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A B S T R A C T

Background and Objectives. Discovering causal associations between variables is one of the main goals of
clinical trials, with the ultimate aim of identifying the causes of specific health status. Prior knowledge of
causal paths could help ensure patients do not develop the resultant conditions. In recent years, thanks to
the enormous amount of health data stored with the support of digital tools, attempts have been made to
employ Machine Learning to infer causality. Those methodologies suffer from some deficiencies in controlling
cofounders when analysing causality, as well as providing causal rules general enough to be useful in healthcare
practice. Conversely, this work presents and evaluates CauRuler, a new approach to deal with causality from
association rules. The proposed approach uses a pruning strategy to reduce the association rule set, which does
not compromise the causality learning capability of the algorithm. This behaviour makes the algorithm suitable
for exploiting large health databases with thousands of patients and medical instances. CauRuler can control
a larger number of confounders than other proposals, bringing robustness to causal analysis and avoiding
the identification of spurious associations. Additionally, the method generalizes causality using anti-monotone
properties to obtain complex and general causal paths. The method can target correct causal associations in
complex medical databases with retrospective data.
Method: CauRuler extends association rule mining with an irredundancy property so that the set of rules learnt
is reduced in size and generalized. General association rules, conformed by fewer items, enable controlling
more confounding variables to verify, with more statistical evidence on available data, if they represent causal
paths in patient disease trajectories.
Results: CauRuler has been tested on a complex real medical database (3,5 M visits to the primary care services
between 2019 and 2020, and controlling over 15.000 different variables including diagnoses and demographic
and other clinical patient data). The reduction of the rule set achieved by the pruning strategy goes from 7.732
to 2.240 rules, from which 46 have been found to have causality relationships in the patient trajectories, and
generalized to 14 rules tested as true causal relationships thanks to the confounding analysis. These rules have
been validated by clinicians with the support of a graphical map. The obtained causal paths control in average
of 906 confounder variables, retrieving robust results.
Conclusions: Causal relationships enable predicting causal paths between health conditions according to
patient trajectories. Knowing these causal paths is crucial for understanding and preventing the appearance
or worsening of diseases in patients. CauRuler, with high demanding thresholds, has proven its efficiency and
effectiveness in targeting previously known causal associations between diagnoses, reaching consensus in the
medical community. Softening these thresholds should help target interesting general causal paths.
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1. Introduction

Some of the major milestones in modern medicine were achieved
immediately following the identification of causal associations between
clinical conditions, agents and treatments. The identification of con-
taminated water as the causal source of cholera in the late nineteenth
century, for example, represented a breakthrough and went on to
save many lives. Nevertheless, when dealing with causality, effects are
typically determined by a series of causes interacting to a greater or
lesser degree; not being exclusive between them. A classic example is
the failure to identify tobacco consumption as one of the major causes
of lung cancer until as late as 1964 [1]. Non-smokers can experience
lung cancer and regular smokers may never suffer from it. This can be
explained by the fact that smoking is not the sole cause of lung cancer,
and it does not represent 100% of those who suffer from it. Other
causal factors such as genetic predisposition and pollution also play a
crucial role. Hence, we can find necessary causes (water contaminated
by faecal matter → Cholera) as well as sufficient causes (smoking →
lung cancer) [2]. In other words, when the same causes are present, the
same effects are produced; even so, this does not imply that an effect
is always produced and that there is a causative relationship.

Historically, Randomized Controlled Trials (RCTs) have been the
most commonly used research method for identifying causality in the
health field. They are based on detecting as much experimental data
supporting the statistical dependency between 𝑋 and 𝑌 to conclude the
first causally influences the latter (𝑋 → 𝑌 ) [3]. However, this approach
usually has a series of limitations. RCTs might not be logistically
feasible (need of a minimum number of subjects in trials [4]), ethical (if
causes are hazardous for the subjects), financially worthwhile or even
theoretically possible.

The definition of causality gave rise to many philosophical and
mathematical problems for some time. Pearl and Verma initially pro-
posed the basis of the semantics in the mathematical field to define
causality [5]. Employing these semantics, graphical causal modelling
algorithms were designed. The majority of these methods are based
on Bayesian networks and other probabilistic causal modelling ap-
proaches. Both Bayesian networks and causal networks represent a
breakthrough in the field of causality, having reached a consensus on
their effectiveness. Nevertheless, Bayesian learning is a computation-
ally expensive technique, underperforming when scaling to large data
volumes, as the ones in the health field [6]. While mathematically
robust, they are of no use when it comes to extrapolating them to
real scenarios [7]. Other methods aim to overcome the aforementioned
computational issues by learning partial causal networks [8,9].

Machine Learning (ML) and Artificial Intelligence (AI) have enabled
the development of alternative methods based on the analysis of retro-
spective data stored in healthcare systems. In particular, Association
Rule miners (ARMs) identify associations and correlations between
variables in a transactional database structured as association rules
with the form ‘‘if-then’’ (𝑋 → 𝑌 ) [10]. Nevertheless, correlation im-
plies association, but not necessarily causation [11]. Hence, we cannot
assume the association rules targeted by those methods have a causal
nature. However, all causal associations by definition are associa-
tions [12]. With these prerequisites, some proposals of algorithms have
attempted to detect those causal structures from association rules [13,
14]. Each resulting association is handled as an independent observa-
tional respective study to detect if there is sufficient statistical evidence
to support causality while controlling variables which can play the role
of confounders (as age, and gender, typically are). This methodology
presents an improvement concerning RCTs since it uses retrospective
observational data rather than prospective data, and unlike most of
the bayesian approaches, can be escalated to large data volumes.
Nevertheless, those methods might lose some of the causal associations
thus observing partial causal networks.

Although being interesting approaches to target causality, ARMs
2

tend to suffer from high computational costs, with significant research
carried out to overcome the issue [15,16]. Moreover, there exists a
limitation related to the output parametrization tradeoff : algorithms
depend on different parameters whose settings condition the size of
the rule set obtained. If they are over-constrained, the size of the
rule set is too small, discovering too evident associations. Conversely,
softening the thresholds yields a basis of rules which is too large to
be interpreted. This calls for a certain degree of expertise and sheer
luck to set the parameters correctly to find the rules governing the
previously unknown data. Some methodologies tried to improve the
aforementioned aspect by introducing a novelty notion. The objective is
performing a pruning of the resulting rule set through the use of other
parameters which evaluate the novelty or redundancy of the association
rules to achieve a minimum sized non-redundant set of rules [17–19].
Thanks to this methodology, a minimum set of rules is obtained which
can be easily interpretable without the loss of too much information.

This research is concerned to develop an algorithm able to auto-
matically discover causal rules while trying to avoid information loss
in medical databases. The algorithm suggested in this paper, CauRuler,
is based on the procedure from [13]. The main contributions of the
algorithm are the use of a pruning method to reduce the association rule
set size, which does not compromise the causality learning capability
of the algorithm. This behaviour makes the algorithm suitable for
exploiting larger health databases. Moreover, CauRuler can control a
larger number of confounders than other proposals, bringing robust-
ness to causal associations and avoiding the identification of spurious
associations. Additionally, the method generalizes causality using anti-
monotone properties to obtain complex and general causal relations.
Finally, the method outputs causal maps where interactions between
different generalized causal patient trajectories are shown thus facili-
tating the clinician’s interpretation of the sufficient causes for certain
clinical conditions.

Experimentation is carried out on a complex database from a real
clinical environment involving the diagnoses of 400.000 patients dur-
ing the years 2019 and 2020 (including part of the covid-19 period).
The resulting causal paths were evaluated by different physicians to
ensure their suitability and the effectiveness of the model to target
known or feasible causal associations for high demanding thresholds.

1.1. Related work

In the field of health data mining, causal structures are usually
captured using bayesian approaches. There are multiple examples in
the literature of Bayesian networks being used to develop causal maps
in medical databases [20]. Others are specific to a particular condi-
tion [21]. Causal association paths might not be only interesting at
the patient level to prevent diseases, but also may be used to design
complex models to improve understanding in patient evolution [22].

ARMs have been used to identify patterns for specific diseases [23],
comorbidities related to a target disease [24] or multi-morbidity pat-
terns [25]. Others aimed to find patterns in large databases of Elec-
tronic Health Records (EHR) involving a collection of variables such as
diseases, symptoms and drugs [26]. However, those methods output
associations expressed through rules of the form ‘‘if-then’’, that do
not necessarily represent causation. Alternatively, other research com-
plements ARMs with algorithms that enable the identification of the
association structures that are causal to understand patient trajectory
in health [13,14].

2. Methods and materials

Fig. 1 illustrates the CauRuler workflow proposed in this paper to
mine causal associations. The algorithm can be divided into three parts:
data preprocessing, associations mining and the causality study of the
former. Appendix A at the end of the paper contains the variables and
parameter definitions which can be helpful for the reader to understand

the algorithms and mathematical definitions in the following sections.
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Fig. 1. CauRuler methodology workflow. Trajectories and the binary repre-
sentations of the former are constructed from the same Electronic Health
Records (EHR) database. Raw trajectory is used for rule mining while binary
representation is used to test the causality nature of each association.

2.1. Preprocessing

The raw data used in the method are EHR databases with health
information representing patients’ medical histories. EHRs consist of
real-time, patient-centred records and contain diagnoses, medications,
treatment plans, allergies, etc. The data needs to be transformed before
ML algorithms can be applied. This method performs two prepro-
cessing: generation of clinical trajectories (from which we obtain a
representation of the EHR in the format of medical trajectories to apply
rule mining) and the binary representation of the trajectories (which
allow the causality study and the controlling of confounders).
3

2.1.1. Trajectory generation
Rule miners act on transactional databases to mine associations

between products. In a medical context, we identify transactions as
patient clinical trajectories 𝑇 = {𝑡𝑝1 ,… , 𝑡𝑝𝑀 } given a set of patients 𝑃 =
{𝑝1,… , 𝑝𝑀}. In the aforementioned frameworks, the products represent
clinical instances such as procedures, drugs, results and diagnoses.
In the matter at hand, clinical trajectories are completely formed by
diagnoses defined in a tuple 𝐷 = ⟨𝑑1,… , 𝑑𝑁 ⟩, where 𝑁 represents the
total number of distinct diagnoses. For example, 𝐷 could represent the
standard ICD-10 ontology [27].

