

Treball final de grau

Estudi: Grau en Enginyeria Informàtica

Títol:

GOS
A new declarative tool for

modelling and solving
CSPs to SAT

Document: Report

Alumne: Roger Generoso Masós

Tutor: Jordi Coll i Mateu Villaret
Departament: Informàtica, Matemàtica Aplicada i Estadística
Àrea: Llenguatges i Sistemes Informàtics

Convocatòria (mes/any)

Juny 2020

Acknowledgments

My most sincere thanks to my two supervisors, Jordi Coll and Mateu Villaret, for introducing
me to the exciting world of constraint solving problems and for proposing me this project
that I have enjoyed throughout the time that I have been doing it.

Contents
1. Introduction 1

1.1. Motivations . 2
1.2. Purpose . 2
1.3. Objectives . 5
1.4. Contextual description . 5

2. Feasibility Study 7
2.1. Technological viability . 7
2.2. Economical viability . 7

3. Methodology 9

4. Project planning 11
4.1. Working plan . 11
4.2. Schedule . 11

5. Work framework and preliminary concepts 13
5.1. Regular Expressions (REGEX) . 13
5.2. Context-Free Grammars (CFG) . 14
5.3. Language Recognition . 14

5.3.1. Error recovery strategies . 16
5.4. Constraint Satisfaction Problems (CSP) . 17

5.4.1. Boolean Satisfiability (SAT) . 18
5.4.1.1. Conjunctive Normal Form (CNF) 18

5.5. SAT solving . 19
5.6. Declarative programming . 21

6. System requirements 23
6.1. Functional requirements . 23
6.2. Nonfunctional requirements . 23

6.2.1. Hardware requirements . 23
6.2.2. Software requirements . 23

7. Studies and decisions 25
7.1. Another Tool for Language Recognition (ANTLR) 25

7.1.1. Lexical Analysis . 25
7.1.2. Syntactic Analysis . 26
7.1.3. Semantic Analysis . 27

7.1.3.1. Listeners vs Visitors . 28
7.1.3.2. Target: C++ vs Java . 29

v

vi Contents

7.1.4. ANTLR vs other Language Recognition Tools (LRT) 30
7.2. JSON as input format . 31
7.3. Allow structs as data type . 31
7.4. MiniSAT as SAT solver . 32
7.5. Use of CMake to build the project . 32

8. BUP: Language Specification 33
8.1. Model file . 33

8.1.1. Entity definition block . 33
8.1.2. Viewpoint block . 33

8.1.2.1. Variable declaration . 34
8.1.2.2. Parameter declaration . 34
8.1.2.3. Entity declaration . 34
8.1.2.4. Array declaration . 34

8.1.3. Constraints block . 34
8.1.4. Output block . 34
8.1.5. Data . 35

8.1.5.1. Basic types . 35
8.1.5.2. Defined types: Entities . 35
8.1.5.3. n-dimentional arrays . 35

8.1.6. Identifiers . 36
8.1.7. Comments . 36
8.1.8. Expressions . 36
8.1.9. Data access . 37

8.1.9.1. Identifier access . 37
8.1.9.2. Array index access . 37
8.1.9.3. Matrix row access . 37
8.1.9.4. Entity attribute access . 37

8.1.10. Lists . 37
8.1.10.1. List Aggregation Operators 38

8.1.10.1.1. length . 38
8.1.10.1.2. sum . 39
8.1.10.1.3. max . 39
8.1.10.1.4. min . 39

8.1.11. Constraints . 40
8.1.11.1. Propositional Formula . 40

8.1.11.1.1. Variable . 41
8.1.11.1.2. Negation . 42
8.1.11.1.3. And . 42
8.1.11.1.4. Or . 43
8.1.11.1.5. Implication . 43
8.1.11.1.6. Double implication 44

8.1.11.2. Cardinality constraints . 44
8.1.11.3. forall structure . 45
8.1.11.4. if structure . 45

Contents vii

8.1.12. Strings . 46
8.2. Parameters file . 46

9. Analysis and design of the system 49
9.1. Main flow . 49

9.1.1. Input data read . 49
9.1.2. Entity definition . 51
9.1.3. Variable declaration . 51
9.1.4. Parameter declaration and assignation 51
9.1.5. Formula generation . 51
9.1.6. Print CNF formula: DIMACS format 52
9.1.7. Solver application . 52
9.1.8. Output . 52

9.1.8.1. Default output . 52
9.1.8.2. Custom output . 52

9.2. Symbol Table . 52
9.2.1. Scope . 53

9.2.1.1. GlobalScope . 54
9.2.1.2. LocalScope . 54

9.2.2. Symbol . 54
9.2.2.1. Type . 54
9.2.2.2. ValueSymbol . 55

9.2.2.2.1. VariableSymbol . 55
9.2.2.2.2. AssignableSymbol 55

9.2.2.3. ScopedSymbol . 55
9.2.2.3.1. ArraySymbol . 55
9.2.2.3.2. StructSymbol . 55

9.3. Visitors . 57
9.3.1. GOSInputVisitor . 57
9.3.2. GOSBaseVisitor . 58

9.3.2.1. GOSCustomBaseVisitor . 58
9.3.2.1.1. GOSTypeVarDefinitionVisitor 58
9.3.2.1.2. GOSConstraintsVisitor 59
9.3.2.1.3. GOSOutputVisitor 60

9.4. Error handling . 60
9.4.1. Lexical Errors . 60
9.4.2. Syntactic Errors . 60
9.4.3. Semantic Errors . 60

9.5. SMT api . 62
9.5.1. SMTFormula . 62
9.5.2. GOSEncoding . 63
9.5.3. Controller . 64

9.6. GOS compiler arguments . 65
9.6.1. print-formula flag . 66
9.6.2. SolvingArguments . 66

viii Contents

10.Deploying 67
10.1. Downloadable compiler . 67
10.2. Online compiler . 67

11.Results 71
11.1. BUP programming language . 71
11.2. GOS compiler . 71
11.3. Model examples . 72

11.3.1. Sudoku . 72
11.3.2. Nonogram . 75
11.3.3. Multi-Skill Project Scheduling Problem (MSPSP) 78

11.3.3.1. Model . 79
11.3.3.1.1. Viewpoint . 79
11.3.3.1.2. Constraints . 80
11.3.3.1.3. Output . 82

11.3.3.2. Instance example . 82

12.Conclusions 89

13.Future Work 91
13.1. Optimization . 91
13.2. Satisfiability Modulo Theories (SMT) . 91
13.3. Object-oriented language . 92
13.4. Pseudo-boolean constraints . 92
13.5. Functions . 92
13.6. Different implementations of cardinality constraints 93
13.7. Mathematical model documentation with LATEX 93

Bibliography 95

Acronyms 97

A. Install and Run Instructions 99

B. JSON input grammar 101

C. BUP grammar 103

List of Figures
1.1. High level GOS tool schema . 2

3.1. Iterative and Incremental Development (IID) flow chart 9

5.1. Regular expression example as a Finite State Machine 13
5.2. Compiler phases flow . 15
5.3. Compiler phases graphic chart . 16
5.4. Resolution rule . 19

7.1. Valid example of lexical rules, input and output 26
7.2. Invalid example of lexical rules, input and output 26
7.3. Example of ANTLR syntactic rules, input and output 27
7.4. Example of ANTLR parser tree result . 27
7.5. ANTLR listener schema . 28
7.6. ANTLR visitor schema . 29

8.1. BUP: Propositional formulas operands . 41

9.1. Tool layered flow scheme . 50
9.2. Compiler flow: auxiliary data structure to store input JSON data 51
9.3. Symbol Table: Class diagram . 56
9.4. Visitors schema . 57

10.1. GOS online version flow . 67
10.2. GOS online version . 69

11.1. Nonogram: gladiator example . 77

ix

List of Tables
2.1. Economic human costs . 8
2.2. Economic infrastructure costs . 8

4.1. Gantt chart: Project tasks scheduling . 12

5.1. Example of SAT solving through a truth table 19

7.1. ANTLR lexical recognition rules . 25
7.2. ANTLR syntactical recognition rules . 26

8.1. BUP: Expresion operators priority . 36
8.2. BUP: Propositional formula operators . 41
8.3. Negation truth table . 42
8.4. BUP: Allowed operations with ! . 42
8.5. And truth table . 42
8.6. BUP: Allowed operations with & . 43
8.7. Or truth table . 43
8.8. BUP: Allowed operations with | . 43
8.9. Implication truth table . 44
8.10. BUP: Allowed operations with -> . 44
8.11. Double implication truth table . 44
8.12. BUP: Allowed operations with <-> . 44

11.1. MSPSP instance example: Requiered skills for each activity. 83
11.2. MSPSP instance example: Activity successors 85
11.3. MSPSP instance example: Skills mastered for each resource 85
11.4. MSPSP instance example: result chart . 87

12.1. Gantt chart: Project final schedule . 90

xi

Listings

5.1. Simple grammar example that recognise arithmetic expressions 16

7.1. ANTLR generated listener for Figure 7.3 grammar 28
7.2. ANTLR generated visitor for Figure 7.3 grammar 29
7.3. JSON grammar . 31

8.1. BUP: Basic model file structure . 33
8.2. BUP: Entity definition block . 33
8.3. BUP: Viewpoint block . 34
8.4. BUP: Variable declaration . 34
8.5. BUP: Parameter declaration . 34
8.6. BUP: Entity declaration . 34
8.7. BUP: Array declaration . 34
8.8. BUP: Constraints definition block . 34
8.9. BUP: Output block . 35
8.10. BUP: Entity definition . 35
8.11. BUP: Identifiers . 36
8.12. BUP: Range list . 36
8.13. BUP: Identifier access . 37
8.14. BUP: Array index access . 37
8.15. BUP: Matrix row access . 37
8.16. BUP: Entity attribute access . 37
8.17. BUP: Range list . 38
8.18. BUP: Comprehension list . 38
8.19. BUP: Explicit list . 38
8.20. BUP: Comprehension list . 38
8.21. BUP: List aggregate length . 39
8.22. BUP: List aggregate sum . 39
8.23. BUP: List aggregate max . 39
8.24. BUP: List aggregate min . 39
8.25. BUP: Variable . 41
8.26. BUP: && operator . 42
8.27. BUP: || operator . 43
8.28. BUP: Exactly-K constraint . 45
8.29. BUP: At-Most-K constraint . 45
8.30. BUP: At-Least-K constraint . 45
8.31. BUP: Exactly-K constraint . 45
8.32. BUP: At-Most-K constraint . 45
8.33. BUP: At-Least-K constraint . 45

xiii

xiv Listings

8.34. BUP: forall constraint . 45
8.35. BUP: if constraint . 45
8.36. BUP: Explicit string . 46
8.37. BUP: String concat . 46
8.38. BUP: String between parenthesis . 46
8.39. BUP: Ternary operation string . 46
8.40. GOS: Example parameters JSON file using basic types, arrays and entities . 46

9.1. SymbolTable: Constructor . 53
9.2. GOSJSONInputVisitor . 57
9.3. GOSBaseVisitor . 58
9.4. GOSTypeVarDefinitionVisitor . 58
9.5. GOSConstraintsVisitor . 59
9.6. GOSOutputVisitor . 60
9.7. GOSException . 61
9.8. Default error message . 61
9.9. GOSBadAccessException . 61
9.10. GOSInvalidFormulaException . 61
9.11. SMTFormula api used methods . 62
9.12. GOSEncoding . 63
9.13. BasicController . 64
9.14. GOS main: argument management . 65

11.1. Sudoku example: model . 72
11.2. Sudoku example: parameters input . 73
11.3. Sudoku example: solution . 73
11.4.MSPSP model: parameters . 79
11.5.MSPSP model: variables . 79

1. Introduction

When somebody wants to solve a problem, surely, the most common approach in the pro-
gramming world is to use an imperative programming language and define an algorithm with
the steps to solve it. But there are many alternatives to that.

Constraint Satisfaction Problems (CSP)s are a type of problems in which variables are defined
and, by applying constraints, you try to limit the domain of this variables until you reach a
solution, but without proposing any specific algorithm to solve it. This kind of problems are
easily modelled with declarative programming languages.

Declarative programming languages attempt to describe what the program must accomplish
in terms of the problem domain, rather than describe how to accomplish it as a sequence
of the programming language primitives. This is in contrast with imperative programming,
which implements algorithms in explicit steps.

A subset of declarative languages are modelling languages. This project will be focused
on this subset and the main purpose will be create a new declarative programming language
for modelling any CSP to Boolean Satisfiability (SAT).

One of the most successful methodologies for solving CSP relies on the conversion into SAT
problems. The advantage is the wide availability of free and efficient SAT-solvers.

A SAT problem contains a formula built on a set of boolean variables, which can take only
value true (or 1) and false (or 0). A solution to SAT problem is an assignment of values
true/false to the logical variables, such that all clauses are satisfied.

Currently there exist some declarative languages to model CSPs, such as MiniZinc (Stuckey
et al., 2018), ESSENCE’ (Frisch et al., 2008), Picat (Zhou & Kjellerstrand, 2016), WSimply
(Ansótegui et al., 2013) and many others, which have their own compiling and solving sys-
tems. Some of these systems support automatic reformulation to SAT. However, one of the
current research lines of the Logic and Programming (L∧P) research group of the University
of Girona is to find efficient SAT encodings of particular constraints. For this reason, the
L∧P group is interested in having its own SAT declarative modelling language and compiler
that can be directly integrated with their SAT encoding systems.

The name chosen for the tool is GOS (Girona Optimization System)1 and the language

1It is true that the final result is not (yet) compatible with the optimization of CSPs, but this name was
decided in agreement with the supervisors, considering that one of the first future tasks for this work would
be add support to optimization.

1

2 Introduction

that GOS will use is BUP. As a curiosity, the name choice lies in the fact that in Catalan,
my mother tongue, GOS means dog and, also in Catalan, the onomatopoeia that describes
the sound that dogs make (the language they speak) is BUP-BUP! (woof-woof!).

Therefore, GOS (dog) is the name of the tool implemented and BUP (woof) is the language
defined that is used by GOS. Apart from that, a real dog (GOS) can be considered a tracker,
and that is also what the project is about: looking for a solution to CSPs.

1.1. Motivations
After enjoy studying Declarative Programming and Compilers subjects, the Logic and Pro-
gramming (L∧P) research group of the University of Girona proposed me a project that was
a mix of the two subjects: creating a compiler for a new declarative language to make up for
the need of L∧P group of a language with high expressiveness level to encode CSP to SAT
to be used in their current research. I could not miss this opportunity.

By doing this project I hope to gain a broad understanding of how compilers work, in addition
to get a deeper knowledge of modelling with SAT.

I hope the result of this project to be a tool that can be used by anyone who wants to
easily encode with SAT.

1.2. Purpose
The main purpose of the project is to obtain a new declarative programming language for
modelling any CSP to SAT. To achieve this, it will be necessary to think and define a new
programming language allowing the user define CSPs as SAT in a declarative way, with a
higher level of expressiveness, and implement a compiler that integrates a SAT-solver to
obtain the solution of the modelled problems. The goal is to provide an easy gateway for
modelling with SAT, that has extremely efficient solvers.

MODEL

PARAMETERS
LΛP
API

SAT
SOLVER

GOS COMPILER

!x1 V x2 Λ x2 V
x4 Λ ⋯ Λ x324

PROCESS
MODEL & PARAMETERS

GENERATE FORMULA BY
APPLYING CONSTRAINTS

SOLVE
FORMULABUP Language

JSON format

PRINT FORMULA
DIMACS format

PRINT SOLUTION
Custom format

Figure 1.1: High level GOS tool schema

The figure 1.1 is a high level schema of the project. We could exemplify this schema
modelling the Sudoku problem.
The model file will be written using the BUP language and it would define:

1.2. Purpose 3

• Necessary parameters (initially fixed sudoku values, board size,...).

• Variables used to model the problem.

• Constraints applied over those variables (no repeated numbers in each row, column and
sub-square, initial values must be respected,...)

• Output format.

The following code is a real example of using BUP modelling the Sudoku problem (model
file):

1 viewpoint:
2 var p[9][9][9];
3 param int iniSudoku[9][9];
4

5 constraints:
6 forall(i in 0..8, j in 0..8){
7 EO(p[i][j][_]); // One value per cell
8 AMO(p[i][_][j]); // Each value one time per row
9 AMO(p[_][i][j]); // Each value one time per column

10 };
11 //Each value one time per block
12 forall(i in [0,3,6], j in [0,3,6], k in 0..8){
13 AMK([p[i+l][j+g][k] | l in 0..2, g in 0..2], 1);
14 };
15 //Initialize input fixed sudoku values.
16 forall(i in 0..8, j in 0..8){
17 if(iniSudoku[i][j] != 0){
18 p[i][j][iniSudoku[i][j]-1];
19 };
20 };
21 output:
22 "Sudoku solution: \n";
23 [k+1 ++ " " ++ ((j+1) % 3 == 0 ? " " : "") ++ (j==8 ? (i+1) % 3 == 0 ? "\n←↩

↪→ \n": "\n" : "") | i in 0..8, j in 0..8, k in 0..8 where p[i][j][k]];

The model has a parameter iniSudoku, that is the initial sudoku to solve, and an array of
variables p, where p[i][j][k] is true when the cell with row i and column j has the value
k.

