
,

where 0 < α, δ, γ, p < 1 are four probabilities of the model and β1, β2 > 0 are transmission
rates. The right hand side of this equation, as a function of ρ > ρm is a continuous strictly
decreasing function denoted by F(ρ) such that F(1) = R0,a, the basic reproduction number
given in (8), limρ→ρ+m

F(ρ) = +∞ and limρ→∞ F(ρ) = 0. Therefore, there is a unique real
solution ρ∗ > ρm and, as expected, sign(ρ∗ − 1) = sign(R0,a − 1). Unfortunately, we
cannot get to an explicit expression for the initial growth rate ρ∗.

So far all the computations are independent of the case fatality ratio q, except renewal
equation (6) which is equivalent to the original Markov chain model.

5. Evolution of Infection Transmission

Once we have determined the occurrence of an epidemic outbreak, e.g., whenR0,a > 1,
in this section we study the evolution of infection transmission before and after symptom
onset. For similar studies on evolutionary epidemiology—see, e.g., [11–14,17,19–21].

We will focus on the long-term evolutionary dynamics of the virulence of the pathogen
assuming some correlation between parameters of the model and taking for granted that
evolution favors traits maximizing the basic reproduction number.
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First of all, let us define the following weighted mean transmission rate:

β̄ =
β1 + β2 p

1 + p
(12)

which is an average between pre-symptomatic and post-symptomatic rate of infections β1
and β2, respectively, depending on the probability p of developing symptoms. If p would
be zero then this mean would correspond to purely asymptomatic transmission.

Secondly, we will assume that virulence qγ, i.e., disease-induced mortality, is positively
correlated with the mean transmission rate β̄ during both infectious stages. Specifically, let
us assume the following virulence-transmission tradeoff:

• Provided that hosts can develop symptoms p > 0 and die from the disease q > 0,
virulence is positively correlated with the mean transmission rate (12) in the form:

qγ = p · cβ̄2 ≤ 1 (13)

with c > 0 a proportionality constant. Notice that if there was no possibility of
developing symptoms then virulence would be null (no disease-induced mortality).

In this scenario, when mean transmission rate β̄ increases, also virulence qγ does
according to (13) but transmission time (expected duration of both infectious stages) de-
creases since T = 1

δ + 1
γ = 1

δ + q
pcβ̄2 . On the other hand, the fitness of the pathogen is

typically measured by the basic reproduction number whose three equivalent expressions
have been computed in Section 4 as:

R0,a =
β1

δ
+

β2 p
γ

, R0,s =
β2 p
γ

1
1− β1/δ

, R̃0 = β1
2δ +

√( β1
2δ

)2
+ β2 p

γ . (14)

Without loss of generality, we can use the first expression (asymptomatic viewpoint)
to optimize with respect to the transmission rate in the symptomatic phase. Indeed,
putting (13) and (12) intoR0,a we get to the following function:

R0,a(β2) =
β1

δ
+

β2q
cβ̄2 =

β1

δ
+

β2q
c

(
1 + p

β1 + β2 p

)2

which has a global maximum at β∗2 = β1
p , p > 0, meaning that transmission rate is always

higher after symptom onset β∗2 > β∗2 p = β1—see Figure 3 for an illustration with plausible
values of model parameters. Analogous functions are obtained forR0,s(β2) and R̃0(β2).

Moreover, this optimal transmission rate can be translated into optimal virulence.
Indeed, using the relationships in (12) and (13), we get to the optimal mean transmission

β̄∗ = 2β1
1+p and, most importantly, the optimal virulence qγ∗ = p · c(β̄∗)2 = p · c

(
2β1
1+p

)2
.

Therefore, under the virulence-transmission tradeoff of this section, there is an intermediate
virulence for a pathogen to maximize the basic reproduction number—see Figure 4 for an
illustration showing the optimal virulence (quite small level ∼8%) maximizing the basic
reproduction number.

At optimal virulence qγ∗, sinceR∗0,a = β1

(
1
δ +

1
γ∗

)
we have that most of the infections

take place prior to symptom onset if δ < γ∗, in other words, if the asymptomatic stage
is longer than the symptomatic one—see Figure 5 for a summary of the outcomes of
this section. See [15] for empirical data on COVID-19 suggesting that pre-symptomatic
transmission may occur in a large proportion of transmission events.
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Figure 3. Basic reproduction numberR0 is computed for each transmission rate β2, from the asymp-
tomatic, symptomatic and joint viewpoints, see (12)–(14), where virulence-transmission tradeoff