Definition 1 (Clinical Trajectory). A clinical trajectory 𝑡 of patient 𝑝𝑖 is
formed by all the diagnoses 𝑑𝑖 ∈ 𝐷 coded for patient 𝑝𝑖 in a determined
period of time for a EHR database. Trajectories may have different
lengths and contain diagnose repetitions.

𝑡𝑝𝑖 = ⟨𝑑𝑝𝑖1 , 𝑑𝑝𝑖2 ,… , 𝑑𝑝𝑖𝑛𝑝𝑖 ⟩ on 𝑑𝑝𝑖𝑗 ∈ 𝐷

2.1.2. Binary trajectory generation
Given a set of patients 𝑃 and their EHR records in a database, and

a set of trajectories 𝑇 , this pre-processing step generates binary trajec-
tories of patients 𝑇 𝑏 = {𝑡𝑏𝑝1 ,… , 𝑡𝑏𝑝𝑀 } which contain all the information
required for a causal analysis of patients’ trajectories.

The patient binary clinical trajectory is a binary representation of
the clinical trajectory of the patient combined with other clinic interest
variables (𝑉 = ⟨𝑣1,… , 𝑣𝐾 ⟩) that could be relevant for her health, such as
sex, age and level of medical coverage. 𝑉 variables play an important
role since they can act as confounders (it is crucial that they are
equally distributed between the control and exposed cohorts, healthy
and non-healthy cohort respectively).

To facilitate the posterior controlling of confounder variables the
clinical data needs to be preprocessed to reach a binary representation
𝑉 𝑏 of the 𝑉 variables. If 𝑣𝑖 ∈ 𝑉 is a numeric variable, it is categorized
into a new discrete variable 𝑣𝑐𝑖 taking values from a predefined set.
Hereafter, all categorical variables 𝑣𝑖 ∈ 𝑉 i 𝑣𝑐𝑖 are binarized resulting in
a set of variables 𝑉 𝑏 = [𝑣𝑏1,… , 𝑣𝑏

𝐾𝑏 ], with 𝑣𝑏𝑗 ∈ {0, 1}. This is commonly
known as one-hot-encoding [28,29]. For example, the variable age is
discretized in 10 year intervals generating 10 binary variables, one per
discrete value. Each patient will only present 1 in one of this set of
discretized variables.

Definition 2 (Binary Clinical Trajectory). Given a trajectory 𝑡𝑝𝑖 for
patient 𝑝𝑖, and their binary clinical values, 𝑣(𝑏)𝑝𝑖1 ,… , 𝑣(𝑏)𝑝𝑖

𝐾𝑏 , the binary
clinical trajectory 𝑡𝑏 of patient 𝑝𝑖 has the form 𝑡𝑏𝑝𝑖 = ⟨𝑏𝑝𝑖1 ,… , 𝑏𝑝𝑖𝑁 , 𝑏𝑝𝑖𝑁+1,… ,
𝑏𝑝𝑖
𝑁+𝐾𝑏 ⟩ such that:

• 𝑏𝑝𝑖𝑗 ∈ {0, 1}

• ∀𝑗 ∈ {1,… , 𝑁}, 𝑏𝑝𝑖𝑗 =
{

1 𝑖𝑓∃𝑑𝑝𝑖𝑙 ∈ 𝑡𝑝𝑖 , 𝑝𝑜𝑠(𝑑𝑝𝑖𝑙 , 𝐷) = 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.

• ∀𝑗 ∈ {𝑁 + 1,… , 𝑁 +𝐾𝑏}, 𝑏𝑝𝑖𝑗 = 𝑣(𝑏)
𝑝𝑖

𝑗

Where 𝑝𝑜𝑠(𝑑𝑝𝑖𝑙 , 𝐷) is a function that returns the position of the diagnosis
𝑑𝑝𝑖𝑙 in 𝐷.

Binary trajectories present a stable length predefined by the length
of the dimension of clinical diagnoses in an EHR database (𝑁) and
the set of variables of clinical interest 𝐾𝑏. The variables set used to
construct the binary trajectory dataset is defined by 𝐵 = 𝐷 ∪ 𝑉 𝑏.

2.2. Association rule mining

Given a set of clinical trajectories 𝑇 = {𝑡𝑝𝑖 ,… , 𝑡𝑝𝑀 }, this mining
step obtains association rules of the form: 𝑟 ∶ 𝑋 → 𝑌 , where 𝑋 and
𝑌 are subsets of diagnoses in 𝐷, meaning those trajectories presenting
diagnoses in 𝑋 tend to present those in 𝑌 , therefore being frequent pat-
terns. This process is achieved by a three-stage process. First, frequent
itemsets are generated; second, the relationship between the elements
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Table 1
Trajectory definition of patients in the Example 1.
Trajectory Patients

⟨𝑑1 , 𝑑2 , 𝑑3 , 𝑑4 , 𝑑5⟩ 𝑝1 , 𝑝2 , 𝑝3 , 𝑝4 , 𝑝5 , 𝑝6
⟨𝑑1 , 𝑑2 , 𝑑3⟩ 𝑝7 , 𝑝8
⟨𝑑1 , 𝑑2⟩ 𝑝9 , 𝑝10
⟨𝑑3 , 𝑑4 , 𝑑5⟩ 𝑝11
⟨𝑑2 , 𝑑3⟩ 𝑝12

of the frequent itemsets is shaped by means of association rules. Finally
a pruning strategy is applied to reduce the quantity of generated rules.
As a result, a set of rules 𝑅 = {𝑟1,… , 𝑟𝑛} is obtained.

.2.1. Itemset generation
This step consists in finding frequent diagnoses sets in 𝑇 : meaning

hey are at least present 𝜏 times in 𝑇 , or what is the same, have a
inimum support 𝜏.

efinition 3 (Diagnosis Set Support). The support 𝑠(𝑍, 𝑇 ) of a set of
iagnoses 𝑍 ⊆ 𝐷 regarding a set of patient trajectories 𝑇 is the

cardinality of the set of clinical trajectories in 𝑇 containing 𝑍: 𝑠(𝑍, 𝑇 ) =
{𝑡𝑝𝑖 ∈ 𝑇 |𝑍 ⊆ 𝑡𝑝𝑖}|.

efinition 4 (Frequent Set Of Diagnoses). A frequent set of diagnoses
r frequent itemset 𝑍 ⊆ 𝐷 with regard to a database 𝑇 is frequent if
(𝑍, 𝑇 ) ≥ 𝜏, where 𝜏 is a given support threshold.

The procedure used to generate all frequent itemsets follows the
priori basic approach [10]. First, all one-length itemsets are generated,
hich means frequent itemsets containing a single diagnosis among all

he possible diagnoses in 𝐷. Frequent one-length itemsets (based on 𝜏)
re retained. Second, two-length itemsets are generated, by expanding
he one-length frequent itemsets with a diagnosis in 𝐷. Again, only
requent two-length itemsets are retained. And so on until reaching the

length itemsets or no frequent itemsets are found.

xample 1. Consider an example that will be used in the upcoming
ections. The universe of diagnoses 𝐷 includes the five diagnoses
1, 𝑑2, 𝑑3, 𝑑4, 𝑑5 (𝑁 = 5). The dataset consists of 12 patients: six of
hich include all elements in 𝐷; two more consists of ⟨𝑑1, 𝑑2, 𝑑3⟩, again

wo trajectories consist of ⟨𝑑1, 𝑑2⟩, and then one trajectory consists
f ⟨𝑑3, 𝑑4, 𝑑5⟩ and another one consists of ⟨𝑑2, 𝑑3⟩. Table 1 define the
rajectories.

All the possible combinations of items are 2𝑁 − 1 (see an example
represented by a lattice in Fig. 2). The requirement of a given support
𝜏 reduces the number of possible itemsets which can be generated
according to the available trajectories.
4

In Fig. 2, for a 𝜏 = 0.6, 9 frequent itemsets are obtained:

𝑑1}, {𝑑2}, {𝑑3}, {𝑑4}, {𝑑5}, {𝑑1, 𝑑2}, {𝑑1, 𝑑3}, {𝑑2, 𝑑3}, {𝑑1, 𝑑2, 𝑑3}

he later ones are the more interesting as representing combinations of
ifferent diagnoses.

.2.2. Association rule generation
In this step, the relation among the elements of a frequent itemset
is shaped through association rules 𝑟 ∶ 𝑋 → 𝑌 , where 𝑍 = 𝑋 ∪ 𝑌 .

ased on the matter at hand, in the following sections association rules
ill be called diagnosis association rules.

efinition 5 (Diagnosis Association Rule). 𝑟 ∶ 𝑋 → 𝑌 is defined from a
requent itemset 𝑍 = 𝑋 ∪ 𝑌 , given a dataset of patient trajectories 𝑇 ,
f confidence 𝑐(𝑟, 𝑇 ) ≥ 𝛾, being 𝑐(𝑟, 𝑇 ) = 𝑠(𝑋∪𝑌 ,𝑇 )

𝑠(𝑋,𝑇 ) , and 𝛾 the confidence
threshold.

The confidence 𝑐(𝑟, 𝑇 ) of a rule in a dataset of patient trajectories
is an empirical approximation to the conditional probability (how

requent is 𝑌 among all transactions containing 𝑋). Observe that the
wo rules 𝑋 → 𝑌 and 𝑌 → 𝑋 can be derived from the same itemset
= 𝑋 ∪ 𝑌 . Nevertheless, it is expected that the confidence threshold

elps to reduce the amount of rules to be obtained by a rule miner.

xample 2 (Continuation Example 1).
Table 2 shows the different rules obtained from the dataset defined

n Example 1, with 𝜏 = 0.6 and 𝛾 = 0.9. Only 5 rules reach the
onfidence and support thresholds in our dataset.1

.2.3. Redundancy-based pruning
This step aims to reduce the number of associations, ideally to those

ore prone to be causal. Through the causality analysis of a reduced
et of rules, which is the more computationally expensive part, the
fficiency of the algorithm improves and allows the analysis of more
omplex and bigger databases. Other propositions such as Bayesian
etworks use a brute-force approach to discover all causal associations,
hough are computationally much more expensive [30–32]. CauRuler
euristic is to keep the most general rules to discover causality. Using
his heuristic the algorithm can test a smaller set of associations while
till detecting a vast amount of causal ones. It loses some specificity –
robably not discovering the whole causal paths – in return to designing
method capable of analyzing highly complex databases.