The parameters file would give the values to the required model parameters. The following
listing is an example of sudoku instance (parameters file):

1 {
2 "iniSudoku" : [
3 [8, 0, 0, 0, 0, 0, 0, 0, 0],
4 [0, 0, 3, 6, 0, 0, 0, 0, 0],
5 [0, 7, 0, 0, 9, 0, 2, 0, 0],
6 [0, 5, 0, 0, 0, 7, 0, 0, 0],
7 [0, 0, 0, 0, 4, 5, 7, 0, 0],

4 Introduction

8 [0, 0, 0, 1, 0, 0, 0, 3, 0],
9 [0, 0, 1, 0, 0, 0, 0, 6, 8],

10 [0, 0, 8, 5, 0, 0, 0, 1, 0],
11 [0, 9, 0, 0, 0, 0, 4, 0, 0]
12]
13 }
GOS compiler will process these data and, by using the L∧P API2, will generate the propo-
sitional formula as a result of applying the defined constraints over the model variables.
Once the formula is generated, the compiler can print the formula in a standard format,
DIMACS, or apply the solver to get a solution. Basically, the process would be like doing
a compilation of a high-level language (in our case, BUP), to assembler (where SAT is the
assembler, the lowest-level language), using GOS compiler.

The following constraint makes sure that the initial values of the sudoku are respected.

1 //Initialize input fixed sudoku values.
2 forall(i in 0..8, j in 0..8){
3 if(iniSudoku[i][j] != 0){
4 p[i][j][iniSudoku[i][j]-1];
5 };
6 };
The translation of this constraint to a SAT propositional formula, given the example in-
stance: p[0][0][7] ∧ p[1][2][2] ∧ p[1][3][5] ∧ · · · ∧ p[5][7][3]3. This ensures
row 1 (0+1), column 1 (0+1) have the value 8 (7+1) and the row 1, column 3 have the
value 3,...
Given the model and the sudoku instance previously defined, GOS generates the following

Boolean Formula, expressed in a standard format, DIMACS. The user could decide whether
print the formula or solve the problem.

1 p cnf 4536 11361
2 -1 730 0
3 -2 730 0
4 -1 -2 731 0
5 1 -731 0
6 2 -731 0
7 1 2 -730 0
8 -3 732 0
9 -4 732 0

10 -3 -4 733 0
11 3 -733 0
12 4 -733 0
13 (...)
In this example it is shown a chunk of the whole output formula, that consists on 4536
variables and 11361 clauses.

2L∧P is a research group of the University of Girona that has developed an API to manage Satisfiability
Modulo Theories (SMT) formulas (an extension of SAT). This API also integrates different solvers (among
them SAT specific solvers).

3Note that the array indexes range from 0 to n-1, where n is the array size. So, for example, the row
mapped as 0 will be the 1th in the real board.

1.3. Objectives 5

1.3. Objectives
To reach the main purpose, many objectives must be satisfied:

• Design a programming language to improve the expressiveness when encoding any CSP
to SAT.

• Implement a compiler for this language to be able to parse any input and give it semantic
meaning.

• Integrate the compiler with the API implemented by L∧P group in order to use the
solvers to solve the modelled problems.

My personal objectives developing this project are get a deepen knowledge in:

• how compilers work.

• SAT encoding.

• declarative and formal languages.

To achieve these goals I added some training periods to the project scheduling, in order to
get the necessary knowledge to carry out this project (see Section 4).

1.4. Contextual description
To do this project, I start with the knowledge obtained from the subjects of compilers and
declarative programming, and the support of the Logic and Programming research group of
the Universitat de Girona.

The state of the art is the following:

• There exist many tools for text recognition to handle free-context grammars: Another
Tool for Language Recognition (ANTLR) is the one used in this project.

• There exist several languages and compilers for modelling CSPs, MiniZinc, ESSENCE’,
Picat, WSimply. The project purpose is define a language fully oriented to SAT.

• There exist many efficient solvers for SAT: MiniSAT is the one used in this project
because it is already supported in the L∧P research group API.

The result obtained of this project will not only assist the research of L∧P group but also
give to the community a new tool to easily model CSPs to SAT in a declarative way.

In addition it will be used in the Declarative Programming subject of the computer science
degree at University of Girona.

2. Feasibility Study

2.1. Technological viability
The parameters that make the project technologically viable are:

• Existence of text recognition tools to handle context-free grammars: ANTLR (Parr,
2013), Bison, Yacc...

• Existence of Constraint Programming (CP)modelling languages: MiniZinc, ESSENCE’,
Picat, WSimply,...

• Existence of efficient open source solvers for SAT: MiniSAT (Eén & Sörensson, 2004),...

• Experience in the L∧P research group developing languages: WSimply (Ansótegui et
al., 2013)

• Experience in the L∧P research group developing compilers: fzn2smt (Bofill et al., 2012)

2.2. Economical viability
Due to the nature of this project, similarly as most software development related projects, the
required set of tools is small. While many projects need additional support to be developed
(scanners, sensors,...), in our case only a computer with basic software development tools is
needed, so we will focus on analyzing the cost involved in using it, along with the cost of
human resources.

In terms of human resources, however, a task-level analysis needs to be done as shown in the
Gantt chart (see figure 4.1)

For the economical viability of the project phases, it is supposed someone working 4 hours/day
3 days/week and the following prices per hour:

Compiler designer 25€/hour1

Programmer 15€/hour

Analyst 20€/hour
1It is not an easy task to estimate the cost per hour of a compiler designer profile since it’s not a typical

profile but a very specialized one.

7

8 Feasibility Study

Task Profile Hours Cost
Project scope definition Analyst 48 960€
Study of LRT Compiler designer 48 1.200€
Input format definition Analyst 36 720€
Grammar definition Compiler designer 48 1.200€
Symbol Table2 Analyst & Programmer 120 2.100€
Semantic behaviour2 Compiler designer & Programmer 168 3.360€
Solver integration Programmer 24 360€
Error handling Compiler designer & Programmer 24 480€
Output Compiler designer & Programmer 36 720€

552h 11.100€

Table 2.1: Economic human costs

Apart from the human cost also exists an infrastructure cost. To carry out this project, I
have tried to minimize the price of the necessary infrastructure by using free software.

Item Cost
MacBook Pro “Core i5” 2.3Hz Mid-2017 1.400€
ANTLR 4.0 0€
JetBrains CLion 140€3

Visual Studio Code 0€
Github 0€
Fork 0€
Lucidchart 9€3

MiniSAT 0€
LATEX 0€

1.549€

Table 2.2: Economic infrastructure costs

Note that the only essential equipment is the computer and the rest is free with a student
license.

The total cost of the project is 11.100€+ 1.549€ = 12.649€

2During this task, It is supposed to be working 6 hours/day 4 day/week
3Free with student licence

3. Methodology
The methodology is the process that defines how tasks are organized and distributed while
developing an application.

The methodology I have followed is a kind of SCRUM based on Iterative and Incre-
mental Development (IID). New features are added to each iteration, and the product
resulting from the iteration is a prototype. The prototype is the application with a subset of
all the functionalities to be implemented:

1. Collect and study the requirements.

2. Study the different frameworks, libraries and data structures.

3. Choose frameworks, libraries and data structures to use.

4. General design of the system according to the requirements.

5. Iteration: Development of a set of functionalities.

6. Test what has been developed. If the test is not passed or the requirements are not sat-
isfied, return to the last iteration of development, otherwise, pass to the next iteration.

The iterative process continues until all requirements are satisfied. The documentation of the
project is done while project development. At the end of the last iteration it is verified if the
documentation is valid or need to be updated.

Study

Analysis
& Design

Imple-
mentation

Testing

Evaluation

Start

Deploy

Figure 3.1: IID flow chart

9

10 Methodology

The IID method that has been followed is a kind of SCRUM adapted to individual work,
where sprints (described in section 4.1) had different duration. Each sprint was broken down
into a subset of tasks and subtasks, which were the ones that were reviewed weekly with the
supervisors. As it was impossible to do daily brief meetings, we did them weekly and they
served to explain the tasks that were done, those that had to be done and make forecasts of
possible setbacks.
When sprint was started, all the tasks and sub-tasks to perform were added on Trello, a

platform to manage the status of those tasks:

• Backlog: Tasks not started.

• Waiting: Tasks blocked until the completion of other tasks.

• In progress: Tasks being done.

• Review: Tasks done waiting for review with the supervisors.

• Done: Tasks finished and reviewed.

When a sprint was finished, we did a meeting to validate the work and to schedule the
sub-tasks of the next sprint.

4. Project planning
This chapter describes the planned schedule to develop the project.

4.1. Working plan
This section describes the different parts into which the project was divided (SCRUM sprints).

Project election and scope definition The first step consisted of defining with the supervi-
sors what we wanted to achieve and the scope of the project.

Study of Language Recognition Tools alternatives Research about the different Language
Recognition Tools (LRT) and learn how to use using its good practices.

Definition of input files format Search the best way to organize the input and the possible
params of the model.

Grammar definition Read up on good practices on grammar definition. Define the grammar
according to the requirements.

Lexical Analysis Research about regular expressions and define the tokens and reserved
words of the language.

Syntactic Analysis Define syntactic rules draw from tokens to represent complex structures
of the language.

Symbol Table implementation Implement a way to store the symbols of the language (vari-
ables, types, parameters), and its related information.

Implementation of semantic behaviour Research how to explore the input tree generated
by following the syntactic rules. Give the expected semantic behaviour to the grammar.

Solver integration Research about different SAT solvers and it’s implementations, and find
a way to integrate into the project. After obtaining the result, integrate a SAT solver
to get a result of the modelled problem.

Error Handling Analysis and study of the different ways of throwing input errors, both se-
mantic and syntactic, and implement it.

Definition of output format Define a way to allow the user to customize the output of the
modelled problem.

4.2. Schedule
The following table 4.1 shows the initial planned schedule of the project.

11

12 Project planning

2019 2020
December January February

Tasks / Weeks 01 02 03 04 05 06 07 08 09 10 11 12
Project definition
Study of LRT
Input format definition
Grammar definition
Symbol Table
Semantic behaviour
Solver integration
Error handling
Output

2020
March April May

Tasks / Weeks 13 14 15 16 17 18 19 20 21 22 23 24
Project definition
Study of LRT
Input format definition
Grammar definition
Symbol Table
Semantic behaviour
Solver integration
Error handling
Output

Table 4.1: Gantt chart: Project tasks scheduling

5. Work framework and preliminary concepts

This chapter sets the basis on the necessary theoretical concepts that a reader of this project
has to know to understand the context and the state-of-the-art of most of the technologies
used.

The first part explains how a compiler of any language works. After this, the second part
will give the theoretical base of what we want to achieve with the compiler developed in this
project. The third part consists of how a SAT problem could be solved (our compiler output).
Finally, the last part gives a brief overview about declarative programming.

5.1. Regular Expressions (REGEX)

Regular expressions define formal languages as sets of strings over a finite alphabet. Let σ
denote a selected alphabet. Then ∅ is a regular expression that denotes the empty set and ε
is a regular expression that denotes the set containing the empty string as its only element.

If c ∈ σ, then c is a regular expression that denotes the set whose only element is string
c. If p and q are regular expressions denoting sets L(p) and L(q), then

• p | q is a regular expression denoting the set L(p) ∪ L(q), where ∪ denotes the union.

• pq is a regular expression denoting the set of all concatenations of m and n, where m ∈
L(p) and n ∈ L(q).

• p∗ is a regular expression denoting closure of L(p), that is, the set of zero or more
concatenations of strings from L(p)

A language is regular if and only if some regular expression describes it.
A regular expression could also be seen as a Finite State Machine (FSM). Figure 5.1 is an
example of FSM that accepts the regular expression (bb)*, i.e. even number of b’s.

s0start s1

b

b

Figure 5.1: Regular expression example as a Finite State Machine

13

14 Work framework and preliminary concepts

5.2. Context-Free Grammars (CFG)
Definition 5.1 (Grammar). A grammar is a way of specify a language. Given a language
L and a word w lets you know if w belongs to the L language or not.

Formally a grammar G is
G = (ΣT ,ΣN , s0, R)

where

• ΣT is the set of terminal symbols.

• ΣN is the set of non-terminal symbols.

• s0 is the initial symbol of a grammar. s0 ∈ ΣN

• R is the set of production rules.

The production rules are α→ β where:

• α ε (ΣT ∪ ΣN)+

• β ε (ΣT ∪ ΣN)+

Definition 5.2 (Context-Free Grammars (CFG)). CFG are grammars where the context
does not matter, i.e., a non-terminal symbol is always derived in a set of possible ways and
always in the same set. Formally expressed as: α ε ΣN

Example 5.1 (CFG: Properly closed parenthesis chain).

S → ()
S → (S)
S → S S

5.3. Language Recognition
It is unquestionable the importance of being able to recognise a text that follows specific
patterns in order to get some utility. For example:

• A programming language: Through written code in this language, we can get an exe-
cutable file with the initial requirements.

• A protocol that recognises a particular data format in order to write, read, and share
data.

The task of a compiler is usually divided into 3 steps (Stephen A. Edwards, 2007). Figure
5.2 shows a schema of those compiler steps (phases).

5.3. Language Recognition 15

Input Lexical
Analysis

Syntactic
Analysis

Semantic
Analysis Output

Tokens Parse Tree Symbol Table

Figure 5.2: Compiler phases flow

Lexical Analysis (Scanning) The first step consists of determining if the words written in
the code are correct. For example, in a natural language like English, the word ”h!ello”
would not be accepted despite the characters are part of the language. Other words as
”asdfg” would neither pass the filter since you could not found them in the dictionary.

Take notice that this step only performs lexical analysis, so texts as ”hello hello good
the” would be accepted. Since a text is usually provided in the form of a string, this
step is also used to group the relevant characters to form words in the language, forming
what we will call tokens.

The method used to do so is by using Regular Expressions (see Section 5.1). The
regular expressions are a sequence of characters that define a search pattern.
For example ”(h|H)ell(o+)” recognises the word ”hello” with the first letter in upper-
case or lowercase and a number greater than 0 of ”o” in the end.

Syntactic Analysis (Parsing) Once we know that the words that make up the text belong
to the language, we need to determine if they are presented in a logical order from a
syntactic point of view. For example, although sentences can be formulated correctly in
many ways, the typical format Subject + Verb + Predicate is an example of a syntactic
rule that the text should follow to pass this stage.

So, texts like ”three blue hello look go” would not be correct, while others like ”the ant
sculpted a planetary apple” would. Note, however, that the sentence formed may not
make sense.

Since in this step it is checked if the structure of the text is correct, it is usually used
to organise the tokens in a way where the structure is implicit, and help us to process
in the following steps. For example, in the form of a tree, thus obtaining what we know
as a syntactic tree.

The parsing phase works in a similar way than the scanning phase but using a CFG
(see Section 5.2) instead of regular expressions.

16 Work framework and preliminary concepts

Listing 5.1: Simple grammar example that recognise arithmetic expressions

1 EXPR => EXPR + TERM
2 EXPR => EXPR - TERM
3 EXPR => TERM
4 TERM => TERM * FACTOR
5 TERM => TERM / FACTOR
6 TERM => FACTOR
7 FACTOR => (EXPR)
8 FACTOR => identifier
The generated tree of the example grammar 5.1 respects the associativity and prece-
dence of arithmetic expressions.

Semantic Analysis Once the text has been verified to be written correctly and structured
logically, it remains to be seen if it makes sense, and what we want to do with it.
This step is less general than the previous ones, as the more specific aspects of each
particular language come into play, and there is no secure method for deciding whether
a text makes sense or not.
This step usually consists of visiting the structure generated during the parsing, and
performing the necessary checks and actions during the process. Apart from this, in this
phase it is used to fill the Symbol Table, that it is a data structure where each identifier
(a.k.a. symbol) in a program’s source code is associated with information relating to
its declaration.

The follwing Figure 5.3 is a schema of the explained compiler phases.

int a = 3 * 5 + 3 int a = 3 * 5 + 3
int a

53

3

=

*

+

Input Lexical
Analysis

Syntactic
Analysis

int a

53

3

=

*

+

Semantic
Analysis

Figure 5.3: Compiler phases graphic chart

5.3.1. Error recovery strategies
There are four common error-recovery strategies that can be implemented in the parser to
deal with errors in the code.
Panic mode When a parser encounters an error anywhere in the statement, it ignores the

rest of the statement by not processing input from erroneous input to delimiter, such
as semi-colon. This is the easiest way of error-recovery and also, it prevents the parser
from developing infinite loops.

5.4. CSP 17

Statement mode When a parser encounters an error, it tries to take corrective measures
so that the rest of inputs of statement allow the parser to parse ahead. For example,
inserting a missing semicolon, replacing comma with a semicolon etc. Parser designers
have to be careful here because one wrong correction may lead to an infinite loop.

Error productions Some common errors are known to the compiler designers that may occur
in the code. In addition, the designers can create augmented grammar to be used, as
productions that generate erroneous constructs when these errors are encountered.

Global correction The parser considers the program in hand as a whole and tries to figure
out what the program is intended to do and tries to find out a closest match for it,
which is error-free. When an erroneous input (statement) X is fed, it creates a parse
tree for some closest error-free statement Y. This may allow the parser to make minimal
changes in the source code, but due to the complexity (time and space) of this strategy,
it has not been implemented in practice yet.

5.4. Constraint Satisfaction Problems (CSP)

CSP are mathematical problems where one must find states or objects that satisfy a number
of constraints or criteria.