is qγ = p · c
(

β1+β2 p
1+p

)2
, i.e., gains in transmission mean increasing virulence. Optimal values are

R∗0,a = 1.2, R∗0,s = 1.82 and R̃∗0 = 1.15 at the same point β∗2 = β1/p = 0.27. Parameter values:
1/δ = 4 days, β1/δ = 0.75 (dashed line), p = 0.7, q = 0.2 and c = 2.4 .
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Figure 4. Plots with respect to virulence qγ (probability of dying due to disease symptoms). Left

panel: mean transmission rate β̄ =
√

qγ
pc —see (13). Center panel: transmission time T = 1

δ +
q

qγ

days. Right panel: basic reproduction numbers as in Figure 3 but as functions of virulence. Optimal
virulence qγ∗ = 0.08 for the maximization of reproduction numbers. Parameter values as in Figure 3.
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transmission rate

exposure transmission onset symptom onset

(expected) timeasymptomatic phase symptomatic phaselatent phase

Figure 5. At maximal basic reproduction number, transmission rate is always higher in the symp-
tomatic phase β∗2 > β∗2 p = β1, yet most of the infections take place prior to symptom onset if
longer asymptomatic phase 1

δ > 1
γ∗ . # of pre-symptomatic infections 62% (blue area) and # of post-

symptomatic infections 38% (green area) and the sum of both areas is the basic reproduction number
R0,a =

β1
δ +

β∗2 p
γ∗ . Parameter values: 1/δ = 4 days, 1/γ∗ = 2.42 days, β1/δ = 0.75, p = 0.7, q = 0.2

and c = 2.4. No-transmission of the infection on the latent phase.

6. Final Size of Symptomatic Hosts

In this section, we are interested in computing the final size of the symptomatic host
population, i.e., the fraction of hosts who showed up symptoms at some point in the past.
To do that, we have to compute the final size of the epidemics 1− S∞ firstly. Let us remark
that the computation below is rather technical.

The idea is to write the state variables depending on St−j, so in terms of the fraction
of susceptible hosts in the past. First of all we have that εt =1− St+1

St
from the first equation

in (2). Then from (5),

Et =
∞

∑
j=1

(1− α)j−1(St−j − St−j+1) and At = α
∞

∑
j=1

(1− δ)j−1
∞

∑
k=1

(1− α)k−1(St−j−k − St−j−k+1).

Now summing up the terms we get
∞

∑
n=1

At−n = α
∞

∑
j=1

(1− δ)j−1
∞

∑
k=1

(1− α)k−1(1− St−j−k)

and
∞

∑
n=1

It−n = pδα
∞

∑
m=1

(1− γ)m−1
∞

∑
j=1

(1− δ)j−1
∞

∑
k=1

(1− α)k−1(1− St−m−j−k). Finally, taking

the limit as time goes to infinity, we have that lim
t→∞

Dt = lim
t→∞

qγ∑∞
n=1 It−n = pq(1− S∞)

and we get to the “final” state:

S∞ > 0, E∞ = 0, A∞ = 0, I∞ = 0, R∞ = (1− pq)(1− S∞), D∞ = pq(1− S∞) .

To end up, St from the first equation in (5) is readily bounded in the interval:

exp

(
−

∞

∑
n=1

β1 At−n+β2 It−n
1−D∞

)
≤ St ≤ exp

(
−

∞

∑
n=1

β1 At−n+β2 It−n

)

and using the computations above, it turns out that lim
t→∞

∞

∑
n=1

β1 At−n + β2 It−n =
( β1

δ +

β2 p
γ

)
(1− S∞). Finally, we get a bounded interval for S∞ solving 2 non-linear equations:

e−R0,a
1−S∞

1−pq(1−S∞) ≤ S∞ ≤ e−R0,a(1−S∞) .
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If pq � 1 we recover the classical equation S∞ = e−R0,a(1−S∞) for the final size of the
epidemics—see [8]. Note again thatR0,a has a central role over the other expressions for
the basic reproduction number.

Once we have determined the final size of the epidemics, either as the midpoint of
the interval above for instance or computed by numerical simulation, we can compute the
final size of the symptomatic hosts as γ

(1−p)δ+γ
(1− S∞). The latter takes into account the

fraction of infected hosts reaching the state Removed or Deceased that corresponds to the
symptomatic hosts—see the arrows in the diagram of Figure 1.

Taking parameter values of Figure 5 and using midpoint for the computation of S∞,
we get that the final size of the epidemics is (1− S∞) = 35.3% and the final size of the
symptomatic hosts is γ

(1−p)δ+γ
(1− S∞) = 84.6%(1− S∞) = 29.9% .