To perform this selection, the CauRuler algorithm uses the confi-
ence boost 𝑐𝑏 proposed by Balcazar [19]. This parameter evaluates

1 Rules of the form ∅ → {𝑑1, 𝑑2} and itemsets of single diagnoses are not
considered since do not bring enough knowledge.
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Table 2
Confidence evaluation of rules targeted in Example 1 for 𝜏 = 0.6.

Association Support Rules Confidence

{𝑑1 , 𝑑2} 10∕12 = 0.83 𝑑1 → 𝑑2 10∕10 = 1.0a

𝑑2 → 𝑑1 10∕11 = 0.91a

{𝑑1 , 𝑑3} 8∕12 = 0.67 𝑑1 → 𝑑3 8∕8 = 1.0a

𝑑3 → 𝑑1 8∕9 = 0.88

{𝑑2 , 𝑑3} 9∕12 = 0.75 𝑑2 → 𝑑3 9∕11 = 0.82
𝑑3 → 𝑑2 9∕9 = 1.0a

{𝑑1 , 𝑑2 , 𝑑3} 8∕12 = 0.66 𝑑1 → 𝑑2 , 𝑑3 8∕10 = 0.8
𝑑2 → 𝑑1 , 𝑑3 8∕11 = 0.7
𝑑3 → 𝑑1 , 𝑑2 8∕9 = 0.88
𝑑1 , 𝑑2 → 𝑑3 8∕10 = 0.8
𝑑1 , 𝑑3 → 𝑑2 8∕8 = 1.0a

𝑑2 , 𝑑3 → 𝑑1 8∕9 = 0.88

aRules reaching confidence threshold 𝛾 = 0.9.

Table 3
Rules 𝑋′ → 𝑌 ′ matching condition 𝑋′ ⊆ 𝑋 and 𝑌 ⊆ 𝑌 ′

in Example 1.
Rule Confidence

𝑑1 → 𝑑2 , 𝑑3 0.80

𝑑1 → 𝑑2 , 𝑑3 , 𝑑4 0.60
𝑑1 → 𝑑2 , 𝑑3 , 𝑑5 0.60
𝑑1 → 𝑑2 , 𝑑3 , 𝑑4 , 𝑑5 0.60
𝑑2 → 𝑑3 0.75
𝑑2 → 𝑑3 , 𝑑4 0.60
𝑑2 → 𝑑3 , 𝑑5 0.60
𝑑2 → 𝑑3 , 𝑑4 , 𝑑5 0.60

each rule’s redundancy against the closest and more robust rule to it in
an association basis defined by minimum support and confidence. Rules
with a specific redundancy can be selected employing the imposition
of a confidence boost threshold 𝛽. This parameter acts as a minimum
threshold of redundancy that must be attained by all rules to be
declared as irredundant. Rules below 𝛽 are redundant respect to the
ones above it.

Definition 6 (Confidence Boost). The confidence boost of rule 𝑟0 ∶ 𝑋0 →

0, given a set of rules 𝑟𝑖 ∶ 𝑋𝑖 → 𝑌𝑖, a set of trajectories 𝑇 , and assuming
∩ 𝑌 = ∅, is:

𝑏(𝑟0, 𝑇 ) =
𝑐(𝑟0, 𝑇 )

𝑚𝑎𝑥
{

𝑐(𝑟𝑖, 𝑇 )|𝑟𝑖 ≠ 𝑟0, 𝑠({𝑋𝑖 ∪ 𝑌𝑖}, 𝑇 ) ≥ 𝜏,𝑋𝑖 ⊆ 𝑋0, 𝑌0 ⊆ 𝑌𝑖
}

By convention, if the set in the denominator is empty, the confi-
ence boost reaches infinite; while if the set in the numerator is empty,
he confidence boost will be zero. See results Section 3.4 where this
ituation happens. CauRuler selects rules with a low level of redun-
ancy, therefore with a confidence boost over the minimum threshold
f redundancy (𝑐𝑏(𝑟, 𝑇 ) > 𝛽).

xample 3. Suppose we have a set of rules as the one introduced
n Table 3. In this dataset, rule 𝑑1 → 𝑑2, 𝑑3 has a confidence 0.8. To

measure its confidence boost one must consider all rules 𝑋′ → 𝑌 ′ with
𝑋′ ⊆ {𝑑1} and {𝑑2, 𝑑3} ⊆ 𝑌 ′ listed in Table 3: One can see that the
maximum confidence among them is 0.75, attained by {𝑑2, 𝑑3}.

Then 𝑐𝑏(𝑑1 → {𝑑2, 𝑑3}, 𝑇 ) = 0.8∕0.75 = 1.06667. If we impose a
threshold 𝛽 = 1.05, rule 𝑑1 → 𝑑1, 𝑑2 will be considered a non-redundant
rule.

2.3. Causality association detection

The algorithm evaluates the causality of the set of associations 𝑅 =
{𝑟1,… , 𝑟𝑊 }, with the aim of obtaining the set of causal rules 𝑅𝑐 =
{𝑟𝑐 ,… , 𝑟𝑐 } ⊆ 𝑅 given the trajectories of patients 𝑇 = {𝑇 𝑏 ,… , 𝑇 𝑏 }.
5

1 𝑊 𝑐 𝑏 𝑝1 𝑝𝑀
The final aim is to determine if there is a significant difference in
the effects represented in patients undergoing the consequent of a
causal rule (𝑌 ) between the ones affected and non-affected by diagnoses
in the antecedent of the rule (𝑋). The methodology consists of the
steps outlined in the following subsections: creation of cohorts, con-
trolling for confounder variables, fair dataset generation, association
causality study and the generalization of causal rules. This procedure,
summarized in Fig. 1, is applied to every non-redundant association
rule.

2.3.1. Cohort generation
To evaluate the causality of an association rule 𝑟 ∶ 𝑋 → 𝑌 the binary

trajectory dataset 𝑇 𝑏 is separated into the control (healthy people) and
exposition cohorts (people who suffered the health conditions in 𝑋).
Given a rule 𝑟 ∶ 𝑋 → 𝑌 , where 𝑋, 𝑌 ⊆ 𝐷, exposition cohort and control
cohort are defined as:

1. Exposition cohort (𝑋𝑒): the set of binary trajectories 𝑇 𝑏 that
contains diagnostics in 𝑋, that is, 𝑋𝑒 = {𝑡𝑏𝑝𝑖 |∀𝑑

𝑝𝑖
𝑗 ∈ 𝑋,∃𝑏𝑝𝑖𝑘 ∈ 𝑡𝑏𝑝𝑖

such that 𝑝𝑜𝑠(𝑑𝑝𝑖𝑗 , 𝐷) = 𝑘, 𝑏𝑝𝑖𝑘 = 1}.
2. Control cohort (𝑋𝑐 ): the set of binary trajectories 𝑡𝑏𝑝𝑖 that do not

contains diagnostics in 𝑋, that is, 𝑋𝑐 = {𝑡𝑏𝑝𝑖 |∀𝑑
𝑝𝑖
𝑗 ∈ 𝑋,∃𝑏𝑝𝑖𝑘 ∈ 𝑡𝑏𝑝𝑖

such that 𝑝𝑜𝑠(𝑑𝑝𝑖𝑗 , 𝐷) = 𝑘, 𝑏𝑝𝑖𝑘 = 0}.

It holds that 𝑋𝑐 = 𝑇 𝑏 −𝑋𝑒.
For more information, see algorithm 1 in Appendix B.

.3.2. Confounders variables controlling
To conduct the causality study it is necessary to identify the con-

ounding variables set 𝐶. Confounding bias occurs when a variable
nfluences both who is selected for the exposition and the consequent
ariables in 𝑌 . Confounders may be known or merely suspected; acting
s a ’lurking third variable’ [12]. Thus, the apparent measure between
n antecedent 𝑋 and consequent 𝑌 may actually be due to another
actor.

Confounder controlling is a difficult task. Overcontrolling could
nd up conditioning on a common cause, therefore not detecting the
ausal association. On the other hand, not controlling for the correct
ariables could end up retrieving spurious causality associations [11].
eaving a confounder uncontrolled may lead to false discoveries while
ontrolling for a confounder can cause the loss of true discoveries. In
ur framework, the heuristics promote the loss of some true discoveries
n contrast to not getting false discoveries. The algorithm tends to over-
ontrol (control for a high number of different variables) in return to
osing some true causal association, as in the medical field it is normally
etter to retrieve high-reliability results. Therefore, the algorithm does
ot detect the full causal map but detects a close partial one with high
eliability on the causal inference procedure. Given an association rule
∶ 𝑋 → 𝑌 we would like to control all possible variables 𝐵 not present
ither on 𝑋 or 𝑌 . This is to say, ideally we would like to control as
any variables as possible, to isolate the effect of the exposure to the

ausal agent over the final effect.
With the increasing number of controlled variables, it will become

ore difficult to find the pairs of individuals between both cohorts to
onduct a matching in the causality study. Therefore, there exists a
rade-off between the dimension of controlled variables and the number
f individuals needed in each cohort. Once the 𝑋𝑒 and 𝑋𝑐 cohorts are
btained, confounding variables will be selected after the identification
f the irrelevant and exclusive variable sets, related to the target rule
∶ 𝑋 → 𝑌 . Irrelevant and exclusive variable sets are defined to avoid

he aforementioned tradeoff. Not controlling variables with a lower
ardinality in the trajectory database or in both individual cohorts
ncrements the number of matchings to conduct the causality study 7.
o determine the controlled variable set 𝐶, we first must identify the

rrelevant and exclusive variable sets based on a predefined support of
binary set.
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Fig. 3. Example causal map tested by CauRuler in each causality experiment. 𝑋
represent Left Hand-Side (𝐿𝐻𝑆) set of rule 𝑟 ∶ 𝑋 → 𝑌 while 𝑌 represents Right
Hand-Side (𝑅𝐻𝑆) set. Confounders are represented by 𝐶 and may make an impact
in both 𝑋 and 𝑌 and producing spurious associations if not controlled.