Formally, a constraint satisfaction problem is defined (Russell & Norvig, 2010) as a triple
⟨X,D,C⟩, where:

X = {X1, . . . , Xn} is a set of variables,
D = {D1, . . . , Dn} is a set of their respective domains of values, and
C = {C1, . . . , Cm} is a set of constraints

Each variable Xi can take one of the values in the nonempty domain Di. Evey constraint Cj

∈ C is in turn a pair ⟨tj , Rj⟩, where tj ⊂ X is a subset of k variables and Rj is a k-ary relation
on the corresponding subset of domains Dj . An evaluation of the variables is a function from
a subset of variables to a particular set of values in the corresponding subset of domains. An
evaluation v satisfies a constraint ⟨tj , Rj⟩ if the values assigned to the variable tj satisfies the
relation Rj .

An evaluation is consistent if it does not violate any of the constraints. An evaluation is
complete if it includes all variables. An evaluation is a solution if it is consistent and com-
plete; such an evaluation is said to solve the constraint satisfaction problem.

18 Work framework and preliminary concepts

Example 5.2. Procaccia (2008) The eight queens puzzle is
the problem of putting eight chess queens on an 8 × 8 chess-
board, such that none of them is able to capture any other
using the standard chess queen’s moves. The queens must
be placed in such a way that no two queens would be able
to attack each other. Thus, a solution requires that no two
queens share the same row, column, or diagonal.
Variables x1..x8 represent the location of the queens. D =
(1, a)..(8, h). An example constraint for queens 1 and 2 is:
C1,2 = ⟨(1, a), (2, c)⟩, ⟨(1, a), (2, d)⟩, ⟨(1, b), (2, d)⟩,...

In other words, a CSP consists of a set of variables, ranging on domains, and subject to
constraints.
In this project, we will focus on one of the ways of modeling and solving CSP: Boolean
Satisfiability (SAT).

5.4.1. Boolean Satisfiability (SAT)

One methodology for solving Constraint Satisfaction Problems (CSP) (treated in this project)
relies on the conversion into SAT problems. The advantage is the wide availability of free
and efficient SAT solvers.

A SAT problem (Bessière, 2007) contains a formula built on a set of variables, which can
take only value true (or 1) and false (or 0). This formula is often required to be in Conjunc-
tive Normal Form (CNF). A solution to SAT problem (a model) is an assignment of values
true/false to the logical variables, such that the formula evaluates to true.

5.4.1.1. Conjunctive Normal Form (CNF)

The CNF Satisfiability Problem (CNF-SAT) is a version of the Satisfiability Problem, where
the Boolean formula is specified in CNF, that means that it is a conjunction of clauses, where
a clause is a disjunction of literals, and a literal is a variable or its negation. For example:

(x1 ∨ x2) ∧ (¬x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x4) (5.1)

Here x1, x2, x3, x4 are Boolean variables to be assigned, ¬ means negation (logical not),∨
means disjunction (logical or), and ∧ means conjunction (logical and). One may note that
the formula 5.1 is satisfiable, because on x1 = true, x2 = false, x3 = false, and x4 = true
it takes on the value true. If a formula is not satisfiable, it is called unsatisfiable, that means
that it takes on the value false on any combination of values of its variables.

Any propositional formula can be transformed to CNF in a polynomial time.

5.5. SAT solving 19

5.5. SAT solving
To satisfy a CNF, all the clauses must be satisfied. A first inefficient approach to find a
satisfying assignment (a model) could be using a truth table. The table 5.1 shows an example
of how to solve the formula (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) using a truth table.

x1 x2 x3 (x1 ∨ x2 ∨ x3) (x1 ∨ x2 ∨ x3) (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)
0 0 0 1 1 1
0 0 1 1 1 1
0 1 0 1 1 1
0 1 1 1 0 0
1 0 0 1 1 1
1 0 1 0 1 0
1 1 0 1 1 1
1 1 1 1 1 1

Table 5.1: Example of SAT solving through a truth table

In the example 5.1 there exist two interpretations, for x1 = 0, x2 = 1, x3 = 1 and
x1 = 1, x2 = 0, x3 = 1 that falsify the formula, since this assignation does not satisfy the
clauses. The rest of the interpretations are valid (a model) of the formula.

The number of interpretations is exponential in the number of variables, and therefore con-
structing the whole truth table is extremely inefficient. Most SAT-solvers implement more
efficient algorithms based on backtracking schemes. The fundamentals of these algorithms
are explained below to get a basic idea of how they work but no deep details are given since
the goal of this project is not implementing a solver.

Resolution Rule Is a solid rule that generates a new clause (C) that is logic consequence of
the conjunction of two origin clauses (A ∧B).

A : x ∨ a1 ∨ · · · ∨ an, B : x ∨ b1 ∨ · · · ∨ bm
C : a1 ∨ · · · ∨ an ∨ bn ∨ · · · ∨ bm

(5.2)

Figure 5.4: Resolution rule

Every model (solution) of A ∧ B is a model of C. If an interpretation does not satisfy
C neither satisfies A ∧ B. There exist methods to determine the satisfiability of a
formula based only on applications of the resolution rule. These methods are not
used in practice, since they have many drawbacks such as the difficulty to retrieve a
model if the instance is satisfiable. However, the resolution rule is crucial for modern
sat solvers, since it is the inference mechanism used in the learning process of CDCL
algorithm (described below).

Backtracking It is an approach using brute force. As long as there are variables to assign,
we try an assignment, we check the correctness, and continue or backtrack.

20 Work framework and preliminary concepts

Having this clauses: C1 : x1 ∨ x4 C2 : x2 ∨ x4 C3 : x3 ∨ x4 C4 : x1 ∨ x5 C5 : x1

Algorithm steps:

1. While remain variables to assign and
there are not violated clauses, decide
a literal.

2. When a clause C is violated:
a) If we have some decision to in-

vert, backtrack to the last deci-
sion.

b) If we do not have any decision,
unsatisfiability is proved.

3. If we have assigned all the variables
without violating any clause, we have
proved the satisfiability by obtaining
a model.

x1

x2

x3

x4

X X

x4

X X

x3

x4

x5

✓

1

1

1

1 0

0

1 0

1

1

1

1

Figure 5.5: Backtracking tree example

DPLL This method is an improvement of the backtracking method. It can be divided in two
parts:
• Unit propagation Uses two rules to simplify the set of clauses S:

1. A unitary clause L ∈ S is chosen and we apply consecutively the following
two rules:
– Unit subsumption: All clauses subsumed by L are removed from S, i.e.,

those that contain the literal L (including clause L itself).
– Unit resolution: It is removed L from all the clauses of S.

2. Repeat until there are no more unit clauses in S.
• Division: After the simplification process, if the algorithm has not stopped, then

S does not contain unit clauses. So, it is selected a literal L ∈ S and constructed
the following sets: S ∪ L and S ∪ L:
1. It is applied recursively unit propagation to S ∪ L (selecting necessarily the

unit clause L)
2. If S ∪ L is unsatisfiable, apply the process to S ∪ L.

Conflict-Driven Clause Learning (CDCL) Besides using DPLL, CDCL solver involves a num-
ber of additional key techniques:
• Learning new clauses from conflicts during backtrack search.
• Exploiting structure of conflicts during clause learning
• Conflict driven decision heuristic.

5.6. Declarative programming 21

• Using lazy data structures for the representation of formulas.
• Periodically restarting backtrack search.
• Additional techniques, including deletion policies for learnt clauses.

5.6. Declarative programming
Definition 5.3 (Declarative programming). (Wikipedia, 2020a) Declarative programming
contrasts with imperative and procedural programming. Declarative programming is a non-
imperative style of programming in which programs describe their desired results without
explicitly listing commands or steps that must be performed. Functional and logical program-
ming languages are characterized by a declarative programming style. In logical programming
languages, programs consist of logical statements, and the program executes by searching for
proofs of the statements.

The different types of declarative languages are:

Constraint programming Constraint programming states relations between variables in the
form of constraints that specify the properties of the target solution. The set of con-
straints is solved by giving a value to each variable so that the solution is consistent
with the maximum number of constraints. Constraint programming often complements
other paradigms: functional, logical, or even imperative programming.

Domain-specific languages Well-known examples of declarative domain-specific languages
(DSLs) include the yacc parser generator input language, QML, the Make build spec-
ification language, Puppet’s configuration management language, regular expressions,
and a subset of SQL (SELECT queries, for example). Many markup languages such
as HTML, MXML, XAML, XSLT or other user-interface markup languages are often
declarative. HTML, for example, only describes what should appear on a webpage - it
specifies neither control flow for rendering a page nor the page’s possible interactions
with a user.

Logic programming Logic programming languages such as Prolog state and query relations.
The specifics of how these queries are answered is up to the implementation and its
theorem prover, but typically take the form of some sort of unification. Like some
functional programming, many logic programming languages permit side effects, and
as a result are not strictly declarative.

Functional programming Is a programming paradigm that treats computing as a process of
applying functions, avoiding changeable data with its state changes. Functional pro-
gramming is based on lambda calculus. The difference between mathematical function
and the concept of function used in imperative programming is that imperative func-
tions have side effects, changing the value of objects. already calculated, showing a lack
of referential integrity, because the same expression can have different values at differ-
ent times, depending on the state of execution of the program. Examples of functional
programming languages are Haskell, Scala,...

6. System requirements
System requirements can be split into functional and nonfunctional requirements.

6.1. Functional requirements
The functional requirements are the following:

• The user must be able to model a CSP-SAT using the language defined.

• The user must be able to set the parameters values of the model through an input file.

• The user must be notified of all lexical, syntactic or semantic errors in their model or
input file.

• The user must be able to get a solution of the model, if exists.

• The user must be able to get the generated CNF of the modelled problem.

• The user must be able to define a custom output.

• The user must be able to generate the mathematic documentation of the model in
LATEX-format.

6.2. Nonfunctional requirements
6.2.1. Hardware requirements
OS Tested only in MacOS Catalina 10.15, but it should should work on Windows or any

distribution of Linux.

CPU Any CPU should be compatible, but it is recommended a powerful one.

RAM Any RAM size is compatible, but is recommended a minimum of 8GB.

6.2.2. Software requirements
The software required to execute the project is the following 1:

• Another Tool for Language Recognition (ANTLR) 4

• CMake

• GNU Compiler Collection (GCC) 4.8
1The code used for installing the tool already includes the L∧P research group API (see Section 9.5) and

the binaries of the SAT solver (see Section 7.4).

23

7. Studies and decisions

7.1. Another Tool for Language Recognition (ANTLR)
ANTLR is a parser generator developed and maintained by Terence Parr at the University
of San Francisco for reading, processing, executing, or translating structured text or binary
files. The last stable version is ANTLR 4 and it is useful for constructing:

• Lexers (lexical analysis)

• Parsers (syntactic analysis)

• Tree walkers (used in semantic analysis)
ANTLR is a Java application but it can generate tree walkers in different target languages:
Java, C++, C#, Python, JavaScript,...

7.1.1. Lexical Analysis
The section 5.3 explains how Language Recognition Tools (LRT) work. Here is explained
how ANTLR do this and its added features. Table 7.1 shows the lexical rules of ANTLR.

Expression Result
’c’ Recognizes the character c
(e) Recognizes e
e1 e2 Recognizes e1 and then e2
e1 | e2 Recognizes e1 or e2
’c1’..’c2’ Recognizes all ASCII characters between c1 and c2
∼’c’ Recognizes a different character from c

∼(’c1’ | ’c2’ | ’c3’) Recognizes a character different than c1, c2, and c3
∼(’c1’..’c2’) Recognizes a character different than the characters between c1 and c2

e? Recognizes e or nothing
e* Recognizes zero or more occurrences of e
e+ Recognizes one or more occurrences of e

’abcde’ Recognizes string abcde
’\” Recognizes a apostrophe
’\n’ Recognizes a new line
’\r’ Recognizes a carry return
’\t’ Recognizes a tab
’ ’ Recognizes a whitespace

EOF or ’@’ Recognizes the end of file
. Recognizes any character

Table 7.1: ANTLR lexical recognition rules

25

26 Studies and decisions

The part of grammar that determines lexical rules is made up of associations between token
name (identifier) and regular expressions. This way, when a string matches a regular expres-
sion, it is transformed into the corresponding token.

It is possible that the same string fits the definition of more than one token; in this case
it will be transformed to the first token corresponding to a regular expression that accepts
the string.

The Figures 7.1 and 7.2 show two examples of valid and invalid input to lexical rules.

1 TWO : '2';
2 DIGIT: '0'..'9';

1 8 2 2 3
2

1 DIGIT TWO TWO DIGIT
2

Figure 7.1: Valid example of lexical rules, input and output

1 TWO : '2';
2 DIGIT: '0'..'9';

1 8 2 2 3 hello
2

1 ERROR - No rules
2 fitting with 'hello'

Figure 7.2: Invalid example of lexical rules, input and output

7.1.2. Syntactic Analysis

The other set of rules that ANTLR have are the syntactic ones: these determine, once the
lexical analysis has transformed the entry into a chain of tokens, how they are structured, in
order to generate tree that represents the input file we processed.

The production rules in table 7.2, are written with EBNF notation:

Expression Result
T Recognizes the token T

(e) Recognizes e
e1 e2 Recognizes e1 and then e2
e1 | e2 Recognizes e1 or e2
e? Recognizes e or nothing
e* Recognizes zero or more occurrences of e
e+ Recognizes one or more occurrences of e

EOF or ’@’ End of file

Table 7.2: ANTLR syntactical recognition rules

To differentiate a syntactic rule from a lexicon, the name of a token is usually indicated in
capital letters and the rule in lowercase.

7.1. ANTLR 27

1 DIGIT: '0'..'9';
2 sum : sum '+' DIGIT
3 | DIGIT;

1 1+2+3
2

3

1 sum + DIGIT(3)
2 | sum + DIGIT(2)
3 | DIGIT(1)

Figure 7.3: Example of ANTLR syntactic rules, input and output

Many LRT restrict the use of certain patterns of syntactic rules in grammar. For example,
in Figure 7.3, the sum rule is recursive to the left, i.e., the first token or rule tries to match
itself. In some implementations, this would cause an infinite loop in the code. The version of
ANTLR used in the project supports this pattern, among other advantages. The figure 7.4
shows the parse tree generated of the example in figure 7.3

Figure 7.4: Example of ANTLR parser tree result

7.1.3. Semantic Analysis

Once our grammar is defined, we can run ANTLR. It will generate source code files, in our
case C++ (see Section 7.1.3.2 for more information on target selection).

These files consist of a set of objects appropriate for performing semantic analysis; in essence,
a tree where the nodes contain all the necessary information about the input file, and func-
tions to traverse such a tree.

Assuming you want to process a grammar called Test, described in a file called, necessar-
ily, Test.g4, this files are always generated:

• Test.tokens: Mapping between token identifiers and constant int values.

• TestLexer.tokens: Similar to Test.tokens but including extra tokens with the purpose
of manage Lexer environment.

• TestLexer.h and TestLexer.cpp: Lexical analysis related methods.

• TestParser.h and TestParser.cpp: Syntactic analysis and parsing related methods.

Two more files are also generated, but they depend on how you want to explore the gen-
erated parsing-tree for the semantic analysis. ANTLR offers two alternatives: Visitors or
Listeners.

28 Studies and decisions

7.1.3.1. Listeners vs Visitors

This section explains the main differences between the ways that ANTLR gives to explore
the generated parse-trees.

Listeners If this approach is chosen, the syntax tree is visited automatically. The generated
classes provide an interface of methods that are called when interacting with a node,
either at the time of entry or at the time of exit. The figure 7.5 shows a flow example
of an ANTLR listener.

Listing 7.1: ANTLR generated listener for Figure 7.3 grammar

1 class TestBaseListener : public TestListener {
2 public:
3 virtual void enterSum(TestParser::SumContext * /*ctx*/) override {}
4 virtual void exitSum(TestParser::SumContext * /*ctx*/) override {}
5

6 virtual void enterEveryRule(antlr4::ParserRuleContext*) override {}
7 virtual void exitEveryRule(antlr4::ParserRuleContext*) override {}
8 virtual void visitTerminal(antlr4::tree::TerminalNode*) override {}
9 virtual void visitErrorNode(antlr4::tree::ErrorNode*) override {}

10 };
11

Figure 7.5: ANTLR listener schema

Visitors This other method involves, as the name suggests, explicitly visiting the nodes in
the tree. The process is not automatic, so it is usually more flexible in controlling which
parts to visit, and which ones to ignore; by using functions such as visit(ParseTree*
tree) or visitChildren(RuleNode* node).
Visitors also allows to return a value after visiting a node and get it on the parent
avoiding create global variables to store data. The figure 7.6 shows a flow example of
an ANTLR vistor.

7.1. ANTLR 29

Listing 7.2: ANTLR generated visitor for Figure 7.3 grammar

1 class TestBaseVisitor : public TestVisitor {
2 public:
3 virtual antlrcpp::Any visitSum(TestParser::SumContext*ctx) override {
4 return visitChildren(ctx);
5 }
6 };
7

Figure 7.6: ANTLR visitor schema

The context elements generated as parameters of visitor and listener methods describe the
current node. It has information about the real values of the node tokens and also infor-
mation about the row and column of the current node in the input file, e.g., to make error
handling easier.

The second paradigm, Visitors, has been chosen for this project. It is the one that best
suits our needs, as we will have to go through the tree more than once and in different orders.

Thus, two additional classes are generated in out example Test grammar:

• TestBaseVisitor

• TestVisitor

The last step is create a class that extends and overwrites the base visitor’s methods and give
them the logic wanted according to the semantic meaning you want to achieve.