7. Generalization

If the goal is to fit the discrete-time model (2) to epidemiological data on a specific
disease, some extensions are needed. Among others, for instance, we may wonder to
include some loss of immunity along the same epidemic outbreak (i.e., allowing a fraction
of recovered hosts to come back to the susceptible stage with reinfection probability θ) and
to extend the time at the infected stages E→ A→ I, from geometric distributions (discrete
analog of exponential distributions) to negative binomial distributions (discrete analog of
Gamma distributions). So, the Markov chain model (2) can be extended as the following
enhanced model:

St+1 = (1− εt)St + θRt

E1
t+1 = εtSt + (1− α)E1

t , Ei
t+1 = αEi−1

t + (1− α)Ei
t

A1
t+1 = αEn

t + (1− δ)A1
t , Ai

t+1 = δAi−1
t + (1− δ)Ai

t

I1
t+1 = pδAn

t + (1− γ)I1
t , Ii

t+1 = γIi−1
t + (1− γ)Ii

t

Rt+1 = (1− p)δAn
t + (1− q)γIn

t + (1− θ)Rt

Dt+1 = qγIn
t + Dt

i = 2 . . . n (15)

where εt = 1− e−(β1 At+β2 It)/(1−Dt) with At = ∑n
i=1 Ai

t and It = ∑n
i=1 Ii

t being here the total
fraction of asymptomatic and symptomatic hosts, respectively, that is, the ensemble of hosts
in the n sub-stages for each type.

Here, the underneath probabilistic model for the linear transitions between infected
stages E → A → I, is given by P(X = k) = (k−1

n−1)pn(1 − p)k−n, k ≥ n, E[X] = n
p ,

Var(X) = n 1−p
p2 , for some generic probability p and some fix integer n ≥ 1. As in Section 2,

the total population is conserved over time and the model has six fixed probabilities:
0 < α, δ, γ, p, q, θ < 1

For system (15), one can check that only the disease-free steady state is possible
Ei
∗ = Ai

∗ = Ii
∗ = 0, i = 1 . . . n, S∗ + R∗ = 1 and D∗ = 0, and the basic reproduction number

from the asymptomatic viewpoint is analogous to (8) and reads as:

R0,a =
β1n

δ
+

β2 pn
γ

,

where we recall that n is the number of sub-stages considered. Again, this expression can
be readily derived from the model ingredients taking into account that here the expected
asymptomatic/symptomatic infectious period is n

δ and n
γ , respectively—see also Section 4.

Analogous equations to (6) and (7) can be derived for the enhanced model (15), either
by the probabilistic interpretation (negative binomial distributions) or by the computation
of the terms involved.
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8. Discussion and Conclusions

Discrete-time epidemic models are simple yet powerful dynamical systems to describe
the spread of an infectious disease. They are very easy to implement on a computer. For
the present model (1) and (2) in particular, we have achieved a probabilistic interpretation of
the model when reducing the whole system to a single non-linear renewal equation for the
fraction of asymptomatic hosts. See the detailed interpretations of Equations (6) and (7),
in particular, the determination of the probability distribution of serial intervals (time
between successive cases, with or without showing symptoms). The importance of renewal
equations in ecology and epidemiology has been already identified by many authors in the
past. See the books by N. Bacaër et al. [29–31] and the references therein for a review on the
history of models of population dynamics. In addition, we have focused on two important
indicators, namely, the transmission potential (basic reproduction number) and the severity
of the pathogen (virulence).

For a model with two different type of infectious hosts, the ones showing mild or
no symptoms and the ones showing clear symptoms of the disease, it is interesting to
wonder which viewpoint is most important. According to our findings, the asymptomatic
viewpoint is the most important when reducing the model to a renewal equation in Section 3
or computing the final size of the epidemics in Section 6, or when deriving the basic
reproduction number in Section 4 (and the related non-explicit initial growth rate ρ of the
infection in Section 4.1). The expression ofR0,a in (8) is what one would expect intuitively
as the basic reproduction number, i.e., the sum of the transmission rate times the expected
duration of the transmission in each infectious stage, taking into account the proportion of
hosts reaching the symptomatic phase. Its counterpart from the symptomatic viewpoint is
mathematically more involved, and most importantly, we have to convince the reader that
the sought expression (11) corresponds to a properly-defined basic reproduction number
actually. Regarding the infection transmission before and after the symptom onset, the best
strategy for a pathogen is to silently spread as much as possible until the symptom onset
and then enhance the transmission rate to compensate the fact that some of the hosts will
not reach the symptomatic phase (i.e., they will recover without showing symptoms). The
approach and the assumptions taken in Section 5 allows us to draw this conclusion—see
Figure 5 summarizing the outcomes.
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