Definition 7 (Support of a Binary Set). The support 𝑠𝑏(𝑍𝑏, 𝑇 𝑏) of a set
of binary variables 𝑍𝑏 ⊆ 𝐵 regarding a set of binary trajectories 𝑇 𝑏 is
the cardinality of the set of clinical trajectories in 𝑇 𝑏 containing 𝑍𝑏:
𝑠(𝑍𝑏, 𝑇 𝑏) = |{𝑡𝑏𝑝𝑖 ∈ 𝑇 𝑏

|𝑍𝑏 ⊆ 𝑡𝑏𝑝𝑖}|.

Definition 8 (Irrelevant Variable). Given a set of binary trajectories 𝑇 𝑏,
each 𝑡𝑏𝑝𝑖 ∈ 𝑇 𝑏, and a rule 𝑟 ∶ 𝑋 → 𝑌 , a variable 𝑏𝑗 is irrelevant if it does
not belong to either X or Y (i.e. ∄𝑗 ∉ 𝑋∪𝑌 ) and it appears in an amount
lower than 𝜖𝐼 in the overall set of trajectories 𝑇 𝑏 (i.e. 𝑠𝑏({𝑏𝑗}, 𝑇 𝑏) < 𝜖𝐼 ).2

Irrelevant variables 𝐼 (with 𝐼 ⊂ 𝐵) do not have enough impact
to justify the cost of controlling for them (are not sufficiently present
in the dataset). 𝐼 is an approximation to improve the over-controlling
behaviour of the algorithm. It is worth observing that there could be
some diagnoses (not belonging to the rule r: 𝑋 → 𝑌 under study) which
could be irrelevant, as well as control variables. On the other hand,
exclusive variables 𝐸 are identified as those variables not sufficiently
present in one of the cohorts according to a given threshold 𝜖𝐸 .

Definition 9 (Exclusive Variable). Given a cohort 𝑋𝑘, each 𝑡𝑏 ∈ 𝑋𝑘, a
variable 𝑏𝑗 is exclusive if it has informed values in an amount lower
than 𝜖 in 𝑋𝑘 (i.e. 𝑠({𝑡𝑏|𝑏𝑗 = 1}, 𝑋𝑘) ≤ 𝜖𝐸), and does not belong to either
X or (i.e. ∄𝑗 ∉ 𝑋 ∪ 𝑌 ).

If for example 𝜖𝐸 = ∞ is set, it may happen that variable 𝑏𝑗 may be
only present in one of the cohorts (a very rare health condition). Thus
variable 𝑏𝑗 is marked as an exclusive variable, and added to the set of
exclusive variables 𝐸.

The set of confounding variables is therefore determined by 𝐶 =
𝐵⧵ (𝐼, 𝐸,𝑋, 𝑌 ) (see algorithm 2 in Appendix B.). Confounding variables
enable the definition of the causal map regarding the rule 𝑟 ∶ 𝑋 → 𝑌
under study (see Fig. 3).

The cohorts are revised according to 𝐶, 𝑋′𝑒 and 𝑋′𝑐 , where in each
trajectory irrelevant and exclusive variables have been removed. There-
fore, the dimension of each revised binary trajectory is |𝑋 ∪ 𝐶 ∪ 𝑌 |.

2.3.3. Fair dataset construction
A fair dataset 𝐷𝑓 is built using the matching record pairs concept.

The aim is the acquisition of a fair dataset with the maximum number
of pairs of individuals from each cohort that is as similar as possible
between them. Using this approach we ensure the quantification of the
effect variable, rather than the possible latent confounders.

2 By convention, in the results it is used 𝜖𝐼 = 𝜏; the threshold of the support
used in the rule miner algorithm.
6

Table 4
Cohort example dataset.
Source: Adapted from [13].
Cohort Patient 𝑏1 (X) 𝑏2 𝑏4 𝑏5 𝑏6 𝑏7 𝑏3 (Y)

𝑋𝑓𝑒

1 1 0 1 0 0 1 1
2 1 0 1 0 1 0 1
3 1 1 0 1 0 0 0
4 1 1 0 0 0 1 1

𝑋𝑓𝑐

5 0 0 1 0 0 1 0
6 0 0 1 0 1 0 0
7 0 1 0 1 0 0 0
8 0 1 0 1 0 0 1

Definition 10 (Matched Record Pair). Given an association rule 𝑟 ∶ 𝑋 →
𝑌 , an exposure control cohort 𝑋′𝑒 and a control cohort 𝑋′𝑐 , and a set
of controlled variables 𝐶 derived from them, a matched record pair
⟨𝑡′𝑒, 𝑡′𝑐⟩ (𝑡′𝑒 ∈ 𝑋′𝑒 and 𝑡′𝑐 ∈ 𝑋′𝑐) is a pair of revised binary trajectories
which share the same values for each variable 𝑏′𝑗 ∈ 𝐶.

The resulting dataset 𝐷𝑓 contains 𝑀 ′ trajectories from 𝑋′𝑒 (𝑋𝑓𝑒 ⊆
𝑋′𝑒) and 𝑀 ′ trajectories from 𝑋′𝑐 (𝑋𝑓𝑐 ⊆ 𝑋′𝑒), with 𝑀 ′ ≤ |𝑋′𝑒

|, |𝑋′𝑐
|;

this is to say, 𝐷𝑓 = 𝑋𝑓𝑒 ∪ 𝑋𝑓𝑐 . For more detailed information, see
algorithm 3 in Appendix B.

Example 4 (Fair Dataset Construction). Suppose a diagnosis set 𝐷 =
{𝑑1, 𝑑2, 𝑑3}, an association rule 𝑋 → 𝑌 , with 𝑋 = {𝑑1} and 𝑌 = {𝑑3}.
Moreover, assume that set of binary diagnosis is {𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑏6, 𝑏7},
with 𝑏1,… , 𝑏3 representing to 𝑑1, 𝑑2, and 𝑑3. Consistently, the controlled
variable set is 𝐶 = {𝑏2, 𝑏4, 𝑏5, 𝑏6, 𝑏7}. The available cohorts are shown
in Table 4.

As it is possible to observe, patient 1 matches with patient 5, since
the controlled variables have the same values for all of them (𝑏2 =
0, 𝑏4 = 1, 𝑏5 = 0, 𝑏6 = 0, 𝑏7 = 1). Analogously, matches (2, 6), (3, 7) can
be found. The final fair cohorts are 𝑋𝑓𝑒 = (1, 2, 6) 𝑋𝑓𝑐 = (5, 6, 7), and
therefore 𝐷𝑓 = (1, 2, 3, 5, 6, 7). Each record can only be matched once,
and appear once in the fair dataset (𝐷𝑓 ). Therefore, it is possible to
observe some members of 𝑋′𝑒 and 𝑋′𝑐 have no pairs and have been
excluded in 𝐷𝑓 . This is an important issue, as it will be latter seen,
because the size of 𝐷𝑓 will determine the generation of the causal
association rules.

2.3.4. Causality evaluation
The fair data set of a rule (𝐷𝑓 ) helps us to simulate a controlled

cohorts trial to test the hypothesis that the association rule (𝑟 ∶ 𝑋 → 𝑌 )
is causal. If we are controlling all possible confounder variables, we
are demonstrating that the variation of the response variables (𝑌 ) is
exclusively due to variables in 𝑋 (assuming all possible confounders
are being controlled).

The causality of an association is evaluated through the lower confi-
dence interval of its Odds Ratio, controlling for all possible confounder
variables 𝐶.

Definition 11 (Odds Ratio of a Fair Dataset). Given an association rule
𝑟 ∶ 𝑋 → 𝑌 , and the fair dataset 𝐷𝑓 derived from it, with pairs of records
from an exposure cohort 𝑋𝑓𝑒, and records from a control cohort 𝑋𝑓𝑐 ,
the 𝑂𝑅 of fair the dataset 𝐷𝑓 is defined as follows:

𝑂𝑅𝐷𝑓
(𝑟 ∶ 𝑋 → 𝑌 ) =

𝑛11 × 𝑛22
𝑛21 × 𝑛12

where:

• 𝑛11 is the number of trajectories of patients with the diagnoses in
𝑌 present in the exposure group. 𝑛11 = |{𝑡|𝑡 ∈ 𝑋𝑓𝑒,∀𝑑𝑖 ∈ 𝑌 ∃𝑏𝑗 ∈ 𝑡,
such that 𝑝𝑜𝑠(𝑑𝑖, 𝐷) = 𝑗, and 𝑏𝑗 = 1}|

• 𝑛12 is the number of trajectories of patients with none of the
diagnoses in 𝑌 present in the exposure group. 𝑛12 = |{𝑡|𝑡 ∈ 𝑋𝑓𝑒,
∀𝑑 ∈ 𝑌 ∄𝑏 ∈ 𝑡, such that 𝑝𝑜𝑠(𝑑 ,𝐷) = 𝑗, and 𝑏 = 0}|
𝑖 𝑗 𝑖 𝑗
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• 𝑛21 is the number of trajectories of patients with the diagnoses in
𝑌 present in the control group. 𝑛21 = |{𝑡|𝑡 ∈ 𝑋𝑓𝑐 ,∀𝑑𝑖 ∈ 𝑌 ∃𝑏𝑗 ∈ 𝑡,
such that 𝑝𝑜𝑠(𝑑𝑖, 𝐷) = 𝑗, and 𝑏𝑗 = 1}|

• 𝑛22 is the number of trajectories of patients with none of the
diagnoses in 𝑌 present in the control group. 𝑛22 = |{𝑡|𝑡 ∈ 𝑋𝑓𝑐 ,
∀𝑑𝑖 ∈ 𝑌 ∄𝑏𝑗 ∈ 𝑡, such that 𝑝𝑜𝑠(𝑑𝑖, 𝐷) = 𝑗, and 𝑏𝑗 = 0}|

Those associations fulfilling the minimum confidence threshold 𝛼
(with an OR Confidence interval above 1) arise as causal associations
(see algorithm 4 in Appendix B).

Definition 12 (Significant Odds Ratio). The confidence Interval 𝐶𝐼 of
the odds ratio of the rule 𝑟 ∶ 𝑋 → 𝑌 on the given fair dataset 𝐷𝑓 ,
𝑂𝑅𝐷𝑓

(𝑟 ∶ 𝑋 → 𝑌 ), is defined as:

𝑒𝑥𝑝(𝑙𝑛(𝑂𝑅𝐷𝑓
(𝑟 ∶ 𝑋 → 𝑌 ))) ± 𝑧′

√

1
𝑛11

+ 1
𝑛12

+ 1
𝑛21

+ 1
𝑛22

= [𝛼−, 𝛼+]

Where 𝑧′ is a standard normal deviate corresponding to each level
f confidence.