7.1.3.2. Target: C++ vs Java

ANTLR allows targeting with multiple languages, although Java is the default.

30 Studies and decisions

One of the main differences between Java and C++ is that the first was born as an inter-
preted language while the second as a compiled language. Compiled languages are translated
into machine code trough a compiler. This process generates a file that can be directly exe-
cuted by the CPU. Interpreted languages are compiled in a platform independent language
(bytecode), which can be executed only by means of an interpreter (e.g. JVM).
Apart from that, Gherardi et al. (2012) conclude in his report that ”The results obtained (...)
have shown that Java is from 2.72 to 5.61 times slower than C++.”

Efficiency is important in problem-solving tools, so C++ target is the best option for this
project.

7.1.4. ANTLR vs other LRT
Apart from ANTLR, there exists other LRT like Bison, yacc, flex,.... Here is a brief summary
of the comparison between them and ANTLR (Federico, 2019):

Stability and Development of New Features
• Flex and Bison are stable and maintained software but there is no active develop-

ment. C++ support can be of limited quality.
• ANTLR is actively developed and new features are added periodically.

Separation between Grammar and Code
• Flex and Bison maintain an old-school design with little support for readability or

productivity.
• ANTLR is a modern parsing generator tool with a design that favours a portable

grammar, usable for multiple target languages.

Features of lexing
• Flex supports regular expressions to define rules, which works for most elements,

but adds complexity.
• ANTLR supports context-free expression to define rules, which simplifies defining

some common elements.

Features of parsing
• Bison supports two parsing algorithms that cover all ranges of performance and

languages. It gives cryptic error messages.
• ANTLR supports one algorithm that works for all languages with usually a great

performance.

Documentation
• Flex and Bison have smaller and fractured communities, but they have good doc-

umentation
• ANTLR has a great community and a good documentation.

7.2. JSON as input format 31

7.2. JSON as input format

JSON (acronym for JavaScript Object Notation) is an open text-based standard designed for
human-readable data exchange.

It derives from the JavaScript script language, to represent simple data structures and asso-
ciative lists, called objects. Despite its relationship to JavaScript, it has implementations for
much of the programming language.

Listing 7.3: JSON grammar

1 grammar JSON;
2

3 json : value;
4

5 obj : '{' pair (',' pair)* '}'
6 | '{' '}';
7

8 pair : STRING ':' value;
9

10 arr : '[' value (',' value)* ']'
11 | '[' ']';
12

13 value
14 : STRING
15 | NUMBER
16 | obj
17 | arr
18 | 'true'
19 | 'false'
20 | 'null';

The main reason of using JSON as input format is because it is a widely used standard and
it has a simple grammar. Moreover, JSON easily represents tuples and arrays, which are also
the main data structures used in BUP language.

1 {
2 "id" : 10
3 "fruit": "Apple",
4 "sizes": ["Large", "Small"],
5 "color": "Red"
6 }

7.3. Allow structs as data type

Initially the idea arose that our modelling language could be object-oriented. It was discarded
because currently there not exist any object-oriented declarative modelling language and it
would surely require a much longer research task than the estimated for an end-of-grade

32 Studies and decisions

project.

But it was an idea that we liked and we decided to do a first iteration on this path al-
lowing to declare structs. Currently there is no declarative constraint programming language
that allows declaring structs as a data type.

In this language structs are called entities (see Section 8.1.5.2 for further information).

7.4. MiniSAT as SAT solver
The project objective is to define a new declarative modelling language oriented to SAT and
it not focused on the solving part. There already exist many efficient SAT solvers for that.

Luckily, one of my supervisors, Jordi Coll, member of the L∧P research group at the Univer-
sity of Girona, developed a C++ library that aggregates many Satisfiability Modulo Theories
(SMT) solvers (an extension of SAT that allows predicates more expressive than propositional
formulas) and defines a generic interface to interact with them (see 9.5 for more information
about the library).

Currently, the only strictly-SAT solver integrated in this library is MiniSAT1 (Eén & Sörens-
son, 2004), and therefore it is the one used in this project. However, which solver is used is
completely transparent to the user of the library, and any new SAT solver integrated in the
library will also be available in GOS.

7.5. Use of CMake to build the project
One of the project goals is implement a compiler that could be used in any computer archi-
tecture and OS.
CMake is a build-system generator (not a build system, though). It generates input files for
build generators (such as make, ninja, xcode,...), is cross-platform and it has C++ support.

CMake does proper dependency management and prevents manually managing include direc-
tories (especially transitive include directories), linker command lines, etc. (see Appendix A
Install and Run Instructions to check how easy it is to build the project using CMake).

1The API also supports Yices and other solvers, but the binaries are not included in the project code.

8. BUP: Language Specification

This chapter contains the specification of the BUP programming language, the language of
GOS. BUP is a SAT-oriented declarative CSP modelling programming language. Similarly
as we do with imperative languages, we want models written in BUP language to be as
much reusable as possible, i.e., we want to separate the problem definition from the data of
a particular instance.
For this reason we deal with CSPs using two distinct files: the model file (see 8.1), which

describes the semantics of the problem at hand by means of defining the needed variables,
parameters and constraints, and the parameters file (see 8.2), which describes the values
of the parameters of the particular instance we want to solve.

8.1. Model file
The model file structure is divided in four blocks:

• Entity definition block, where entities are defined.

• Viewpoint block, where variables and parameters are declared.

• Constraints block, where constraints are defined.

• Output block, where custom output is defined.

Listing 8.1: BUP: Basic model file structure

1 <entityDefinitionBlock>?
2 <viewpointBlock>
3 <constraintsBlock>
4 <outputBlock>?

8.1.1. Entity definition block

This block is used to define the new entities to be used at the viewpoint.

Listing 8.2: BUP: Entity definition block

1 <<entityDefinition>;>*

8.1.2. Viewpoint block

This block is used to define the variables and parameters used to model the problem.

33

34 BUP: Language Specification

Listing 8.3: BUP: Viewpoint block

1 viewpoint : <<
2 <variableDeclaration>
3 | <parameterDeclaration>
4 | <entityDeclaration>
5 | <arrayDeclaration>
6 >;>*

8.1.2.1. Variable declaration

Listing 8.4: BUP: Variable declaration

1 var bool? <ident>

8.1.2.2. Parameter declaration

Listing 8.5: BUP: Parameter declaration

1 param <int | bool> <ident>

8.1.2.3. Entity declaration

Listing 8.6: BUP: Entity declaration

1 <entity_ident> <ident>

8.1.2.4. Array declaration

Array indexes range from 0 to n-1, where n is the array size.

Listing 8.7: BUP: Array declaration

1 <
2 <varDeclaration>
3 | <paramDeclaration>
4 | <entityDeclaration>
5 > <[<int_expr>]>*

8.1.3. Constraints block

Listing 8.8: BUP: Constraints definition block

1 constraints: <<constraint>;>*

8.1.4. Output block

8.1. Model file 35

Listing 8.9: BUP: Output block

1 output: <<string>;>*

8.1.5. Data

BUP has two types of data, according to its nature:

• Parameters: Instance related. Used to describe the instance specification.

• Variables: Model related. We must differentiate this variables from the imperative
languages variables. SAT variables are always boolean, but you cannot do arithmetic
operations or assign them. Instead, you can define constraints over variables, expressed
as propositional formulas. They are strictly designed for defining the SAT model and
their value can only be retrieved in the output-block (see 8.1.4) specification, where their
value can be accessed similarly as is done with boolean parameters.

Both, parameters and variables, could be declared individually or using data structures:
multidimensional arrays or defined types (entities).

8.1.5.1. Basic types

The basic types are those with which you can define parameters:

int Represents an integer value.

bool Represents a boolean. It can take values true or false.

8.1.5.2. Defined types: Entities

BUP allows defining new entities consisting of a tuple of data elements. These data elements
can contain both parameters and variables. The only restriction is that entity types used in
the definition of an element must have been declared previously.

Listing 8.10: BUP: Entity definition

1 <identifier> {
2 <
3 <parameter declaration>
4 | <variable declaration>
5 | <entity declaration>
6 | <array declaration>
7 >+
8 }

8.1.5.3. n-dimentional arrays

It is allowed to define n-dimentional arrays of any basic type, variable or entity. The arrays
index range from 0 to m-1, where m is the length of the indexed dimension of the array.

36 BUP: Language Specification

8.1.6. Identifiers
The identifiers are words without whitespaces. They can only contain alphanumeric charac-
ters and underscores. Identifiers cannot start with a number.

Listing 8.11: BUP: Identifiers

1 <'a'..'z' | 'A'..'Z' | '_'> <'a'..'z' | 'A'..'Z' | '_' | '0'..'9'>*

8.1.7. Comments
Code could be commented using the following two methods:

• // to comment one line.

• /* . . . */ to comment multiple lines.

8.1.8. Expressions
Expressions are only permitted between parameters of basic types (see Basic types):
An expression could be:

• A value of basic type.

• A data access (see 8.1.9)

• A list aggregation operation (see 8.1.10.1)

• An operation between one or more expressions. In table 8.1 we can find all implemented
operators with their associativity and types. They are also sorted according to their
priority.

Operator Associativity Input type Output type
not - bool bool

/, %, * Left int int
+, - Left int int

<, <=, >, >= Left int bool
==, != Left int or bool bool
and, or Left bool bool

if-then-else Right int or bool int or bool

Table 8.1: BUP: Expresion operators priority

• An if-then-else structure, expressed as:

Listing 8.12: BUP: Range list

1 <bool_expr> ? <expr1> : <expr2>

If bool_expr evaluates true resolves expr1 else expr2.

8.1. Model file 37

8.1.9. Data access
Accesses can be used to retrieve a value (in parameters or in variables when they already
have a value, i.e. in the output section), or to impose constraints on variables.

8.1.9.1. Identifier access

Listing 8.13: BUP: Identifier access

1 <ident>

8.1.9.2. Array index access

Listing 8.14: BUP: Array index access

1 <
2 <ident>
3 | <entityAttrAccess>
4 | <arrayIndexAccess>
5 > [<int_expr>]

8.1.9.3. Matrix row access

BUP allows generating a list by accessing a row of a matrix using the operator _ (see section
8.1.10)

Listing 8.15: BUP: Matrix row access

1 <
2 <ident>
3 | <entityAttrAccess>
4 | <arrayIndexAccess>
5 > [_] <[<int_expr>]>*

8.1.9.4. Entity attribute access

Listing 8.16: BUP: Entity attribute access

1 <
2 <ident>
3 | <entityAttrAccess>
4 | <arrayIndexAccess>
5 >.<ident>

8.1.10. Lists
Lists can be used to generate ranges to loop over arrays in forall structures. It is also allowed
applying constraints over lists of variables, i.e., cardinalities (see 8.1.11.2), and constraints
(see 8.1.11.1.3), or constraints (see 8.1.11.1.4),...

38 BUP: Language Specification

A list could be:

• Range list

Listing 8.17: BUP: Range list

1 <int_expr>..<int_expr>

– 1..5 generates the list [1,2,3,4,5].
– 1..15/5 generates the list [1,2,3].

• Comprehension list

Listing 8.18: BUP: Comprehension list

1 [<<expr> | <clause>> | <ident> in <list> (,<ident>} in <list>)* <where ←↩
↪→ <bool_expr>>?]

– [i | i in 1..5] generates the list [1,2,3,4,5].
– [i*j | i in 1..3, j in 1..3] generates the list [1,2,3,2,4,6,3,6,9].
– [i*j | i in 1..3, j in 1..3 where i < j] generates the list [2,3,6].

• Explicit list

Listing 8.19: BUP: Explicit list

1 [<<expr> | <clause>> <, <<expr> | <clause>>*]

– [1,2,3,4,5] generates the list [1,2,3,4,5].
– [1,2*4,7,14/2+1,76] generates the list [1,8,7,8,76]1.
– [a | b, a, c -> d] generates the list [a ∨ b, a, c ∨ d].

• One-dimensional array

Listing 8.20: BUP: Comprehension list

1 <matrixRowAccess>

Given an int arrayX[3]:
– arrayX generates the list [arrayX[0], arrayX[1], arrayX[2]]

Given an int arrayX[3][3][3]:
– arrayX[0][_][0] generates the list [arrayX[0][0][0], arrayX[0][1][0], arrayX[0][2][0]]
– arrayX[_][1][0] generates the list [arrayX[0][1][0], arrayX[1][1][0], arrayX[2][1][0]]

8.1.10.1. List Aggregation Operators

8.1.10.1.1. length The length operator returns the size of a list.
1All list elements must have the same type.

8.1. Model file 39

Listing 8.21: BUP: List aggregate length

1 length(<list>)

8.1.10.1.2. sum The sum operator returns the sum of a list of int.

Listing 8.22: BUP: List aggregate sum

1 sum(<list_int>)

8.1.10.1.3. max The max operator returns the maximum number of a list of int.

Listing 8.23: BUP: List aggregate max

1 max(<list_int>)

8.1.10.1.4. min The min operator returns the minimum number of a list of int.

Listing 8.24: BUP: List aggregate min

1 min(<list_int>)

40 BUP: Language Specification

8.1.11. Constraints

A constraint can be:

• Propositional Formula

• Cardinality Constraint

• forall structure

• if structure

8.1.11.1. Propositional Formula

Although the GOS compiler can recognize syntactically any propositional formula, the BUP
language only permits those formulas with trivial translation to CNF (see 5.4.1.1), more pre-
cisely, formulas that can be translated to a linear number of clauses without adding auxiliary
variables. We have taken this decision for the first version of BUP2, but since GOS’s parser
already supports any kind of propositional formula, it would be easy to support any propo-
sitional formula in future versions if desired.

For instance, given the following propositional formula

a & b & c | d & e

A translation to CNF without introducing auxiliary variables would be

(a | d) & (a | e) & (b | d) & (b | e) & (c | d) & (c | e)

It generates a quadratic number of clauses. This propositional formula is not semantically
in BUP language. Given this other formula:

a & b & c | d

The translation to CNF would be

(a | d) & (b | d) & (c | d)

It generates a linear number of clauses. This propositional formula is allowed in BUP lan-
guage.

Therefore, the GOS compiler does a semantic check to ensure that the formulas contained
in a BUP file fulfil certain properties. The semantic rules that GOS applies over Boolean
operations are described in the following subsections.

2This decision was taken mainly for the sake of a clear correspondence with the BUP file and the generated
SAT formulas. Also, good reformulations of more complex formulas involve challenges such as detection of
common sub-expressions, which are out of the scope of this project.

8.1. Model file 41

VARIABLE

LITERAL

AND_LITERALS OR_LITERALS (CLAUSE)

AND_CLAUSES

Figure 8.1: BUP: Propositional formulas operands

Figure 8.1 shows how different operands could be treated when constructing Boolean For-
mulas:

• LITERAL is a VARIABLE or its negation.

• AND_LITERALS is an and operation between literals. A LITERAL is a particular
case of AND_LITERALS where there is only one literal.

• OR_LITERALS is an or operation between literals. A LITERAL is a particular case
of OR_LITERALS where there is only one literal.

• AND_CLAUSES is an and operations between clauses. OR_LITERALS is a partic-
ular case of AND_CLAUSES where there is only one clause. AND_LITERALS is a
particular case of AND_CLAUSES where all the clauses are unitary.

These are the operators and their precedence:

Name Operator Associativity Precedence
Negation ! - 1

And & Left 2
Or | Left 3

Implication -> Left 4
Double Implication <-> Left 5

Table 8.2: BUP: Propositional formula operators

8.1.11.1.1. Variable Access to a declared variable:

Listing 8.25: BUP: Variable

1 <identAccess>

42 BUP: Language Specification

8.1.11.1.2. Negation The negation operator has the following truth table:

a !a
0 1
1 0

Table 8.3: Negation truth table

The allowed operations using ! operator are:

Expression Result
!LITERAL LITERALS

!AND_LITERALS OR_LITERALS
!OR_LITERALS AND_LITERALS

Table 8.4: BUP: Allowed operations with !

8.1.11.1.3. And The and operator has the following truth table:

a b a & b
0 0 0
0 1 0
1 0 0
1 1 1

Table 8.5: And truth table

The And operation could also be constructed through a list using the operator && and a list
of clauses. As it is a unary operator, && has the precedence in the same level as the negation
operator (see operator precedence on Table 8.2)

Listing 8.26: BUP: && operator

1 &&(<list>)

The allowed operations using & operator are3:

3The result of using the && operator to a list of clauses will be equivalent to applying & operator to all the
elements.

8.1. Model file 43

Expression Result
OR_LITERALS & OR_LITERALS AND_CLAUSES
OR_LITERALS & AND_LITERALS AND_CLAUSES
AND_LITERALS & OR_LITERALS AND_CLAUSES
AND_LITERALS & AND_LITERALS AND_LITERALS
AND_CLAUSES & AND_CLAUSES AND_CLAUSES
AND_CLAUSES & AND_CLAUSES AND_CLAUSES

Table 8.6: BUP: Allowed operations with &

8.1.11.1.4. Or The or operator has the following truth table:

a b a | b
0 0 0
0 1 1
1 0 1
1 1 1

Table 8.7: Or truth table

The Or operation also could be constructed through a list using the operator || and a list
of clauses. As it is a unary operator, || has the precedence in the same level as the negation
operator (see operator precedence on Table 8.2)

Listing 8.27: BUP: || operator

1 ||(<list>)

The allowed operations using | operator are4:

Expression Result
LITERAL | LITERAL OR_LITERALS

OR_LITERALS | OR_LITERALS OR_LITERALS
OR_LITERALS | AND_LITERALS AND_CLAUSES

Table 8.8: BUP: Allowed operations with |

8.1.11.1.5. Implication The implication operator has the following truth table:

4The result of using the || operator to a list of clauses will be equivalent to applying | operator to all the
elements.

44 BUP: Language Specification

a b a -> b
0 0 1
0 1 1
1 0 0
1 1 1

Table 8.9: Implication truth table

The allowed operations using -> operator are:

Expression Result
AND_LITERALS -> OR_LITERALS OR_LITERALS
OR_LITERALS <- AND_LITERALS OR_LITERALS

LITERAL -> AND_LITERALS AND_CLAUSES
AND_LITERALS <- LITERAL AND_CLAUSES

Table 8.10: BUP: Allowed operations with ->

8.1.11.1.6. Double implication The double implication operator has the following truth
table:

a b a <-> b
0 0 1
0 1 0
1 0 0
1 1 1

Table 8.11: Double implication truth table

The allowed operations using <-> operator are:

Expression Result
LITERAL <-> AND_LITERALS AND_CLAUSES
AND_LITERALS <-> LITERAL AND_CLAUSES
LITERAL <-> OR_LITERALS AND_CLAUSES
OR_LITERALS <-> LITERAL AND_CLAUSES

Table 8.12: BUP: Allowed operations with <->

8.1.11.2. Cardinality constraints

Apart from simple boolean formulas, BUP accepts Cardinality Constraints in the model spec-
ification, that are later automatically translated to CNF by GOS. These kind of constraints
state that at most (at least, or exactly) k out of a propositional literals list can be true.

8.1. Model file 45

Listing 8.28: BUP: Exactly-K constraint

1 EO(<list>)

Listing 8.29: BUP: At-Most-K constraint

1 AMO(<list>)

Listing 8.30: BUP: At-Least-K constraint

1 ALO(<list>)

Listing 8.31: BUP: Exactly-K constraint

1 EK(<list>, <intExpression>)

Listing 8.32: BUP: At-Most-K constraint

1 AMK(<list>, <intExpression>)

Listing 8.33: BUP: At-Least-K constraint

1 ALK(<list>, <intExpression>)

8.1.11.3. forall structure

BUP language support forall structures used to loop lists and add constraints to the model.

Listing 8.34: BUP: forall constraint

1 forall (<ident> in <list> <, <ident> in <list> >*) {
2 <constraint>*
3 };

8.1.11.4. if structure

BUP supports if structures used to conditionally add constraints to the model.

Listing 8.35: BUP: if constraint

1 <if (<boolExpression>) { <constraint>* } >
2 <else if (<boolExpression>) { <constraint>* } >*
3 <else { <constraint>* } >?

46 BUP: Language Specification

8.1.12. Strings
BUP allows string only in the output block (see Section 8.1.4). A string could be:

• An explicit string by adding quotes at the beginning and at the end of the text:

Listing 8.36: BUP: Explicit string

1 ESCAPED_QUOTE : '\\"';
2 TK_STRING : '"' (ESCAPED_QUOTE | ~('"'))*? '"';

• A string concat using ++ operator:

Listing 8.37: BUP: String concat

1 <string> <++ <string>>*

• A string between parenthesis:

Listing 8.38: BUP: String between parenthesis

1 (<string>)

• A ternary operation having a string expression to the both sides:

Listing 8.39: BUP: Ternary operation string

1 <boolExpression> ? <string1> : <string2>

• A variable5 or param access automatically casted to string (see 8.1.9)

• An expression6 (see 8.1.8) automatically casted to string.

• A list (see 8.1.10) automatically casted to string.

8.2. Parameters file
The data file must contain the value for all the parameters declared in the viewpoint block
(see 8.1.2) in JSON format.

Listing 8.40: GOS: Example parameters JSON file using basic types, arrays and entities

1 {
2 "nSize" : 2,
3 "mSize" : 1,
4 "board": [
5 [
6 {

5Strings are only allowed in output block, where variables are treated as bool basic type
6Variables are automatically casted to bool basic type to do operations between expressions in the output-

block

8.2. Parameters file 47

7 "valueA" : 1,
8 "valueB" : 2,
9 "b" : true

10 }
11],
12 [
13 {
14 "valueA" : 25,
15 "valueB" : 10,
16 "b" : false
17 }
18]
19]
20 }

String and null values from the JSON standard are not allowed since the basic types of BUP
are int and bool (see 8.1.5.1).

9. Analysis and design of the system

9.1. Main flow
1. Read and store input data (see 9.1.1).

a) Stop if there are errors.

2. Parse and generate entities definition types (see 9.1.2).
a) Stop if there are errors.

3. Parse variables declarations (see 9.1.3) and parse parameters declarations and assign
them with input data (see 9.1.4).
a) Stop if there are errors.

4. Parse constraints and generate the boolean formula. (see 9.1.5).
a) Stop if there are errors.
b) If show-formula flag is active: Print the CNF formula in DIMACS format (see

9.1.6).
c) Else apply the SAT solver to the generated formula and get the result (see 9.1.7).

i. If the formula is satisfable:
A. If exists an output block: Parse custom output and show result (see

9.1.8.2)
B. Else show default output (see 9.1.8.1).

ii. Else show UNSAT.

The figure 9.1 shows the main flow assigning each task to the layer that effectuates it.

9.1.1. Input data read
The first the compiler does is to read the input data file. The reason of reading the input
data before the entities and parameter declaration is to allow declare variables or parameters
using previously declared parameters, e.g., to indicate an array dimension using a parameter.

Thus, what GOS firstly does is generate an auxiliary data structure containing the input
JSON data. The Figure 9.2 shows the implemented data structure class diagram.

Once generated the input visitor from the JSON grammar (see JSON grammar in Appendix
B and input visitor generation on Section 9.3.1) the auxiliary structure is filled in order to
store the given input data.

49

50 Analysis and design of the system

I nput model
and par amet er s

t o t he
compi l er

Read i nput and
st or e dat a

Par se and
gener at e
def i ned

ent i t i es

USER COMPI LER API

[er r or][er r or]

Par se
var i abl es and

par amet er s and
assi gn

par amet er s

Par se
const r ai nt s

Gener at e
f or mul a

[show- f or mul a]Show f or mul a
DI MACS f or mat [no show- f or mul a] Appl y SAT

sol ver

Get r esul t

[sat i sf abl e]

[cust om out put]

Par se out put

[er r or][er r or]Get cust om
out put

[no sat i sf abl e]

Get def aul t
out put

Get UNSAT

SAT- SOLVER

Sol ve f or mul a

[er r or]

[er r or]

[def aul t out put]

Figure 9.1: Tool layered flow scheme

9.1. Main flow 51

Our root object will be a ParamJSON and each attribute will be added recursively using the
add(Param a) method while visiting each node found in the input file.

<abstract> Param

 + Param(string name)
 + virtual bool isValuable();

+ name : string

<abstract> ParamValuable

 + ParamValuable(string name)
 + virtual int getValue();

extends

ParamBool

 + ParamBool(string name, bool val)

- val : bool

ParamInt

 + ParamInt(string name, int val)

- val : int

extends extends

<abstract> ParamScoped

 + ParamScoped(string name)
 + virtual void add(Param a);

 + virtual Param * get(string name);

extends

ParamArray

 + ParamArray(string name)

- elements : vector<Param>

ParamJSON

 + ParamJSON(string name)

- elements : map<string, Param>
+ resolve(string attrAccess)

extends extends

Figure 9.2: Compiler flow: auxiliary data structure to store input JSON data

9.1.2. Entity definition

The step before declaring variables and parameters is to check if it exists any new entity
defined by the user and save the definition into the Symbol Table in order to be able to
declare symbols using this new type.

9.1.3. Variable declaration

Once entering the viewpoint-block, GOS declares the model resolution variables and adds its
reference to the SMTFormula (see 9.5).

9.1.4. Parameter declaration and assignation

At the same time as the variable declaration, GOS also declares the model parameters and
assigns them with the values stored int the previously generated input data structure (see
9.1.1).

9.1.5. Formula generation

Once all the parameters and variables are declared and initialized, it is time to generate the
formula by applying the constraints defined in the constraints-block.

52 Analysis and design of the system

9.1.6. Print CNF formula: DIMACS format
If the compiler is running using the show-formula flag (see 9.6.1), the compiler will not get a
solution and instead it will print the CNF formula in DIMACS format.
This format is widely accepted as the standard format for boolean formulas in CNF. A

DIMACS file starts with comments (each line starts with c). The number of variables and
the number of clauses is defined by the line p cnf variables clauses
Each of the next lines specifies a clause: a positive literal is denoted by the corresponding

number, and a negative literal is denoted by the corresponding negative number. The last
number in a line should be zero. For example,

1 c A sample .cnf file.
2 p cnf 3 2
3 1 -3 0
4 2 3 -1 0

9.1.7. Solver application
Once the formula has been obtained by applying all the constraints, the solver (in our case,
MiniSAT) is run to obtain a model that satisfies all the constraints. If the solver obtain a
solution we have proved by giving a model that the formula is SATisfable. On the other
hand, if the solver does not find a solution, we can assure that the formula is unsatisfable.

9.1.8. Output
9.1.8.1. Default output

The output-block is optional. In the case that the user has not set a custom output and the
formula is SATisfable, the output will be the default. The default output consists on showing
the value of all the declared variables in the viewpoint-block and their values given by the
solver.

9.1.8.2. Custom output

In the case that the user has defined a custom output and the formula is SATisfable, the
shown output would be the defined in the output-block.

9.2. Symbol Table
The Symbol Table is the data structure in charge of managing all symbols in the code. To
implement the Symbol Table it was taken as a starting point the Symbol Table for Data Ag-
gregate pattern of the book Language Implementation Patterns: Techniques for Implementing
Domain-Specific Languages (Parr, 2010, chapter 7).

Although it was used as a basis, the final result bears little resemblance to the pattern
proposed in the book.

9.2. Symbol Table 53

The implementation of the SymbolTable in this project proposes a new framework in which
symbols are mixed with its values to simplify the recursive hierarchy and name resolution
methods. Having a single hierarchy of symbols and values makes it possible to explore the
parsing tree in a elegant way in accordance with the SymbolTable.

The Figure 9.3 show the complete class diagram of the implemented Symbol Table.

The SymbolTable constructor define a global Scope and initalizes all pre-defined types as
static constants to ensure a unique instance and offers the possibility to be accessed without
having to explore the SymbolTable structure.

Listing 9.1: SymbolTable: Constructor

1 class SymbolTable {
2 static const int tCustom = 0;
3 static const int tArray = 1;
4 static const int tInt = 2;
5 static const int tBool = 3;
6 static const int tVarBool = 4;
7 static const int tString = 5;
8

9 static BuiltInTypeSymbol *_integer;
10 static BuiltInTypeSymbol *_boolean;
11 static BuiltInTypeSymbol *_varbool;
12 static BuiltInTypeSymbol *_string;
13

14 GlobalScope * gloabls;
15

16 SymbolTable(){
17 gloabls = new GlobalScope();
18 this->gloabls->define(_integer);
19 this->gloabls->define(_boolean);
20 this->gloabls->define(_varbool);
21 this->gloabls->define(_string);
22 }
23 }
24

25 BuiltInTypeSymbol * SymbolTable::_integer = new BuiltInTypeSymbol("int", ←↩
↪→ SymbolTable::tInt);

26 BuiltInTypeSymbol * SymbolTable::_boolean = new BuiltInTypeSymbol("bool", ←↩
↪→ SymbolTable::tBool);

27 BuiltInTypeSymbol * SymbolTable::_varbool = new BuiltInTypeSymbol("varbool", ←↩
↪→ SymbolTable::tVarBool);

28 BuiltInTypeSymbol * SymbolTable::_string = new BuiltInTypeSymbol("string", ←↩
↪→ SymbolTable::tString);

9.2.1. Scope

A Scope refers to the visibility of variables and params in one part of a program to another
part of that program. In our project, a Scope is a container of Symbols and is implemented

54 Analysis and design of the system

as an interface, so all the classes that implements all methods of Scope could be considered
a Scope:

string getScopeName() Returns the name of the Scope.

string getFullName() Returns the name of the Scope concatenated to rest of enclosing scopes
names hierarchy.

Scope * getEnclosingScope() Returns the parent Scope, if exists.

void define(Symbol * sym) Add sym to the Scope.

Symbol * resolve(string name) Resolves the symbol named name in the current scope.

map<string, Symbol*> getScopeSymbols() Returns all symbols in the scope.

9.2.1.1. GlobalScope

A GlobalScope is a kind of scope that its variables must be accessible from anywhere in the
code, e.g., type or entities definitions,... Our SymbolTable have only one GlobalScope where
basic types, defined entities and first level parameters and variable declarations are stored.
The GlobalScope does not have an enclosing scope to enforce the resolution method explore

only the names defined in the current scope.

9.2.1.2. LocalScope

A LocalScope is a kind of scope that its variables are only available in a current block of code.
After exiting this block of code, the variables declared inside will be no longer accessible.

In our case, we can not define new variables or parameters outside viewpoint block and
LocalScopes are limited to the temporary identifiers created on, e.g., forall structures (see
8.1.11.3).

The LocalScope has always an enclosing scope, so the name resolution method explores the
name in the current scope and, if not exists, then call the resolution method of the enclosing
scope. This allow not only resolve the current scope defined names but also the previously
defined parameters and variables in the GlobalScope or other nested enclosing LocalScopes.

9.2.2. Symbol
In this project, the Symbol is the base of almost everything. A Symbol could be a Type, a
ScopedSymbol or a ValueSymbol. A Symbol is stored (and could be resolved) in a Scope. All
Symbols have a name and a Type.

9.2.2.1. Type

A Type is a kind of Symbol that defines the characteristics of a parameter or variable. It
exists two kind of Types:

9.2. Symbol Table 55

BuiltInTypeSymbol Defines the pre-defined types of the language (int, bool, variable and
string). They are initalized when constructing the SymbolTable (see 9.2).

ScopedSymbol A ScopedSymbol could be an ArraySymbol or a StructSymbol and they also
could be considered Types (see 9.2.2.3).

9.2.2.2. ValueSymbol

A ValueSymbol is considered a leaf in our hierarchy, i.e., it must contain the current value
of the parameter or variable. For instance, having declared param int a[3][3], param int b,
EntityA c1 and var d.

• a[0][0] is a ValueSymbol (and an AssignableSymbol).

• a[0] is NOT a ValueSymbol: is an ArraySymbol.

• b is a ValueSymbol (and an AssignableSymbol).

• c.a is a ValueSymbol (and an AssignableSymbol).

• c is NOT a ValueSymbol: is a StructSymbol.

• d is a ValueSymbol (and a VariableSymbol).
A ValueSymbol is a VariableSymbol or an AssignableSymbol.

9.2.2.2.1. VariableSymbol A VariableSymbol contains the reference to the a concrete model
resolution variable declared as a var in the viewpoint-block. You can resolve the reference
to the variable in order to apply constraints but the model value is not accessible until the
output-block.

9.2.2.2.2. AssignableSymbol An AssignableSymbol contains the value of the params de-
clared in the viewpoint-block and assigned through input data file. You can resolve their
name and access to their value from anywhere in the code.

9.2.2.3. ScopedSymbol

A ScopedSymbol is the most complex Symbol. It could be considered a Type, e.g, defining a
custom entity, and it could be considered a Scope since it implements the Scope interface.
In this case, the method Symbol* resolve(string name) of the Scope interface is used to resolve
entity attributes or the array indexes.

A ScopedSymbol can be a Type when defining an Entity and this type could be used in
the viewpoint-block to declare concrete instances.

9.2.2.3.1. ArraySymbol Used to create array declarations of elements of any Type.

9.2.2.3.2. StructSymbol Used to create custom entity definitions (entity-block) and entity
declarations (viewpoint-block).

1EntityA is a user-defined entity having only one param int a attribute.