For convention, we will use 𝑧′=1.96 for 95% confidence. 𝛼− and
+ are the lower and upper bounds respectively of an odds ratio at
confidence level. If 𝛼− > 1, the odds ratio is significantly higher

han 1, hence 𝑋 → 𝑌 is a causal association. This results in a highly
rustable process since for small datasets, the 𝐶𝐼 is wider, making it
ore difficult for a rule to be significantly associated.

.3.5. Causal rule generalization
Anti-monotone properties are the main foundation for efficient rule

ining. Apriori rule miners such as the one proposed by Agrawal
t al. are based on those properties to reach high efficiency by pruning
temsets that for sure will not surpass the demanded thresholds [33].

efinition 13 (Anti-Monotone Property). Any measure 𝑓 possesses the
nti-monotone property if for every itemset 𝑋 that is proper subset of
temset 𝑌 , i.e. 𝑋 ⊂ 𝑌 , we have 𝑓 (𝑌 ) ≤ 𝑓 (𝑋).

Definition 13 states that if an itemset is infrequent (𝑠(𝑋) ≤ 𝜏), then
ll of its supersets must also be infrequent (𝑠(𝑌 ) ≤ 𝜏 for all 𝑋 ⊂ 𝑌 ). This
trategy is used to trim the exponential search space of all possible rules
n a smaller space of rules which fit the thresholds [10] (see example

in figure 2).
This definition is exploited in CauRuler to obtain all more general

ules of a causal rule. For example, if the relationship (obesity →

iabetes) holds to be causal, then it is certain that this relationship holds
or both sexes if properly controlled. Therefore the rule is redundant
o rules: (obesity + sex=male → diabetes) and (obesity + sex=female →

iabetes).
Therefore, we analyse causal rules, with |𝑋| > 2 (named complex

ausal rules) looking for the following conditions:

(a) Specific causal associations of an irredundant causal association.
𝑋 is formed by both causal and non-causal elements of 𝑌 . Non-
causal elements add specificity to an already causal association.
In the next example, 𝑍20.828 is adding specificity to an already
causal association.
[N18.9: Chronic kidney disease, Z20.828: Contact with and exposure to
other communicable diseases.] → [I10: Essential (primary) hypertension]

(b) Complex causal associations where each element in 𝑋 individu-
ally represents a cause of 𝑌 . For example,
[E11.9: Type 2 diabetes mellitus, I45.0: Right fascicular block] → [I10:
Essential (primary) hypertension]
This rule could be split into (E11.9 → I10) and (I45.0 → I10)

(c) Complex causal associations where all elements of 𝑋 individu-
ally do not represent a cause of 𝑌 but do so when acting as an
ensemble.
7

Table 5
Dataset features: Number of patients, coverage percentage in the dataset, length of the
diagnostic set, diagnoses occurrences (word length of the database).

Patients % ind. |𝐷| diag occur.

All ages 352, 440 (100%) 3,994 3, 489, 948

Child 43, 514 (12%) 3,076 336, 211
Adolescent 28, 136 (8%) 2,704 162, 563
Primary adulthood 75, 671 (22%) 3,356 536, 466
Late adulthood 100, 008 (28%) 3,538 899, 534
Elderly 102, 680 (29%) 3,731 1, 539, 912

In (𝑎), all elements in 𝑋 must be evaluated separately as a cause
f 𝑌 to discover antimonotonic causal associations (the general case).
his is to say, each permutation of diagnoses in exposure set 𝑋′ ⊆ 𝑋 of

a complex rule is transformed into an association rule of the form 𝑟′ ∶
𝑋′ → 𝑌 for a later evaluation of its causality. This way, from the causal
association rules 𝑅𝑐 = {𝑟1,… , 𝑟𝑊 𝑐 }, is obtained 𝑅𝑔 = {𝑟𝑔1 ,… , 𝑟𝑔𝑊 𝑔 }
general rules, with 𝑊 𝑐 ≤ 𝑊 𝑔 . A final step evaluates in which of the
three aforementioned cases falls each rule, and stores the correct one.

2.4. Dataset

CauRuler has been implemented using Python and tested on a
Primary Care Services Information Technologies System database of the
Health region of Central Catalonia (Catalonia, Spain) belonging to the
Catalan Institute of Health (ICS), the main primary healthcare provider
in Catalunya.

The database contains 3,555,799 visits to the primary care services
between 2019 and 2020 (a period covering most of the COVID-19 pan-
demic). The dataset is comprised of both face-to-face visits (to primary
health systems and home visits) and non-face-to-face (telephone and
teleconsultations) corresponding to 376,486 individuals (among the
404,245 reference population in this health region).

Each observation contains both ‘‘active diagnosis’’ (diagnoses that
are active at the moment of the visit, mostly chronic), ‘‘visit diagnosis’’
(diagnosis arising from the consultation) and variables defining the
patient such as age, sex and level of healthcare coverage. Visits are
preprocessed to construct the clinical trajectories dataframe and the
binary clinical trajectories dataframe. Only visit diagnoses are used to
construct the trajectories since active diagnoses do not have the coding
date, thus the time for the patient undergoing the disease is not known.
There are up to 3,994 diagnoses according to ICD-10 ontology [27]. Di-
agnosis coding is prone to bias effects made by healthcare professionals
(the COVID-19 outbreak has also put a strain on the healthcare system,
leading to a likely increase in the rate of codification errors).

Patient ages have been discretized according to the World Health
Organization (WHO) classification: Child (0–11), adolescent (12–19),
primary adulthood (20–40), late adulthood (41–60) and elderly (61-∞).
Age distributions can be found in Table 5.

2.5. Experimental set up

The experimental setup tests the hypothesis that the CauRuler al-
gorithm is better at detecting real causal associations by testing fewer
association rules than in previous works. The result is an approximation
to the complete causal map of the dataframe. By using high demanding
support, confidence and confidence boost thresholds, the algorithm has
to retrieve relevant (previously known or plausible) medical causal
relations to prove effectiveness. Besides, a group of medical experts
with different backgrounds evaluated the output of the different algo-
rithms to prove their effectiveness. On the other hand, a study of the
output dimension is held to prove the efficiency concerning another
proposition.
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Table 6
Number of causality associations (n) and percentage of causes among the total number
of associations rules. All experiments use as support threshold 𝜏 = 0.0012. 𝛾 is the
confidence parameter and 𝑚 and 𝛽 are pruning parameters of the different algorithms

Method 𝛾

0.6 0.7 0.8

n % n % n %

Apriori-OR(𝑚 = 1) 44 0.005 29 0.004 5 0.0017
Apriori-OR(𝑚 = 5) 37 0.006 26 0.005 5 0.0017
Apriori-OR(𝑚 = 10) 11 0.005 10 0.005 5 0.0017
Apriori-OR(𝑚 = 15) 2 0.002 1 0.001 5 0.0028
Apriori-OR(𝑚 = 20) 2 0.007 1 0.003 0 0.0000

CauRuler(𝛽 = 0.0) 46 0.006 30 0.006 5 0.0030
CauRuler(𝛽 = 0.1) 42 0.012 27 0.015 3 0.0070
CauRuler(𝛽 = 0.2) 28 0.018 15 0.032 2 0.0900
CauRuler(𝛽 = 0.3) 11 0.030 3 0.029 0 0.0000
CauRuler(𝛽 = 0.4) 9 0.320 2 0.200 0 0.0000

2.5.1. Experimental scenario
To validate the CauRuler algorithm, different experimental scenar-

ios were designed to compare it with the Apriori-OR algorithm [13],
the causal rule mining approach more similar to CauRuler and being
the state of the art in causality analysis using ARMs (see Section 2).
All methods use the same parametrization to compare the results:
support 𝜏 = 0.0012, and confidence (𝛾); 0.6,0.7,0.8,0.9. Support is exper-
imentally low-adjusted to target those more frequent rules. Apriori-OR
adds the (𝑚) parameter (minimum OR ratio to be considered as an
association rule); 1,5,10,15,20. CauRuler employs parameters 𝛽 = 0.3,
= 10, 𝛼 = 1.0. When evaluating the effect of the redundancy notion

𝛽) takes values; 0.0, 0.1, 0.2, 0.3, 0.4.
The goal of this section is to prove the algorithm’s effectiveness at

etecting reliable causal associations. For this reason, the parametriza-
ion used is very restrictive, in order to retrieve previously known
ausal associations that can be validated by medical experts. Con-
ersely, CauRuler should prove efficiency by detecting as many causal
elations as Apriori-OR by testing a smaller basis of association rules,
hus reducing the number of causal inference trials.

. Results

The causal associations obtained by the algorithms are collapsed
n a causal map that is evaluated by medical experts. This strategy is
asy to understand and visually attractive while emphasizing the multi-
ausal behaviour of some clinical conditions. The experts evaluated the
lausibility of the associations targeted by the models.

The output dimension comparison of the algorithms is evaluated in
erms of: number of causal association rules learnt by the algorithm,
atio of causal rules in the association rule basis, complexity of the
ausal rules learnt.

.1. Causality findings

Table 6 summarizes the results of the number of causal associations
btained by the different algorithms. Results for 𝛾 = 0.9 are not
rovided since there are no causal rules found for this high demanding
onfidence threshold.

CauRuler algorithm can reduce the number of associations without
osing much of the causal associations. This is to say, for 𝛽 = 0.0
without pruning) 46 causal associations were obtained, representing
0.006% of all found association rules. With the increase in 𝛽, the %

f causal associations found concerning the total number of associations
ules is increased. The results are exacerbated for less demanding
onfidence thresholds. Apriori-OR algorithm does not target as many
ausal associations as the CauRuler algorithm.