56 Analysis and design of the system

<
<

in
te

rf
ac

e>
>

S
co

p
e

+
 g

et
S

co
pe

N
am

e(
)

: s
tr

in
g

+
 g

et
F

ul
lN

am
e(

)
: s

tr
in

g
+

 g
et

E
nc

lo
si

ng
S

co
pe

()
 :

S
co

pe
+

 d
ef

in
e(

S
ym

bo
l s

ym
)

: v
oi

d
+

 r
es

ol
ve

(s
tr

in
g

na
m

e)
 :

S
ym

bo
l

+
 g

et
S

co
pe

S
ym

bo
ls

()
 :

m
ap

<
st

rin
g,

 S
ym

bo
l*

>

<
<

ab
st

ra
ct

>
>

 B
as

eS
co

p
e

-
en

cl
os

in
gS

co
pe

 :
S

co
pe

-
sy

m
bo

ls
 :

m
ap

<
st

rin
g,

 S
ym

bo
l>

+
 B

as
eS

co
pe

(S
co

pe
 p

ar
en

t)
 :

 B
as

eS
co

pe

im
pl

em
en

ts

G
lo

b
al

S
co

p
e

+
 G

lo
ba

lS
co

pe
()

 :
G

lo
ba

lS
co

pe
+

 g
et

S
co

pe
N

am
e(

)
ov

er
rid

e
:

st
rin

g

ex
te

nd
s

L
o

ca
lS

co
p

e

+
 L

oc
al

S
co

pe
()

 :
Lo

ca
lS

co
pe

+
 g

et
S

co
pe

N
am

e(
)

ov
er

rid
e

:
st

rin
g

ex
te

nd
s

<
<

ab
st

ra
ct

>
>

 S
ym

b
o

l

-
na

m
e:

 s
tr

in
g

-
ty

pe
: T

yp
eS

ym
bo

l

+
 S

ym
bo

l(s
tr

in
g

na
m

e)
 :

S
ym

bo
l

+
 S

ym
bo

l(s
tr

in
g

na
m

e,
 T

yp
e

ty
pe

)
:

S
ym

bo
l

+
 g

et
N

am
e(

) :
 s

tr
in

g
+

 v
irt

ua
l i

sA
ss

ig
na

bl
e(

)
: b

oo
l

+
 v

irt
ua

l i
sS

co
pe

d(
)

: b
oo

l

us
es

V
ar

ia
b

le
S

ym
b

o
l

-
va

r
: l

ite
ra

l
-

m
od

el
V

al
ue

: b
oo

l

+
 V

ar
ia

bl
eS

ym
bo

l(s
tr

in
g

na
m

e,

Ty
pe

 ty
pe

)
+

 g
et

V
ar

()
 :

lit
er

al
+

 g
et

M
od

el
V

al
ue

()
 :

bo
ol

+
 s

et
M

od
el

V
al

ue
(b

oo
l v

al
)

:
vo

id

ex
te

nd
s

A
ss

ig
n

ab
le

S
ym

b
o

l

-
va

l :
 V

al
ue

+
 A

ss
ig

na
bl

eS
ym

bo
l(s

tr
in

g
na

m
e,

Ty

pe
 ty

pe
)

+
 g

et
V

al
ue

()
 :

V
al

ue
+

 s
et

V
al

ue
(V

al
ue

 v
al

) :
 v

oi
d

ex
te

nd
s

<
<

ab
st

ra
ct

>
>

Ty
p

e

+
 g

et
Ty

pe
In

de
x(

)
: i

nt

ex
te

nd
s

B
u

ilt
In

Ty
p

eS
ym

b
o

l

-
ty

pe
In

de
x

: i
nt

+
 B

ui
ld

In
Ty

pe
S

ym
bo

l(s
tr

in
g

na
m

e)
 :

B
ui

ld
In

Ty
pe

S
ym

bo
l

+
 B

ui
ld

In
Ty

pe
S

ym
bo

l(s
tr

in
g

na
m

e,
 in

t
ty

pe
In

de
x)

 :
B

ui
ld

In
Ty

pe
S

ym
bo

l

ex
te

nd
s

<
<

ab
st

ra
ct

>
>

 S
co

p
ed

S
ym

b
o

l

-
en

cl
os

in
gS

co
pe

 :
S

co
pe

+
 S

tr
uc

tS
ym

bo
l(s

tr
in

g
na

m
e,

 in
t t

yp
eI

nd
ex

,
S

co
pe

 p
ar

en
t)

 :
S

tr
uc

tS
ym

bo
l

im
pl

em
en

ts
ex

te
nd

s

S
ym

bo
lT

ab
le

+
 g

lo
ba

ls
 :

G
lo

ba
lS

co
pe

us
es

us
es

us
es

A
rr

ay
S

ym
b

o
l

-
el

em
en

ts
: v

ec
to

r<
S

ym
bo

l>
-

el
em

en
ts

Ty
pe

: T
yp

e
-

in
t s

iz
e;

+
 A

rr
ay

S
ym

bo
l(s

tr
in

g
na

m
e,

 S
co

pe

en
cl

os
in

gS
co

pe
, T

yp
e

el
em

sT
yp

e)
 :

A
rr

ay
S

ym
bo

l
+

 g
et

S
iz

e(
)

: i
nt

+
 s

et
S

iz
e(

in
t s

iz
e)

 :
vo

id
+

 g
et

E
le

m
en

ts
Ty

pe
()

 :
Ty

pe
+

 a
dd

(S
ym

bo
l s

ym
)

: v
oi

d
+

 g
et

S
ym

bo
lV

ec
to

r(
)

: v
ec

to
r<

S
ym

bo
l>

ex
te

nd
s

<
<

ab
st

ra
ct

>
>

V
al

u
e

+
 g

et
R

ea
lV

al
ue

()
 :

in
t

In
tV

al
u

e

-
re

al
In

tV
al

ue
 :

in
t

+
 In

tV
al

ue
(in

t
in

tV
al

);

im
pl

em
en

ts

B
o

o
lV

al
u

e

-
va

l :
 b

oo
l

+
 B

oo
lV

al
ue

(b
oo

l
va

l);

im
pl

em
en

ts
us

es

S
tr

u
ct

S
ym

b
o

l

-
fie

ld
s:

 m
ap

<
st

rin
g,

 S
ym

bo
l>

+
 S

tr
uc

tS
ym

bo
l(s

tr
in

g
na

m
e,

 S
co

pe

en
cl

os
in

gS
co

pe
)

: S
tr

uc
tS

ym
bo

l
+

 S
tr

uc
tS

ym
bo

l(s
tr

in
g

na
m

e,
 T

yp
e

ty
pe

,
S

co
pe

 e
nc

lo
si

ng
S

co
pe

)
: S

tr
uc

tS
ym

bo
l

ex
te

nd
s

V
al

u
eS

ym
b

o
l

+
 V

al
ue

S
ym

bo
l(s

tr
in

g
na

m
e,

 T
yp

e
ty

pe
)

ex
te

nd
s

ex
te

nd
s

ex
te

nd
s

F
ig
ur
e
9.
3:

Sy
m
bo
lT

ab
le
:
C
la
ss

di
ag
ra
m

9.3. Visitors 57

9.3. Visitors

A visitor is the structure that allows to explore the generated parsing tree given an ANTLR
grammar and an input text (see Section 7.1.2 Syntactic Analysis).

GOSBaseVisitor

GOSCustomBaseVisitor

GOSTypeVarDefinitionVisitor GOSConstraintsVisitor

GOSOutputVisitor

JSONBaseVisitor

GOSInputVisitor

Figure 9.4: Visitors schema

It is defined a Visitor hierarchy to give the wanted behaviour in each block of the code by
overriding the visit methods.

9.3.1. GOSInputVisitor

GOSInputVisitor explores the input JSON parsing-tree nodes and generates a auxiliar struc-
ture to store the parameter assignation of the input. (see Input data read on Section 9.1.1).

Listing 9.2: GOSJSONInputVisitor

1 class GOSJSONInputVisitor : public JSONBaseVisitor {
2 private:
3 ParamJSON *base;
4 ParamScoped *current;
5

6 public:
7 GOSJSONInputVisitor() {
8 base = new ParamJSON("base");
9 current = base;

10 }
11 antlrcpp::Any visitValue(JSONParser::ValueContext *ctx) override {...}
12 antlrcpp::Any visitPair(JSONParser::PairContext *ctx) override {...}
13 antlrcpp::Any visitArr(JSONParser::ArrContext *ctx) override {...}
14 antlrcpp::Any visitJson(JSONParser::JsonContext *ctx) override {...}
15 };

58 Analysis and design of the system

9.3.2. GOSBaseVisitor
The GOSBaseVisitor is the default ANTLR parsing-tree visitor of the grammar and the
model input.

9.3.2.1. GOSCustomBaseVisitor

GOSCustomBaseVisitor overrides the methods of GOSBaseVisitor that have common be-
haviour everywhere, e.g., expressions, identifier access, lists,..

Listing 9.3: GOSBaseVisitor

1 class GOSCustomBaseVisitor : public GOSBaseVisitor {
2

3 protected:
4 bool accessingNotLeafVariable = false;
5 SymbolTable *st;
6 SMTFormula *_f;
7 Scope *currentScope;
8 Scope *currentLocalScope = nullptr;
9

10 public:
11

12 explicit GOSCustomBaseVisitor(SymbolTable *symbolTable, SMTFormula *f)
13 {
14 this->st = symbolTable;
15 this->_f = f;
16 this->currentScope = this->st->gloabls;
17 }
18

19 antlrcpp::Any visitExprTop(GOSParser::ExprTopContext *ctx) {...}
20 (...)
21 antlrcpp::Any visitExprSumDiff(GOSParser::ExprSumDiffContext *ctx){...}
22 (...)
23 antlrcpp::Any visitVarAccess(GOSParser::VarAccessContext *ctx) {...}
24 (...)
25 antlrcpp::Any visitRangList(GOSParser::RangListContext *ctx) {...}
26 (...)
27 };

The GOSCustomBaseVisitor attributes are protected to allow subclasses access to the Sym-
bolTable and the SMTFormula.

9.3.2.1.1. GOSTypeVarDefinitionVisitor Adds the custom entities definitions and the vari-
able and parameter declarations to the SymbolTable. Receives the auxiliar input structure
generated by the GOSInputVisitor in order to assign the values to the parameter declarations.

It overrides the dataAccess method from the GOSCustomBaseVisitor to get the data from
the auxiliar input structure (see 9.1.1).

9.3. Visitors 59

Listing 9.4: GOSTypeVarDefinitionVisitor

1 class GOSTypeVarDefinitionVisitor : public GOSCustomBaseVisitor {
2 private:
3 ParamJSON *params;
4

5 public:
6 explicit GOSTypeVarDefinitionVisitor(SymbolTable *symbolTable, SMTFormula *←↩

↪→ f, ParamJSON *params)
7 : GOSCustomBaseVisitor(symbolTable, f) {
8 this->params = params;
9 }

10

11 antlrcpp::Any visitEntityDefinitionBlock(GOSParser::←↩
↪→ EntityDefinitionBlockContext *ctx) override {...}

12

13 antlrcpp::Any visitViewpointBlock(GOSParser::ViewpointBlockContext *ctx) ←↩
↪→ override {...}

14

15 antlrcpp::Any visitVarDefinition(GOSParser::VarDefinitionContext *ctx) ←↩
↪→ override {...}

16

17 antlrcpp::Any visitParamDefinition(GOSParser::ParamDefinitionContext *ctx) ←↩
↪→ override {...}

18

19 antlrcpp::Any visitVarAccess(GOSParser::VarAccessContext *ctx) override ←↩
↪→ {...}

20

21 (...)
22 }

9.3.2.1.2. GOSConstraintsVisitor Visits the constraints-block nodes and adds the variables
constraints to the SMTFormula2

Listing 9.5: GOSConstraintsVisitor

1 class GOSConstraintsVisitor : public GOSCustomBaseVisitor {
2 public:
3 explicit GOSConstraintsVisitor(SymbolTable *symbolTable, SMTFormula *f) : ←↩

↪→ GOSCustomBaseVisitor(symbolTable, f) {}
4

5 antlrcpp::Any visitConstraint(GOSParser::ConstraintContext *ctx) override ←↩
↪→ {...}

6

7 antlrcpp::Any visitIfThenElse(GOSParser::IfThenElseContext *ctx) override ←↩
↪→ {...}

8

9 antlrcpp::Any visitForall(GOSParser::ForallContext *ctx) override {...}
10

2Although the used api is SMT-oriented, it is fully compatible to encode SAT. SMT is an extension of
SAT that allows predicates more expressive than propositional formulas.

60 Analysis and design of the system

11 (...)
12 }

9.3.2.1.3. GOSOutputVisitor If the user has defined a custom output, it generates the
output stream. This visitor also overwrites the dataAccess method to allow access model
variables values (if the model is satisfable) and treat it as a base type bool symbol.

Listing 9.6: GOSOutputVisitor

1 class GOSOutputVisitor : public GOSCustomBaseVisitor {
2

3 public:
4 GOSOutputVisitor(SymbolTable *symbolTable, SMTFormula *f) : ←↩

↪→ GOSCustomBaseVisitor(symbolTable, f) {}
5

6 antlrcpp::Any visitOutputBlock(GOSParser::OutputBlockContext *ctx) override←↩
↪→ {...}

7

8 antlrcpp::Any visitString(GOSParser::StringContext *ctx) override {...}
9

10 (...)
11 }

9.4. Error handling
The different ways to handle errors in a compiler are explained in the Section 5.3.1. GOS
uses different strategies depending on the phase of the compiler.

9.4.1. Lexical Errors
The errors that can be detected in the lexical analysis are few (strange characters, misspelled
constants,...). The strategy used in the lexical phase is panic (stop the execution when an
error is found).

9.4.2. Syntactic Errors
In the syntactic phase, GOS use the default ANTLR strategy. When the parser encounters
an error, it tries to take corrective measures so that the rest of inputs of statement allow the
parser to parse ahead. For example, inserting a missing semicolon, replacing comma with a
semicolon, etc.
If ANTLR can recover the input, the errors are shown but the execution does not stop. On
the other hand, if ANTLR can not recover the input, the error is shown and the execution
stops.

9.4.3. Semantic Errors
This kind of errors are related to the given behaviour of the compiler.GOS have fully cus-
tomized semantic errors. A new C++ exception type, GOSException, has been implemented,

9.4. Error handling 61

which is a class that unifies the output of the compiler errors.

Listing 9.7: GOSException

1 class GOSException : public exception {
2 private:
3 int line;
4 int column;
5 string message;
6

7 public:
8 GOSException(int line, int pos, const string &message) :
9 line(line), column(pos), message(message) {

10 SymbolTable::errors = true;
11 }
12

13 string getErrorMessage(){
14 string error = string("ERROR on line ") + to_string(line) + ":" + ←↩

↪→ to_string(column) + "\n\t" + message;
15 return error;
16 }
17 };

GOSException extends the default C++ exception class and defines a default method getEr-
rorMessage that returns a string with the unified error outptut style:

Listing 9.8: Default error message

1 ERROR on line <line>:<col>:
2 <message>

Exceptions are throwed and catched using try-catch blocks set in top-level nodes of the
parsing-tree.

There exists a GOSException repository where there are defined all the defined exceptions
extending GOSException:

Listing 9.9: GOSBadAccessException

1 class GOSBadAccessException : public GOSException {
2 public:
3 GOSBadAccessException(int line, int pos, const string &badAccess) :
4 GOSException(
5 line,
6 pos,
7 "Invalid access: \"" + badAccess + "\" is not a variable or ←↩

↪→ param"
8) {}
9 };

Listing 9.10: GOSInvalidFormulaException

62 Analysis and design of the system

1 class GOSInvalidFormulaException : public GOSException {
2 public:
3 GOSInvalidFormulaException(int line, int pos, string formula, string ←↩

↪→ message = "") :
4 GOSException(
5 line,
6 pos,
7 "Invalid formula \"" + formula + "\": " + message
8) {}
9 };

10

11 };

9.5. SMT api
The solving part of GOS uses a SMT API3 implemented by one of my supervisors and mem-
ber of L∧P research group in the University of Girona, Jordi Coll, that gives methods to
define SMT (in our case SAT) formulas, create custom encodings and solve with a set of
SMT solvers (in our case MiniSAT).

GOS generates the Propositional Formula by visiting the nodes of the parsing-tree and calling
methods of SMTFormula to define variables and apply constraints. Once the formula is fully
generated, it is sent to the solver to get a model.

9.5.1. SMTFormula
SMTFormula is used to define variables and apply constraints. The API uses custom defined
classes boolvar (represents a variable), literal and clause.

Listing 9.11: SMTFormula api used methods

1 //Get the trivially false variable
2 boolvar falseVar();
3

4 //Get the trivially true variable
5 boolvar trueVar();
6
7 //Get a new unnamed Boolean variable
8 boolvar newBoolVar();
9

10 //Add the empty clause to the formula
11 void addEmptyClause();
12

13 //Add clause 'c' to the formula
14 void addClause(const clause &c);
15
16 //All all the clauses in 'v' to the formula

3Although the used api is SMT-oriented, it is fully compatible to encode SAT. SMT is an extension of
SAT that allows predicates more expressive than propositional formulas.

9.5. SMT api 63

17 void addClauses(const std::vector<clause> &c);
18

19 //Adds at-least-K constraint on the literals in 'v'
20 void addALK(const std::vector<literal> & v, int K);
21

22 //Adds at-most-K constraint on the literals in 'v'
23 void addAMK(const std::vector<literal> & v, int K, CardinalityEncoding enc ←↩

↪→ = CARD_SORTER);
24

25 //Adds exactly-K constraint on the literals in 'v'
26 void addEK(const std::vector<literal> & v, int K);

9.5.2. GOSEncoding
To interact with the solver, the api uses an abstract class Encoding with some pure-virtual
methods to implement by the subclasses:

• SMTFormula * encode(int LB = INT_MIN, int UB = INT_MAX)

• bool printSolution(std::ostream & os) const

In our case, the encoded formula is generated externally (using visitors) and the encode()
method only returns the generated SMTFormula.

Listing 9.12: GOSEncoding

1 class GOSEncoding : public Encoding {
2

3 private:
4 SMTFormula *f;
5 SymbolTable *st;
6

7 void fillModelValuesResult(Scope *currentScope, const EncodedFormula ←↩
↪→ formula, const vector<bool> & bmodel) {...}

8

9 void printModelSolution(Scope *currentScope, ostream &os, string prefix = "←↩
↪→ ") const {...}

10

11 public:
12

13 GOSEncoding(SMTFormula *formula, SymbolTable *st) {
14 this->f = formula;
15 this->st = st;
16 }
17

18 SMTFormula *encode(int LB = 0, int UB = 0) override {
19 return f;
20 }
21

64 Analysis and design of the system

22 bool printModelSolution(ostream &os) const {
23 printModelSolution(this->st->gloabls, os);
24 return true;
25 }
26

27 bool printSolution(ostream &os) const override {
28 //GOS uses its custom method to print solution.
29 return true;
30 }
31

32 void setModel(const EncodedFormula &ef, int lb, int ub, const vector<bool> ←↩
↪→ &bmodel, const vector<int> &imodel) override {

33 fillModelValuesResult(this->st->gloabls, ef, bmodel);
34 }
35 };

9.5.3. Controller
Once the formula and the encoding are created, GOS uses the the BasicController to run
the solver.

BasicController basically uses the solving arguments (see 9.6.2) and the encoding to run.
The other parameters are SMT-related and dora not matter in our case.