While the ratio of causal rules over the total basis of associations
s constantly increasing when boosting the 𝛽 parameter of CauRuler
8

Table 7
Mean number of diagnoses taking part in the rule (as LHS or RHS). R: association
rules; 𝑅𝑐 : Causal rules.. All experiments use as support threshold 𝜏 = 0.0012. 𝛾 is the
confidence parameter and 𝑚 and 𝛽 are pruning parameters of the different algorithms

Method 𝛾

0.6 0.7 0.8 0.9

R 𝑅𝑐 R 𝑅𝑐 R 𝑅𝑐 R 𝑅𝑐

Apriori-OR(𝑚 = 1) 3.85 2.82 4.01 3.03 4.51 3.40 5.24 0.00
Apriori-OR(𝑚 = 5) 4.08 2.86 4.18 3.03 4.51 3.40 5.24 0.00
Apriori-OR(𝑚 = 10) 4.55 3.09 4.45 3.20 4.58 3.40 5.24 0.00
Apriori-OR(𝑚 = 15) 4.85 2.50 4.82 3.00 4.74 0.00 5.24 0.00
Apriori-OR(𝑚 = 20) 5.05 2.50 5.08 3.00 4.87 0.00 5.24 0.00

CauRuler(𝛽 = 0.0) 4.03 2.82 4.17 3.03 4.52 3.40 5.20 0.00
CauRuler(𝛽 = 0.1) 3.57 2.73 3.66 2.92 3.92 3.00 3.00 0.00
CauRuler(𝛽 = 0.2) 3.21 2.61 3.05 2.86 3.04 3.00 0.00 0.00
CauRuler(𝛽 = 0.3) 3.06 2.18 2.96 2.33 3.00 0.00 0.00 0.00
CauRuler(𝛽 = 0.4) 2.21 2.00 2.40 2.00 0.00 0.00 0.00 0.00

algorithm, increasing the 𝑚 parameter of Apriori-OR algorithm has
reverse effect. This behaviour suggests that while both algorithms

erform better at reducing the basis of association rules, CauRuler
lgorithm is better at keeping the causal relations within the basis.

Deepening on the structure of the causal association rules, Table 7
ummarizes the complexity of the different association rules concern-
ng the number of diagnoses taking part in them. Causal rules, on
verage, present far fewer diagnoses than association rules. CauRuler
an generalize the associations and, therefore, reduce their complexity,
hich might be useful for the interpretation of the results by humans.

n contrast, Apriori-OR algorithm does not reduce the length of the
ssociations. Therefore, it is not simplifying the rules like CauRuler.

.2. Generalization analysis

All the causal associations found by CauRuler and Apriori-OR were
ubjected to the generalization analysis as explained in 2.3.5. From all
ombination within each rule, 14 general causal rules were obtained.
o examples of type (𝑐) complex causal association have been found.
owever multiple references to cases (𝑎, 𝑏) and simple causal associ-
tions (formed by two diagnoses) are found in the datasets. Table 8
ummarizes the general causal associations found from the discovered
nes sorted by lower confidence interval of the Odds Ratio.

Table 9 shows the number of associations referencing each general
ausal association described in Table 8. The experiment takes as ref-
rence the standard parametrization (𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 0.0012, 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =
0.6) and the different values of 𝑚 and 𝛽 parameters used in previous
examples. When increasing the 𝛽 parameter in CauRuler algorithm, the
number of rules subjected to the causality study (𝑛𝑅) drops signifi-
cantly. Similar behaviour, not as great as in the previous case, is seen
when increasing 𝑚 parameter in Apriori-OR. Nevertheless, in the former
case, the number of causal rules referencing each general causal rule
(𝑛𝐶) and the number of general causal rules (𝐺𝐶) drops more slowly,
while in the latter the dropping of number of association rules (𝑛𝑅) is
linked to a dropping in (𝑛𝐶) and (𝐺𝐶). For example, applying a point
ncrease in the confidence boost (𝛽 = 0.1) implies the reduction of 54%
f causality studies while still detecting 55 causal associations and all
he general causal rules (14, 100%); with a high demanding confidence
oost threshold (𝛽 = 0.4) the reduction in causality studies reach
9.99% while still detecting 64% of general causal rules. In the case of
he Apriori-OR, the results are worse. An increase in 5 points in the 𝑂𝑅
hreshold (𝑚 = 5) implies a reduction of 33% of causality rule studies
etecting 37 causal rules and 71% of general causal associations. With
large increase in the threshold (𝑚 = 20) the reduction of causality

tudies reaches a reduction of 99.96% in causality studies while only
argeting 7% of the general causal rules; far from the 64% of CauRuler.

The 𝐶𝑎𝑢𝑅𝑢𝑙𝑒𝑟 algorithm can reduce the basis of rules using a notion
f redundancy without greatly compromising the inference of causality.
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Table 8
Obtained general causal rules.

ID RULE

1 [ ‘E78.00’ = Pure hypercholesterolemia, unspecified] → [ ‘I10’ = Essential
(primary) hypertension]

2 [ ‘N18.9’ = Chronic kidney disease, unspecified] → [ ‘I10’ = Essential
(primary) hypertension]

3 [ ‘E79.0’ = Hyperuricemia without signs of inflammatory arthritis and
tophaceous disease] → [ ‘I10’ = Essential (primary) hypertension]

4 [ ‘I45.0’ = Right fascicular block] → [ ‘I10’ = Essential (primary)
hypertension]

5 [ ‘E78.2’ = Mixed hyperlipidemia] → [ ‘I10’ = Essential (primary)
hypertension]

6 [ ‘E11.9’ = Type 2 diabetes mellitus without complications] → [ ‘I10’ =
Essential (primary) hypertension]

7 [ ‘E78.1’ = Pure hyperglyceridemia] → [ ‘I10’ = Essential (primary)
hypertension]

8 [ ‘R73.9’ = Hyperglycemia, unspecified] → [ ‘I10’ = Essential (primary)
hypertension]

9 [ ‘I10’ = Essential (primary) hypertension] → [ ‘E11.9’ = Type 2 diabetes
mellitus without complications]

10 [ ‘E11.319’ = Type 2 diabetes mellitus with unspecified diabetic
retinopathy without macular edema] → [ ‘E11.9’ = Type 2 diabetes
mellitus without complications]

11 [ ‘R80.9’ = Proteinuria, unspecified] → [ ‘E11.9’ = Type 2 diabetes
mellitus without complications]

12 [ ‘U07.1’ = COVID-19] → [ ‘Z20.828’ = Contact with and (suspected)
exposure to other viral communicable diseases]

13 [ ‘R50.9’ = Fever, unspecified] → [ ‘Z20.828’ = Contact with and
(suspected) exposure to other viral communicable diseases]

14 [ ‘E21.3’ = Hyperparathyroidism, unspecified] → [ ‘N18.9’ = Chronic
kidney disease, unspecified]

Moreover, when increasing the redundancy, the rate of causal rules
found per each general causal rule 𝑛𝐶∕𝐺𝐶 is reduced. Thus, the algo-
rithm can directly retrieve general causal associations when increasing
demanding confidence boost thresholds.

3.3. Redundancy reduction analysis

Table 10 provides detailed results concerning the use of the
redundancy-based pruning method. A point increase in 𝛽 in CauRuler,
with a low confidence threshold (𝛾 = 0.6) implies a reduction of 54%
of rules (100− 3577

7732 ); with a high (𝛾 = 0.9) up to a 97% (100− 4
119 ). This

eduction trend increases with higher values of 𝛽. Balcazar suggests
sing a confidence boost threshold 𝛽 = 1 − 𝛾 to achieve a proper
esult [19]. In the case of the Apriori-OR, the reduction trends work
n the inverse direction: increasing when the confidence threshold
ncreases. For a low min 𝑚 value of 5, and a low confidence threshold,
9

r

he reduction achieved is 33%, and with a high 𝑔𝑎𝑚𝑚𝑎 (= 0.9) no
reduction is achieved.

3.4. Control of confounding variables analysis

Many of the associations obtained give inconclusive results in the
causality study. This is due to an insufficient number of participants in
the fair dataset to compute the Odds Ratio. Table 11 summarizes the
average number of patients forming the generated fair datasets. It is
noticeable that only 29% of the rules dispose of a sufficient number of
patients (56 on average) to learn a causality result. In the remainder of
the cases, 55% is due to a lack of coincidences concerning the effects
of the association rules (𝑌 in 𝑋 → 𝑌 ) in the control cohort, and a 16%
is due to the inverse situation.

The number of participants in the fair dataset is conditioned by
the controlled variable set 𝐶: CauRuler algorithm aims to impose as
many control variables as possible, which limits the number of pairs
of participants in the cohorts that can be matched to enter the fair
dataset. By Definition 11, there are two possible situations in which one
of the cohorts could end up with few or no individuals. In an extreme
situation:

1. All cases forming the fair data set of a rule 𝑟 present the effect
diagnoses 𝑌 for the cohort 𝑋𝑒 while for 𝑋𝑐 cohort all cases
does not present 𝑌 . Hence, the 𝑂𝑅 numerator is 1 while its
denominator is 0, resulting in an infinite value.

2. All cases forming the fair data set of a rule 𝑟 does not present
the diagnoses 𝑌 for the cohort 𝑋𝑒; while for 𝑋𝑐 cohort all
cases present 𝑌 . Hence, the numerator of the 𝑂𝑅 is 0 while its
denominator is 1, resulting in a 0 value.

Only 29% of the associations present a conclusive result, summa-
ized in Table 11. On average, rules with a conclusive result have
air datasets with 56 participants. However, the variability is high.
n average, causal associations present 460 participants (see two last

ows of Table 11). Those results are mainly due to the fact that the
omplexity of confirmed causal associations is lower when compared to
hose remaining unconfirmed. Causal rules associate 2.82 diagnoses on
verage while non-causal ones associate 3.35. Fewer diagnoses imply
t is easier to find patients to enter the cohorts, and therefore, bigger
air datasets.

Increasing threshold values 𝜖𝐼 , 𝜖𝐸 generates bigger 𝐸, 𝐼 subsets of
iagnoses, which turn to entail a reduction in the dimension of the
ontrolled variable set 𝐶. Employing it, the restriction regarding the
ecord matching is lower and the causality study presents bigger fair
atasets, reducing the number of inconclusive causality studies. Alter-
atively, it is always possible to increase the number of patients in the

aw database.
Table 9
Number of subrules referencing each anti-monotone causal association from Table 8 with different algorithms and parametrizations. Table 1: Subrules obtained with 𝐶𝐵 algorithm
nd boost parameter. Table2: Subrules obtained for 𝐴𝑂𝑅 algorithm and 𝑂𝑅 parameter. Results obtained from computed datasets for 𝛾 = 0.6; n rules: Number of rules tested; n
auses: Number of causal rules referenced; n subcauses: Number of subrules referencing each causal rule; % rules: percentage of causal rules found; s/r: Mean number of subrules
ound per causal rule.
Method General rules ID nR nC nGC % GC C/GC

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Apriori-OR(𝑚 = 1) 9 6 1 2 2 16 2 1 0 1 1 10 1 2 8173 54 13 92% 4.15
Apriori-OR(𝑚 = 5) 7 4 0 2 1 13 0 0 0 1 1 5 1 2 5461 37 10 71% 3.70
Apriori-OR(𝑚 = 10) 3 1 0 0 0 3 0 0 0 1 0 0 0 2 2181 10 5 35% 2.00
Apriori-OR(𝑚 = 15) 0 0 0 0 0 0 0 0 0 0 0 0 0 2 781 0 1 7% 2.00
Apriori-OR(𝑚 = 20) 0 0 0 0 0 0 0 0 0 0 0 0 0 2 280 0 1 7% 2.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14

CauRuler(𝛽 = 0.0) 9 6 1 2 2 16 2 1 0 1 1 10 1 2 7732 55 14 100% 3.92
CauRuler(𝛽 = 0.1) 6 4 1 1 1 13 2 1 1 1 1 10 1 2 3577 45 14 100% 3.21
CauRuler(𝛽 = 0.2) 4 2 1 1 1 8 1 1 1 1 0 7 1 1 1512 30 13 92% 2.30
CauRuler(𝛽 = 0.3) 1 1 1 1 1 1 1 1 1 1 0 1 0 0 356 11 11 78% 1
CauRuler(𝛽 = 0.4) 1 1 1 1 1 0 1 1 0 1 0 1 0 0 28 9 9 64% 1
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Table 10
Number of rules obtained by each method according to the different parameters: n is
the amount of discovered rules; m is the minim OR ratio for considering redundant
rules in Apriori-OR; 𝛽 the threshold to prune redundant rules in Cauruler; 𝛾 the
confidence threshold. All experiments use as support threshold 𝜏 = 0.0012.
Method 𝑚 𝛽 𝛾

0.6 0.7 0.8 0.9

Apriori – – 8,173 5,923 2,801 231

Apriori-OR 1 – 8,173 5,923 2,801 231
Apriori-OR 5 – 5,461 5,019 2,801 231
Apriori-OR 10 – 2,181 1,952 2,801 231
Apriori-OR 15 781 728 1,778 231
Apriori-OR 20 – 280 298 279 138

CauRuler – 0.0 7,732 4,714 1,932 119
CauRuler – 0.1 3,577 1,796 460 4
CauRuler – 0.2 1,512 460 22 0
CauRuler – 0.3 356 101 4 0
CauRuler – 0.4 28 10 0 0

Table 11
Analysis of the factors that regulate the generation of causal association rules.
Parameters for the setting: 𝛾 = 0.6 and 𝛽 = 0.0. Factors: 𝑛: number of rules; ̄

|𝐷𝑓 |: mean
number of participants taking part in the study of the rule; |

̄𝑋 ∪ 𝑌 |: mean number of
diagnosis taking part in rules analysis. ‘‘Causal True’’ and ‘‘Causal False’’ are subsets of
rules from the ‘‘Computable’’ set. Computed rules can be either causal or non-causal,
while for non-computed (‘‘OR∞’’, ‘‘OR0’’) the causality is unknown.

Condition n (%) ̄
|𝐷𝑓 | |𝐶̄|(%) |

̄𝑋 ∪ 𝑌 |

OR∞ 4268 (0.55) 4 1510 (0.38) 4.44
Computable 2240 (0.29) 56 1389 (0.35) 3.34
OR0 1224 (0.16) 15 1505 (0.37) 3.84

Causal True 46 (0.02) 460 906 (0.23) 2.82
Causal False 2194 (0.98) 48 1399 (0.35) 3.35

3.5. Medical evaluation analysis

To determine the clinical validity of the results, two causal maps
are defined using as input the top-10 causal associations obtained by
CauRuler 4 and Apriori-OR algorithm. The associations are selected
based on the lower confidence interval of the Odds Ratio. The ex-
periment takes as reference the standard parametrization (𝑠𝑢𝑝𝑝𝑜𝑟𝑡 =
0.0012, 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = 0.6), CauRuler parameter 𝛽 = 0.3 and Apriori-

R parameter 𝑚 = 1. Three different medical experts from different
ackgrounds (neurology and general medicine) whom do not known
ach other were selected to evaluate both causal maps. The causal
ssociations were evaluated to judge previous knowledge by the expert,
lausibility if not known or reason why they are not plausible if its
he case. The experts did not know which algorithm generated the
ausal rule at the time of assessment. Table 12 summarizes the obtained
esults.

It is interesting to say that expert 2 stated that causal association
umber 6 (Type 2 diabetes → Primary hypertension) in Table 8, although
eing plausible (diabetes might result in vascular alteration inducing
ypertension, as some studies point) could be also caused by common
actors such as obesity, smoking habits or sedentarism. This statement
ustains the cycle that can be observed between both diagnoses in
ausal map (Fig. 4). In fact, a causal map by definition is a DAG, but
his is not the case regarding the aforementioned two diagnoses. This
ycle structure suggests the existence of a lurking third variable causing
oth diagnoses that is not being controlled. Since the experiment is
ontrolling for smoking, using data about the Body Mass Index (BMI)
r sedentarism could be a good approach to test causality over those
ssociations (there could be other variables also acting as confounders).
he expert also suggested that association 3 (Hyperuricemia → Primary

hypertension) could have a similar behaviour. The aforementioned re-
sults are interesting since prove that: the expert knowledge always
10

o

will be needed to evaluate or reinforce the results (suggesting inter-
esting confounders to induce better results) and that from the causal
maps it is possible to point structures suggesting a spurious causal
association.

All experts reached consensus on the causal associations that are er-
roneous in the Apriori-OR causal map. Both rules are complex (formed
by more than 2 diagnoses) and are associating cardiovascular diseases
with covid. Those associations are formed by a true causal path but
add a third term bringing specificity and incorrectness to the model.
It is true that chronic kidney disease causes hypertension both for
people undergoing covid-19 and people with no covid infection. Those
incorrect results are obtained since the incorrect diagnose (covid) has
not enough strength to lower the OR of the true causal association,
thus retrieving a monotonic association falling in a specific case of
the real causal association. The CauRuler algorithm is able to side-step
the problem by using the confidence boost, which generalizes the rules
without falling in too specific causal scenarios.

The erroneous targeted rules are:

• [‘‘Pure hypercholesterolemia’’, ‘‘Covid-19’’, ‘‘Type 2 diabetes melli-
tus’’] → hypertension

• [‘‘Chronic kidney disease’’, ‘‘Covid-19’’] → hypertension

The evaluation made by the medical experts shows that CauRuler
lgorithm is better at detecting causal associations. Nevertheless, the
lgorithm will always be subjected to errors related with not properly
ontrolling for confounder variables. Medical experts and external in-
ormation can be a source for detecting the variables that can act as
onfounders in different associations. Causal maps can be used to detect
rroneous causal paths.

.6. Discussion

The dimension of the dataset used with a diagnosis set (up to 3,994
iagnoses) and the number of patients considered (up to 352,440),
s well as the variable length of the trajectories, make it a complex
ataset [34]. The results achieved prove the scalability and effec-
iveness of the algorithm at targeting real causal associations. The
lgorithm is able to target interesting causal associations avoiding the
oding errors present in the database (the primary healthcare system
as highly affected by the covid-19 outbreak, specially in 2020).

Regarding the causality identification, CauRuler has shown efficacy
n detecting a more complex causal map than the one achieved by
priori-OR employing a smaller association rule basis. Causal associa-

ions targeted by the model were previously known and have consensus
n the medical community. By applying causal rule generalization, the
roposed method is able to get rid of those relations that fall in too
pecific scenarios, which tend to induce erroneous causal rules. This
ehaviour meets what was expected for these high demanding thresh-
lds of parameters and prove the effectiveness of the model. As stated
y experts, some of the causal associations targeted by both algorithms
ight be caused by a lurking third variable not presents in the dataset,

hus not being controlled. Causal discovery algorithms assume they
re controlling all confounders, but this is highly improvable in some
ases. For the time being, the thresholds used were highly demanding in
rder to retrieve previously known associations to validate the results.
oftening the thresholds in future experimentation strategies should
etrieve other associations that might prove interesting to evaluate.
uring the Covid-19 outbreak, specially in the first stages, COVID-19
as coded using three different diagnoses (𝐵34.2: Coronavirus in-

ection, unspecified, 𝑍20.828:Contact with and (suspected) exposure
o other viral communicable diseases, 𝑈07.1:COVID-19). There are
ausal associations relating those terms. Causality would suggest covid
auses covid, but those relations are instead explained due to the
igh pressure which was involved in the health system during the

utbreak.
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Fig. 4. Causal map obtained by CauRuler algorithm for 𝛽 = 0.0 and 𝛾 = 0.6. General causal rules from Table 8. Results from ICS-Catalunya central Dataset over diagnoses between
years 2019 and 2020 (covid-19 outbreak period).
Table 12
Medical evaluation of top-10 causal associations detected by CauRuler and Apriori-OR algorithm.

CauRuler algorithm Apriori-OR algorithm

Previously known Plausible Impossible Previously known Plausible Impossible

Medical expert 1 100% 0 0 80% 0 20%
Medical expert 2 80% 20% 0 80% 0 20%
Medical expert 3 100% 0% 0 80% 0 20%
CauRuler has shown a higher power than its predecessors to prune
the number of possible association rules. The strength of the CauRuler
algorithm is that it reduces the basis based on inclusion relations,
and therefore, no information is lost (it only gets rid of redundant
associations). Conversely, Apriori-OR prune rules based on the OR
before applying any control of confounding variables, which could
cause some information loss. The confidence boost proposition reduces
the dimension of the associations basis without highly compromising
the targeted number of causal associations. By using a smaller basis
of rules, Cauruler is capable of targeting more Causal associations and
retrieve more complex causal maps. This behaviour allows the mining
of bigger databases, with a higher number of patients and variables.