Listing 9.13: BasicController

1 class BasicController {
2 protected:
3 int LB;
4 int UB;
5 Encoding * encoding;
6 bool minimize;
7 SolvingArguments * sargs;
8

9 public:
10 BasicController(SolvingArguments * sargs, Encoding * enc, bool minimize, ←↩

↪→ int lb, int ub);
11 virtual ~BasicController();
12

13 static void afterSatisfiabilityCall(int lb, int ub, Encoder * encoder);
14 static void afterNativeOptimizationCall(int lb, int ub, Encoder * encoder);
15 static void onNewBoundsProved(int lb, int ub);
16 static void onSATSolutionFound(int & lb, int & ub, int & obj_val, Encoding ←↩

↪→ * encoding);
17 static void onProvedOptimum(int opt);
18 static void onProvedSAT();
19 static void onProvedUNSAT();
20

21 virtual void run();
22 };

9.6. GOS compiler arguments 65

The use of BasicController is as simple as call the run() and it will run the solver according
to the SolvingArguments.

9.6. GOS compiler arguments
Apart from the SMT api, there is implemented an argument manager to configure the solver.
The main reason of that is give a standard input to the compiler.
In our case, we will force to use MiniSAT as a solver and set the solver to return the first
solution found (optimization formula use is not allowed).

GOS will require only the input model file and the param file to run.

Listing 9.14: GOS main: argument management

1 int main(int argc, char **argv) {
2 Arguments<ProgramArg> *pargs = new Arguments<ProgramArg>(
3 {
4 arguments::arg("modelfile", "Instance file path."),
5 arguments::arg("datafile", "Input params file path."),
6 },
7 2,
8 {
9 arguments::bop("pf", "print-formula", SHOWFORMULA, false,

10 "Print CNF formula"),
11 },
12 "Solve CSP to SAT"
13);
14 SolvingArguments*sargs =SolvingArguments::readArguments(argc, argv, pargs);
15 bool showFormula = pargs->getBoolOption(SHOWFORMULA);
16

17 //Force use MiniSAT
18 SolvingArg solver = sargs->getOptionRef("-s");
19 sargs->setOption(solver, (string) "minisat");
20
21 //Force no optimization
22 SolvingArg optimize = sargs->getOptionRef("-o");
23 sargs->setOption(optimize, (string) "check");
24

25 //Configure formula print if flag pf active.
26 if (showFormula) {
27 SolvingArg print = sargs->getOptionRef("-e");
28 sargs->setOption(print, true);
29 SolvingArg format = sargs->getOptionRef("-f");
30 sargs->setOption(format, (string) "dimacs");
31 }
32

33 string inputStr = readFile(pargs->getArgument(1));
34 string modelStr = readFile(pargs->getArgument(0));
35

36 GOSCompiler *compiler = new GOSCompiler(inputStr, modelStr, sargs);

66 Analysis and design of the system

37 compiler->run();
38

39 return 0;
40 }
Arguments checks the correctness of input parameters and gives commands to customize the
SolvingArguments.

9.6.1. print-formula flag
The compiler allows to be executed using the -pf=1 or --print-formula=1 option to print
the generated CNF formula in DIMACS format instead of applying the solver (see 9.1.6).

9.6.2. SolvingArguments
Solving arguments are those arguments that are allowed as a compiler options that could
change the solver behaviour. For further information type ”-h” as a compiler parameter and
it will print all the options4.

4It is not recommended to change the default solving arguments since GOS compiler have only a subset
of the SMT api and not all the options are available. Apart from this, The only solver implemented for SAT
is MiniSAT.

10. Deploying
In this section it is explained the two ways that the compiler has been deployed.

10.1. Downloadable compiler
The last version of the compiler is published on my GitHub repository and it is simple to
clone, install and use in any OS (see Appendix A Install and Run Instructions). Figure 10.1
shows how works the online version and the flow between the components it has.

10.2. Online compiler
GOS also has an online version. This was not initially defined as a requirement of the project
but it turns out to seem interesting to reach a greater amount of users and was included in
the lists of tasks and objectives of the project.

Vi si t compi l er
webpage and
wr i t e model

and par amet er s

USER SERVER CSP2SAT

Run CSP2SAT
compi l er

[no input errors]

Get er r or
message

[input errors]

Get model
out put

[no errors]

[errors]

Get er r or
message

Get model
out put

Figure 10.1: GOS online version flow

To implement the online editor it was used:

Frontend: ReactJS Frontend is the visual part: contains two code editors to be able to write
the input model and the params and a button to get the solution. It is only responsible
of sending the model to the server and receiving and displaying the response.

67

https://github.com/roger21gm/GOS

68 Deploying

Backend (server): Spring Boot The Spring Boot server listens to requests from the frontend
and returns the solution by executing GOS compiler.

At the time of writing this project it is published in a free Google Cloud instance using an
apache2 server. It can be accessed here (Figure 10.2 shows a screenshot of the webpage). In
the future will be considered allocating this online version in the webpage of the L∧P research
group in order to make easy the use, specially, for the students of Declarative Programming
subject in the University of Girona.

http://csp2sat.online

10.2. Online compiler 69

F
ig
ur
e
10

.2
:G

O
S
on

lin
e
ve
rs
io
n

http://csp2sat.online

11. Results

11.1. BUP programming language
BUP is a new declarative programming language for modelling CSP and solve them using
SAT.

As far as we know, there are no precedents of declarative modelling languages allowing to
define tuples. BUP permits create complex data structures (called entities) that allow you
to group params and variables in a common framework. In next iterations of the language
(see Future Work on Section 13) it is possible to consider the idea of extending the use of
tuples to object orientation, allowing for instance to include constraints over objects in the
definition of the entities

To sum up, BUP is a language that has emerged to improve expressiveness when encod-
ing any CSP to SAT by allowing:

• Define int or bool parameters

• Use forall structures to loop over parameters.

• Use if structures for conditionally apply constraints.

• Generate clause lists by using comprehension lists.

• Translate automatically any allowed formula to CNF.

• Customize the output when the model is satisfable.

• Produce a clear CNF encoding resulting of the individual conjunction of CNFs resulting
from translating each particular constraint.

• Be easily extendible to support further constraints implemented in the SMT API.

11.2. GOS compiler
The GOS compiler allows to use the defined language, BUP, to solve CSPs. Given a BUP
model and a JSON file with the data of a particular instance at hand, GOS compiler makes
the translation to SAT and gives the option to print the resulting formula in a standard
format, DIMACS, or to obtain a solution by using MiniSAT SAT-solver.

There are two ways of using GOS compiler:

• By building the project using CMake

71

72 Results

• By using the published online version

11.3. Model examples
11.3.1. Sudoku
Sudoku is a popular Japanese puzzle that is based on the logical placement of numbers. The
goal of Sudoku is to fill in a 9×9 grid with digits so that each column, row, and 3×3 section
contain the numbers between 1 to 9. At the beginning of the game, the 9×9 grid will have
some of the squares filled in. Your job is to use logic to fill in the missing digits and complete
the grid.
The mathematical model of the sudoku is the following:

Sets G = Set of already placed numbers

Variables yijk =

{
1, if element (i,j) of the nxn sudoku matrix contains the integer k
0, else

Constraints
Only one k in each colum

n∑
i=1

yijk = 1 ∀i,j ∈ 1..n

Only one k in each row
n∑

j=1

yijk = 1 ∀i,j ∈ 1..n

Only one k in each sub-matrix
mq∑

j=mq−m+1

yijk

mq∑
i=mq−m+1

yijk = 1 ∀k ∈ 1..n , ∀p,q ∈ 1..m

Every position in matrix must be filled once
n∑

k=1

yijk = 1 ∀i,j ∈ 1..n

Given elements G in matrix are set “on”

yijk = 1 ∀i,j,k ∈ G

A 9x9 sudoku can be modelled using BUP as:

Listing 11.1: Sudoku example: model

1 viewpoint:
2 var p[9][9][9];
3 param int iniSudoku[9][9];

http://csp2sat.online

11.3. Model examples 73

4

5 constraints:
6 forall(i in 0..8, j in 0..8){
7 EO(p[i][j][_]); // One value per cell
8 AMO(p[i][_][j]); // Each value one time per row
9 AMO(p[_][i][j]); // Each value one time per column

10 };
11 //Each value one time per block
12 forall(i in [0,3,6], j in [0,3,6], k in 0..8){
13 AMK([p[i+l][j+g][k] | l in 0..2, g in 0..2], 1);
14 };
15 //Initialize input fixed sudoku values.
16 forall(i in 0..8, j in 0..8){
17 if(iniSudoku[i][j] != 0){
18 p[i][j][iniSudoku[i][j]-1];
19 };
20 };
21

22 output:
23 "Sudoku solution: \n";
24 [k+1 ++ " " ++ ((j+1) % 3 == 0 ? " " : "") ++ (j==8 ? (i+1) % 3 == 0 ? "\n←↩

↪→ \n": "\n" : "") | i in 0..8, j in 0..8, k in 0..8 where p[i][j][k]];
And the following input parameters:

Listing 11.2: Sudoku example: parameters input

1 {
2 "n" : 9,
3 "iniSudoku" : [
4 [8, 0, 0, 0, 0, 0, 0, 0, 0],
5 [0, 0, 3, 6, 0, 0, 0, 0, 0],
6 [0, 7, 0, 0, 9, 0, 2, 0, 0],
7 [0, 5, 0, 0, 0, 7, 0, 0, 0],
8 [0, 0, 0, 0, 4, 5, 7, 0, 0],
9 [0, 0, 0, 1, 0, 0, 0, 3, 0],

10 [0, 0, 1, 0, 0, 0, 0, 6, 8],
11 [0, 0, 8, 5, 0, 0, 0, 1, 0],
12 [0, 9, 0, 0, 0, 0, 4, 0, 0]
13]
14 }
The solution obtained is:

Listing 11.3: Sudoku example: solution

1 c restarts 3
2 c decisions 490
3 c propagations 108196
4 c conflics 291
5 c stats 0;0;0.043765;-1;4536;11361;3;-1;-1;490;108196;291;-1;-1;
6 v
7 s SATISFIABLE
8 Solució sudoku:

74 Results

9

10 8 1 2 7 5 3 6 4 9
11 9 4 3 6 8 2 1 7 5
12 6 7 5 4 9 1 2 8 3
13

14 1 5 4 2 3 7 8 9 6
15 3 6 9 8 4 5 7 2 1
16 2 8 7 1 6 9 5 3 4
17

18 5 2 1 9 7 4 3 6 8
19 4 3 8 5 2 6 9 1 7
20 7 9 6 3 1 8 4 5 2

11.3. Model examples 75

11.3.2. Nonogram
Nonograms, also known as Picross or Griddlers, are image logic puzzles in which cells in a
grid must be colored or blank according to the numbers on the side of the grid to reveal
a hidden image. In this type of puzzle, numbers are a form of discrete tomography that
measures the number of continuous lines of filled-in squares there are in any given row or
column. For example, a track of ”4 8 3” would mean that there are sets of four, eight, and
three filled squares, in that order, with at least one blank square between successive groups.

5
24
26
9
17
9
212
11
14
2

1 4
1

6
2

7
2

6
1

8 1
4
1

2
4

3
2

4

We can encode nonograms with BUP using the following parameters and variables:

1 viewpoint:
2 param int rowSize;
3 param int colSize;
4 param int maxNonos;
5

6 param int rowNonos[rowSize][maxNonos];
7 param int colNonos[colSize][maxNonos];
8

9 var x[rowSize][colSize];
10 var hasStartedRow[rowSize][maxNonos][colSize];
11 var hasStartedCol[colSize][maxNonos][rowSize];

• rowSize is the grid row size.

• colSize is the grid column size.

• maxNonos is the maximum number of blocks that a column or a row could have

• rowNonos indicates the number of blocks and its sizes in each row.

• colNonos indicates the number of blocks and its sizes in eachcolumn.

• x is the result board. x[i][j] will be true if and only if row i, column j is coloured
and false otherwise.

• hasStartedRow[i][b][j] will be true if and only if block b of row i has already started
in the column j.

76 Results

• hasStartedCol[j][b][i] will be true if block b of column j has already started in the
row i.

The constraints are the same applied over columns and over rows. The following constrains
are those applied over rows:

• If a block of a row has started at column i, it also must have started in column i+1.

1 //Order encoding
2 forall(i in 0..rowSize-1, b in 0..maxNonos-1){
3 if(rowNonos[i][b] != 0){
4 forall(j in 0..colSize-2){
5 hasStartedRow[i][b][j] -> hasStartedRow[i][b][j+1];
6 };
7 }
8 else{
9 &&([!hasStartedRow[i][b][j] | j in 0..colSize-1]);

10 };
11 };
12

• A block mush have started soon enough to fit in the row.

1 forall(i in 0..rowSize-1, b in 0..maxNonos-1){
2 if(rowNonos[i][b] != 0){
3 hasStartedRow[i][b][colSize-rowNonos[i][b]];
4 };
5 };
6

• x[i][j] must be true if it is colored.

1 //Channelling between hasStarted and x
2 forall(i in 0..rowSize-1, b in 0..maxNonos-1){
3 if(rowNonos[i][b] != 0){
4 forall(j in 0..colSize-1){
5 if(j >= rowNonos[i][b]){
6 x[i][j] <- hasStartedRow[i][b][j] & !hasStartedRow[i][b][j←↩

↪→ -rowNonos[i][b]];
7 }
8 else {
9 x[i][j] <- hasStartedRow[i][b][j];

10 };
11 };
12 };
13 };
14

• The number of cells true in the row i must be the sum of the length of the blocks in
row i

11.3. Model examples 77

1 forall(i in 0..rowSize-1){
2 EK(x[i], sum(rowNonos[i]));
3 };
4

• Block b must start before block b+1

1 forall(i in 0..rowSize-1, b in 0..maxNonos-2){
2 if(rowNonos[i][b+1] != 0){
3 forall(j in 0..colSize-1){
4 if(j-rowNonos[i][b]-1 >= 0){
5 hasStartedRow[i][b+1][j] -> hasStartedRow[i][b][j-rowNonos←↩

↪→ [i][b]-1];
6 }
7 else {
8 !hasStartedRow[i][b+1][j];
9 };

10 };
11 };
12 };
13

Figure 11.1 shows an example of Nonogram instance that could be found in the project source
code examples.

Figure 11.1: Nonogram: gladiator example

78 Results

11.3.3. Multi-Skill Project Scheduling Problem (MSPSP)

The MSPSP problem is a generalization of RCPSP. The resource-constrained project schedul-
ing problem (Kolisch & Sprecher, 1997) is a classical well-known problem in operations re-
search. A number of activities have to be scheduled. Each activity has a duration and cannot
be interrupted. There are a set of precedence relations between pairs of activities which state
that the second activity must start after the first has finished. The set of precedence rela-
tions are usually given as a directed acyclic graph (DAG), where the edge (u,v) represents a
precedence relation where u must finish before v begins. The DAG contains two additional
activities with duration 0, the source and sink, where the source is the first activity and sink
is the last activity (these are dummy activities).
There are a set of renewable resources. Each resource has a maximum capacity and at

any given time slot no more than this amount can be in use. Each activity has a demand
(possibly zero) on each resource. The dummy source and sink activities have zero demand
on all resources.

However, in the MSPSP (Coll, 2019) the activities do not directly ask for resources but
they ask for skills. These skills are supplied by renewable resources, and every resource is
specialised to master a subset of the skills. A clear example is that the resources are workers.
A worker can master many skills, and he/she can perform a different skill on each activity.
The resource constraints state that one resource (worker) can only work at one skill of one
activity at a time, and that a resource can only supply skills that it masters. The resources
are unary, i.e. they can only supply one unit of skill at a time, but the activities may require
many units of each skill. Also, the set of resources that an activity is using cannot change at
any moment of execution, i.e. the resource usage of the activities is also non-preemptive.

The problem is usually stated as an optimisation problem where the makespan (i.e. the
completion time of the sink activity) is minimised. GOS still does not support optimization,
so the solution will be a model that satisfies all the constraints.

MSPSP could be defined as a tuple (V,p,E,R,L,m,b) where:

V is a set of activities A.

p is a vector of naturals, with pi being the duration of Ai.

E is a set of paris of activities representing end-start precedence relations: (Ai,Aj) ∈ E iff
the execution of activity Ai must precede the activity Aj .

R is a set of unary renewable resources.

L is a set of skills.

mr,l is a matrix of Booleans, with mi,j being true iff resource Ri masters skill Lj .

bv,l is a matrix of naturals, where mk,l represents the number of resources mastering skill Ll

that activity Ai requires during its execution.

11.3. Model examples 79

11.3.3.1. Model

This section is a walkthrough explaining how this problem can be modelled with BUP and
solved using GOS step by step.