4. Conclusions

This paper proposes an algorithm to target causal associations on a
basis of non-redundant association rules. The method brings together
irredundant rule mining and retrospective cohort study, controlling
confounding variables, and using anti-monotone properties to learn a
11
smaller, more general, set of causal rules. The carried out experimen-
tation shows how CauRuler is capable of discovering partial causal
maps from a complex clinical databases controlling a high number of
confounder variables. The medical evaluation proves the reliability of
the obtained associations.

In terms of efficiency evaluation, future work includes an exhaustive
study of the computational times compared to other causal methods
such as Bayesian networks. In terms of causality discovery, future work
will include experimentation other databases containing more clinic
interest variables that can act as confounders, such as socioeconomic,
geo-clinical, analytical or pharmacological data.

Further analysis will include an exhaustive evaluation of causal as-
sociations accounting diagnoses and pharmacology. Conversely, study-
ing specific cohorts of patients undergoing a particular condition or
confounder (sex, age, smoking status...) will lead to causal association
findings within the cohort, avoiding the effect of invisibilization when
mining the whole population.
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Table 13
CauRuler variables and parameters definition.

Var Description

𝑃 = {𝑝1 ,… , 𝑝𝑀} Set of patients
𝑝𝑖 Patient
𝑀 Number patients

𝐷 = ⟨𝑑1 ,… , 𝑑𝑁 ⟩ Tuple of diagnoses
𝑑𝑖 Diagnostic (ICD-10 codification)
𝑁 Number of diagnoses

𝑉 = {𝑣1 ,… , 𝑣𝐾} Set of variables of clinical interest
𝑣𝑖 Variable
𝐾 Number of variables

𝑉 𝑏 = {𝑣𝑏1 ,… , 𝑣𝑏𝐾𝑏 } Set of binary variables of clinical interest
𝑣𝑏𝑖 Binary variable
𝐾𝑏 Number of clinical binary variables

𝐵 = {𝑏1 ,… , 𝑏𝑁+𝐾𝑏 } Set if binary diagnoses and clinical binary variables
𝑏𝑖 Binary variable

𝑇 = {𝑡𝑝1 ,… , 𝑡𝑝𝑀 } Set of Trajectories
𝑡𝑝𝑖 = ⟨𝑑𝑝𝑖

1 ,… , 𝑑𝑝𝑖
𝑛𝑝𝑖
⟩ Transaction/Patient trajectory

𝑛𝑝𝑖 Number of diagnoses of patient 𝑝𝑖

𝑇 𝑏 = {𝑡𝑏𝑝1 ,… , 𝑡𝑏𝑝𝑀 } Set of Binary Transactions
𝑡𝑏𝑝𝑖 = ⟨𝑏𝑝𝑖1 ,… , 𝑏𝑝𝑖𝑁+𝐾𝑏 ⟩ Binary trajectory of patient

𝑅 = {𝑟1 ,… , 𝑟𝑊 } Set of association rules
𝑟𝑖 ∶ 𝑋𝑖 → 𝑌𝑖 Association rule
𝑋𝑖 , 𝑌𝑖 ⊂ 𝐷 Subsets of diagnoses forming rule
𝑊 Number of association rules
𝐿𝐻𝑆(𝑟𝑖) = 𝑋𝑖 Left Hand Side of rule
𝑅𝐻𝑆(𝑟𝑖) = 𝑌𝑖 Right Hand Side of rule

𝑅𝑐 = {𝑟𝑐1 ,… , 𝑟𝑐𝑊 𝑐 } Set of causal association rules

𝑅𝑔 = {𝑟𝑔1 ,… , 𝑟𝑔𝑊 𝑔 } Set of general causal association rules

𝑋𝑒 , 𝑋𝑐 Exposure and control cohorts
𝑋𝑓𝑒 , 𝑋𝑓𝑐 Fair exposure and fair control cohorts
𝐷𝑓 = 𝑋𝑓𝑒 ∪𝑋𝑓𝑐 Fair dataset
𝐼 Irredundant variable set
𝐸 Exclusive variable set
𝐶 Controlled variable set

𝜏 Support threshold
𝛾 Confidence threshold
𝛽 Confidence boost threshold
𝜖𝐼 , 𝜖𝐸 Irrelevant and Exclusion variables thresholds
𝛼 Confidence interval threshold
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Appendix A. Notation

Table 13 summarizes all variables and parameters used in the
methodology.

Appendix B. Code

Pseudocode representation of the different steps of the CauRuler
algorithm. Source code is available in a private repository under query
to the authors.
12
Algorithm 1 COHORT GENERATION

• Input: binary trajectory dataset 𝑇 𝑏; Set if binary diagnoses and clinical
binary variables 𝐵; rule 𝑟 = 𝑋 → 𝑌 .

• Output: exposition cohort 𝑋𝑒; Control cohort 𝑋𝑐 .

1: procedure Cohorts of rule. (𝐶𝑜(𝑟))
2: Let exposition and control cohorts 𝑋𝑒 = ∅, 𝑋𝑐 = ∅
3: Let 𝑋𝑏 = ∅ ⊳ Binarization of X
4: for each 𝑏𝑗 in 𝐵 do
5: if ∃𝑑𝑘, 𝑝𝑜𝑠(𝑑𝑘 ∈ 𝑋,𝐷) = 𝑗 then
6: Add 𝑏𝑗 = 1 to 𝑋𝑏

7: else
8: Add 𝑏𝑗 = 0 to 𝑋𝑏

9: end if
10: end for
11: for each 𝑡𝑏𝑝𝑖 in 𝑇 𝑏 do. ⊳ Cohort generation
12: if 𝑋𝑏 ∩ 𝑡𝑏𝑝𝑖 = 𝑋𝑏 then
13: Add 𝑡𝑏𝑝𝑖 to 𝑋𝑒

14: else
15: Add 𝑡𝑏𝑝𝑖 to 𝑋𝑐

16: end if
17: end for
18: Return 𝑋𝑒, 𝑋𝑐

19: end procedure

Algorithm 2 CONFOUNDERS VARIABLE CONTROLLING

• Input: Binary trajectory dataset 𝑇 𝑏; support threshold 𝜏; variable set 𝐵;
Exposition cohort 𝑋𝑒 an control cohort 𝑋𝑐 ; exclusiveness threshold 𝜖.

• Output: Controlled variable set 𝐶.

1: procedure Irrelevant variable set. (𝐼)
2: Let 𝐼 = ∅
3: for 𝑏𝑖 ∈ 𝐵 ⧵𝑋 ∪ 𝑌 do
4: if 𝑠({𝑏𝑖}, 𝑇 𝑏) ≤ 𝜖𝐼 then
5: Add 𝑑𝑖 to 𝐼
6: end if
7: end for
8: Return 𝐼
9: end procedure

procedure Exclusive variable set. (𝐸)
Let 𝐸 = ∅
for cohort 𝑋𝑘 in 𝑋𝑒, 𝑋𝑐 do

for 𝑏𝑖 ∈ 𝐵 ⧵𝑋 ∪ 𝑌 do
if 𝑠({𝑏𝑖}, 𝑋𝑘) ≤ 𝜖𝐸 then

Add 𝑏𝑖 to 𝐸
end if

end for
end for
Return 𝐸

end procedure

1: procedure Controlled variable set C. (𝐶)
2: Return 𝐶 = 𝐵 ⧵ (𝑋, 𝑌 , 𝐼, 𝐸)
3: end procedure
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Algorithm 3 FAIR DATASET CONSTRUCTION

• Input: Exposition Cohort 𝑋𝑒 and Control Cohort 𝑋𝑐 , rule 𝑟 = 𝑋 → 𝑌 ,
controlled variable set 𝐶.

• Output: Fair dataset 𝐷𝑓 (𝑟) of rule 𝑟 ∶ 𝑋 → 𝑌 .

1: procedure Fair dataset of rule. (𝐷𝑓 (𝑟))
2: Let fair dataset 𝐷𝑓 = ∅
3: Assume |𝑋𝑒

| < |𝑋𝑐
|, if not swap.

4: for each 𝑡𝑏𝑝𝑖 in 𝑋𝑒 do
5: Let 𝑡𝑏𝑝𝑗 = 𝑚𝑎𝑡𝑐ℎ(𝑡𝑏𝑝𝑖 , 𝑋

𝑐 −𝐷𝑓 , 𝐶)
6: if then𝑡𝑏𝑝𝑖
7: add 𝑡𝑏𝑝𝑖 , 𝑡

𝑏
𝑝𝑗

to 𝐷𝑓
8: end if
9: end for

10: Return 𝐷𝑓
11: end procedure

Algorithm 4 CAUSALITY EVALUATION

• Input: rule 𝑟𝑖 = 𝑋 → 𝑌 ; Fair dataset 𝐷𝑓 = 𝑋𝑓𝑒 ∪𝑋𝑓𝑐 of rule 𝑟; standard
normal derivate 𝑧.

• Output: boolean of causality.

1: procedure Causality evaluation for rule (𝑐𝑎𝑢𝑠(𝑟))
2: 𝑛11 = |{𝑡|𝑡 ∈ 𝑋𝑓𝑒,∀𝑗 ∈ 𝑌 ∃𝑏𝑗 ∈ 𝑡, 𝑏𝑗 = 1}|
3: 𝑛12 = |{𝑡|𝑡 ∈ 𝑋𝑓𝑒,∀𝑗 ∈ 𝑌 ∄𝑏𝑗 ∈ 𝑡, 𝑏𝑗 = 0}|
4: 𝑛13 = |{𝑡|𝑡 ∈ 𝑋𝑓𝑐 ,∀𝑗 ∈ 𝑌 ∃𝑏𝑗 ∈ 𝑡, 𝑏𝑗 = 1}|
5: 𝑛14 = |{𝑡|𝑡 ∈ 𝑋𝑓𝑐 ,∀𝑗 ∈ 𝑌 ∄𝑏𝑗 ∈ 𝑡, 𝑏𝑗 = 0}|
6: Let 𝑂𝑅𝐷𝑓

= 𝑛11 ⋅𝑛22
𝑛12 ⋅𝑛21

7: Let 𝛼− be the minimum CI of 𝑂𝑅𝐷𝑓

8: if 𝛼− ≥ 1 then
9: Return TRUE
0: else
1: Return FALSE
2: end if
3: end procedure
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