11.3.3.1.1. Viewpoint The first step consists in defining all the necessary parameters and
variables in the viewpoint block:

Listing 11.4: MSPSP model: parameters

1 viewpoint:
2 param int UB;
3 param int nActivities;
4 param int nResources;
5 param int nSkills;
6 param int duration[nActivities+2];
7 param int demand[nActivities+2][nSkills];
8 param bool successors[nActivities+2][nActivities+2];
9 param bool mastersSkill[nResources][nSkills];
All the params will be filled with the data in the input file. We define a UB (upper bound) to
set the allowed given time to schedule the whole project. The rest of the parameters are the
number of activities, resources and skills, the duration of the activities, the skills required for
each activity, the activities precedences (which activities must be finished before the start of
other activities), and the skills that the available resources masters.

Listing 11.5: MSPSP model: variables

1 var hasStarted[nActivities+2][UB+1];
2 var isRunning[nActivities+2][UB];
3 var usesResourceForSkill[nActivities+2][nResources][nSkills];
4 var usesResourceAtTime[nActivities+2][nResources][UB];
5 var usesResource[nActivities+2][nResources];
vars does not have value when they are declared and they are used to define the model in
which the constraints will be applied.

• hasStarted: hasStarted[i][j] will be true if the activity i has started before j unit
time.

• isRunning: isRunning[i][j] will be true if the activity i is running in the j unit
time.

• usesResourceForSkill: usesResourceForSkill[i][j][k] will be true if activity i
uses the resource j for the skill k.

• usesResourceAtTime: usesResourceAtTime[i][j][k] will be true if activity i uses
resource j in k unit time.

• usesResource: usesResource[i][j] will be true if activity i uses the resource j.

80 Results

11.3.3.1.2. Constraints The constraints-block always start with constraints: The con-
straints to modelate MSPSP are:

• Start dummy1 activity starts at time 0, and is never running (due to duration 0).

1 //Dummy start activity
2 forall(t in 0..UB-1){
3 hasStarted[0][t];
4 !isRunning[0][t];
5 };
6 hasStarted[0][UB];

• End activity has started at UB, and is never running.

1 //Dummy end activity
2 forall(t in 0..UB-1){
3 !hasStarted[nActivities+1][t];
4 !isRunning[nActivities+1][t];
5 };
6 hasStarted[nActivities+1][UB];

• Dummy activities do not consume resources.

1 forall(r in 0..nResources-1){
2 !usesResource[0][r];
3 !usesResource[nActivities+1][r];
4 forall(s in 0..nSkills-1){
5 !usesResourceForSkill[0][r][s];
6 !usesResourceForSkill[nActivities+1][r][s];
7 };
8 forall(t in 0..UB-1){
9 !usesResourceAtTime[0][r][t];

10 !usesResourceAtTime[nActivities+1][r][t];
11 };
12 };

• When an activity starts, it must be started until the end.

1 //Order encoding
2 forall(i in 1..nActivities, t in 0..UB-1){
3 hasStarted[i][t] -> hasStarted[i][t+1];
4 };

• An activity i is running for a time period of duration[i] after it has started, and is
not running at other times.

1The model has two dummy activities that do not consume resources and skills to indicate the start and
the end.

11.3. Model examples 81

1 //Channelling between hasStarted and isRunning
2 forall(i in 1..nActivities, t in 0..UB-1){
3 if(t >= duration[i]){
4 isRunning[i][t] <-> hasStarted[i][t] & !hasStarted[i][t-duration[i←↩

↪→]];
5 }
6 else{
7 isRunning[i][t] <-> hasStarted[i][t];
8 };
9 };

• usesResource[i][r] is true if and only if activity i uses resource r for some skill s.

1 //Chanelling between usesResource and usesResourceForSkill
2 forall(i in 1..nActivities, r in 0..nResources-1){
3 usesResource[i][r] <-> ||(usesResourceForSkill[i][r]);
4 };

• usesResourceAtTime[i][r][t] is true if and only if activity i uses resource r and is
running at time t

1 //Chanelling between usesResource, isRunning and usesResourceAtTime
2 forall(i in 1..nActivities, r in 0..nResources-1, t in 0..UB-1){
3 usesResourceAtTime[i][r][t] <-> usesResource[i][r] & isRunning[i][t];
4 };

• The activities must respect the precedences (other activities must have started to start
the current activity).

1 //Precedences
2 forall(i in 0..nActivities, j in 1..nActivities+1){
3 if(successors[i][j]){
4 forall(t in 0..UB-duration[i]-1){
5 !hasStarted[i][t] -> !hasStarted[j][t+duration[i]+1];
6 };
7 };
8 };

• Resources can only perform skills that they master.

1 forall(i in 1..nActivities, s in 0..nSkills-1, r in 0..nResources-1){
2 if(not mastersSkill[r][s]){
3 !usesResourceForSkill[i][r][s];
4 };
5 };

• Each activity uses as many resources for a skill as necessary.

1 // for a skill as required
2 forall(i in 1..nActivities, s in 0..nSkills-1){
3 EK(usesResourceForSkill[i][_][s],demand[i][s]);
4 };

82 Results

• Each resource supplies at most one skill to to each activity.

1 forall(i in 1..nActivities, r in 0..nResources-1){
2 AMO(usesResourceForSkill[i][r]);
3 };

• Each resource works at most at one activity at a time.

1 forall(r in 0..nResources-1, t in 0..UB-1){
2 AMO(usesResourceAtTime[_][r][t]);
3 };

11.3.3.1.3. Output The output-block is optional and it is used to define a custom output
to the model solution. It always starts with the token output:.

1 output:
2 "Schedule: \n";
3 ["Activity " ++ i ++ " starts at time " ++ t ++ "\n" | i in 1..nActivities,←↩

↪→ t in 0..UB where (t == 0 ? true : (not hasStarted[i][t-1])) and ←↩
↪→ hasStarted[i][t]];

4 ["Activity " ++ i ++ " uses Resource " ++ r ++ " for Skill " ++ s ++ "\n"|
5 i in 1..nActivities, r in 0..nResources-1, s in 0..nSkills-1 where ←↩

↪→ usesResourceForSkill[i][r][s]];
In this case, the line 2 is the output title. BUP allows adding newlines and tabs using \n

and \t respectively.
In the line 3, we generate a comprehension list iterating all activities and times to get the

time at which each activity starts.
Line 3 is similar to line 4, but in this case iterating the resources used to supply the

necessary skills to the activities.

11.3.3.2. Instance example

This section shows a concrete instance of the problem having:

• 20 activities

• 4 resources

• 10 skills

The way of express all of these data in GOS is by creating an input JSON file giving value
to the parameters declared in the BUP model file:

1 {
2 (...)
3 "nActivities" : 20,
4 "nResources" : 4,
5 "nSkills" : 10,
6 (...)
7 }

11.3. Model examples 83

The table 11.1 describes the duration of each activity and the necessary skills to do it.
It also includes two dummy activities (0 and 21) to indicate the start activity and the end
activity. For example, the activity 1 has a duration of 4 time units and requires the skills
4 and 6 to be done. And the activity 13 has a duration of 2 time units and requieres two
resources mastering skill 4.

Skills
Activity Duration 1 2 3 4 5 6 7 8 9 10

0 (dummy) 0
1 4 1 1
2 2 1
3 1 1 1
4 2 1 1
5 3 1 1
6 3 1
7 2 1 1
8 4 1 1
9 1 1
10 2 1
11 1 1
12 1 2 1
13 2 2
14 1 1
15 2 1
16 2 1 1
17 4 2
18 1 1 1
19 3 1 1
20 2 1 1

21 (dummy) 0

Table 11.1: MSPSP instance example: Requiered skills for each activity.

1 {
2 (...)
3 "duration" : [0,4,2,1,2,3,3,2,4,1,2,1,1,2,1,2,2,4,1,3,2,0],
4 "demand" : [
5 [0,0,0,0,0,0,0,0,0,0],
6 [0,0,0,1,0,1,0,0,0,0],
7 [0,0,0,0,0,1,0,0,0,0],
8 [0,0,0,0,0,0,0,1,0,1],
9 [0,0,1,0,0,0,0,1,0,0],

10 [0,0,1,0,1,0,0,0,0,0],
11 [0,1,0,0,0,0,0,0,0,0],

84 Results

12 [0,0,0,0,0,0,0,0,1,1],
13 [0,0,0,0,1,0,0,0,0,1],
14 [0,0,0,0,0,0,1,0,0,0],
15 [1,0,0,0,0,0,0,0,0,0],
16 [0,0,0,1,0,0,0,0,0,0],
17 [0,0,0,0,2,0,0,0,1,0],
18 [0,0,0,0,0,2,0,0,0,0],
19 [0,0,0,0,0,0,0,0,0,1],
20 [0,0,0,0,0,0,0,0,0,1],
21 [0,0,1,0,0,0,0,1,0,0],
22 [0,0,0,0,0,2,0,0,0,0],
23 [0,1,0,0,0,0,1,0,0,0],
24 [0,0,0,1,0,0,0,0,0,1],
25 [0,0,1,0,0,0,0,1,0,0],
26 [0,0,0,0,0,0,0,0,0,0]],
27 (...)
28 }

The table 11.2 shows the activities that can not start until a predecesor activity ends.
For example, activities 4, 5 and 6 could not start until the end of activity 1. In other way,
after finishing activity 1, activities 4, 5 and 6 could start.

1 {
2 (...)
3 "successors" : [
4 [0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
5 [0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
6 [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0],
7 [0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0],
8 [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0],
9 [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

10 [0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0],
11 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0],
12 [0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0,0],
13 [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0],
14 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0],
15 [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],
16 [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0],
17 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0],
18 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0],
19 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0],
20 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0],
21 [0,1,0],
22 [0,1],
23 [0,1],
24 [0,1],
25 [0,0]],
26 (...)
27 }

11.3. Model examples 85

Activity successors
Activity 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0 (dummy)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

21 (dummy)

Table 11.2: MSPSP instance example: Activity successors

The table 11.3 shows the skills mastered for each resource. For example, the resource 1
masters the skills 3, 5, 6, 9 and 10. The resource 1 could be used to supply one unit of the
skills it masters to one activity.

Skills
Resources 1 2 3 4 5 6 7 8 9 10

1
2
3
4

Table 11.3: MSPSP instance example: Skills mastered for each resource

1 {
2 (...)
3 "mastersSkill" : [
4 [0,0,1,0,1,1,0,0,1,1],
5 [0,1,0,0,0,1,0,1,1,1],
6 [1,0,1,0,0,0,1,1,1,0],
7 [0,1,0,1,1,0,0,1,0,1]
8]
9 }

After defining the input JSON file and the BUP model file you can run the GOS compiler

86 Results

to obtain the model in the custom output format (defined in the model file).

1 Schedule:
2

3 Activity 1 starts at time 0
4 Activity 2 starts at time 8
5 Activity 3 starts at time 5
6 Activity 4 starts at time 7
7 Activity 5 starts at time 11
8 Activity 6 starts at time 0
9 Activity 7 starts at time 17

10 Activity 8 starts at time 4
11 Activity 9 starts at time 0
12 Activity 10 starts at time 9
13 Activity 11 starts at time 11
14 Activity 12 starts at time 10
15 Activity 13 starts at time 14
16 Activity 14 starts at time 12
17 Activity 15 starts at time 11
18 Activity 16 starts at time 14
19 Activity 17 starts at time 17
20 Activity 18 starts at time 20
21 Activity 19 starts at time 21
22 Activity 20 starts at time 22
23

24 Activity 1 uses Resource 1 for Skill 6
25 Activity 1 uses Resource 4 for Skill 4
26 Activity 2 uses Resource 2 for Skill 6
27 Activity 3 uses Resource 1 for Skill 10
28 Activity 3 uses Resource 3 for Skill 8
29 Activity 4 uses Resource 1 for Skill 3
30 Activity 4 uses Resource 3 for Skill 8
31 Activity 5 uses Resource 1 for Skill 5
32 Activity 5 uses Resource 3 for Skill 3
33 Activity 6 uses Resource 2 for Skill 2
34 Activity 7 uses Resource 3 for Skill 9
35 Activity 7 uses Resource 4 for Skill 10
36 Activity 8 uses Resource 2 for Skill 10
37 Activity 8 uses Resource 4 for Skill 5
38 Activity 9 uses Resource 3 for Skill 7
39 Activity 10 uses Resource 3 for Skill 1
40 Activity 11 uses Resource 4 for Skill 4
41 Activity 12 uses Resource 1 for Skill 5
42 Activity 12 uses Resource 2 for Skill 9
43 Activity 12 uses Resource 4 for Skill 5
44 Activity 13 uses Resource 1 for Skill 6
45 Activity 13 uses Resource 2 for Skill 6
46 Activity 14 uses Resource 4 for Skill 10
47 Activity 15 uses Resource 2 for Skill 10
48 Activity 16 uses Resource 3 for Skill 3
49 Activity 16 uses Resource 4 for Skill 8

11.3. Model examples 87

50 Activity 17 uses Resource 1 for Skill 6
51 Activity 17 uses Resource 2 for Skill 6
52 Activity 18 uses Resource 3 for Skill 7
53 Activity 18 uses Resource 4 for Skill 2
54 Activity 19 uses Resource 2 for Skill 10
55 Activity 19 uses Resource 4 for Skill 4
56 Activity 20 uses Resource 1 for Skill 3
57 Activity 20 uses Resource 3 for Skill 8

Start time
Activity Duration 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0 (dummy) 0

1 4 r1 s6
r4 s4

r1 s6
r4 s4

r1 s6
r4 s4

r1 s4
r4 s4

2 2 r2 s6 r2 s6

3 1 r1 s10
r3 s8

4 2 r1 s3
r3 s8

r1 s3
r3 s8

5 3 r1 s5
r3 s3

r1 s5
r3 s3

r1 s5
r3 s3

6 3 r2 s2 r2 s2 r2 s2

7 2 r3 s9
r4 s10

r3 s9
r4 s10

8 4 r2 s10
r4 s5

r2 s10
r4 s5

r2 s10
r4 s5

r2 s10
r4 s5

9 1 r3 s7
10 2 r3 s1 r3 s1
11 1 r4 s4

12 1
r1 s5
r2 s9
r4 s5

13 2 r1 s6
r2 s6

r1 s6
r2 s6

14 1 r4 s10
15 2 r2 s10 r2 s10

16 2 r3 s3
r4 s8

r3 s3
r4 s8

17 4 r1 s6
r2 s6

r1 s6
r2 s6

r1 s6
r2 s6

r1 s6
r2 s6

18 1 r3 s7
r4 s2

19 3 r2 s10
r4 s4

r2 s10
r4 s4

r2 s10
r4 s4

20 2 r1 s3
r3 s8

r1 s3
r3 s8

21 (dummy) 0

Table 11.4: MSPSP instance example: result chart

The table 11.4 shows the result that the solver resolves. The model result satisfies the
constraints:

• Resources are not repeated in the same time slot.

• Activities has the resources that masters the necessary skills.

• The activity precedences are respected.

12. Conclusions

The objective of this project was define a declarative language for modelling Constraint Sat-
isfaction Problems (CSP) and solve them by generating an encoding to Boolean Satisfiability
(SAT). This has been accomplished by defining the language BUP and implementing its
compiler GOS.

BUP allows to model any CSP to SAT using simple and user-friendly declarative expres-
sions and takes a step forward on the path of defining object-oriented declarative languages,
by allowing to create structs, called entities.

Although the default SAT-solver is MiniSAT (Eén & Sörensson, 2004), the compiler uses
an API that makes very easy to add new solvers.

Comparing with other constraint modelling languages, we could determine that Minizinc
and ESSENCE’ are the ones that most resemble BUP. These are Constraint Programming
(CP) modelling languages that allow finite domain variables (not only boolean). The Miniz-
inc compiler generates an intermediate code, FlatZinc, that could be solved with different
backend solvers. In the contrary, BUP is a CSP modelling language over boolean variables,
fully oriented to SAT.

This project has been achieved thanks to the knowledge acquired in the Computer Engi-
neering degree, specially in the last year, in the Computing branch:

Declarative Programming: Applications This subject gave me the knowledge about declar-
ative programming as well as a broad vision of how to model and solve CSPs using SAT.
I also learned how to model using Minizinc(Stuckey et al., 2018), a tool for modeling
CSPs as Constraint Programming (CP).

Compilers This subject gave me knowledge about free-context grammars, regular expressions
and how a compiler works and which analysis does in each phase.

From initial planning, has been discarding the option that the compiler automatically gen-
erates the mathematical documentation in LATEX format. Consequently, it has been added
as a point for future work. This point required a lot of work and we decided to prioritize
the correct functioning of the compiler and the proper specification of the language. On the
other hand, a new functionality not initially planned has been added: the online version of
the compiler.

The table 12.1 shows the final project schedule considering deviations from initial planning
(see the initial planning on 4.1).

89

90 Conclusions

2019 2020
December January February

Tasks / Weeks 01 02 03 04 05 06 07 08 09 10 11 12
Project definition
Study of LRT
Input format definition
Grammar definition
Symbol Table
Semantic behaviour
Solver integration
Error handling
Output
Online version

2020
March April May

Tasks / Weeks 13 14 15 16 17 18 19 20 21 22 23 24
Project definition
Study of LRT
Input format definition
Grammar definition
Symbol Table
Semantic behaviour
Solver integration
Error handling
Output
Online version

Table 12.1: Gantt chart: Project final schedule

GOS compiler could be used cloning the GitHub repository and following the steps described
in the user manual (see Appendix A) or visiting the fully online version.

csp2sat.online

13. Future Work

This chapter explains how this project could be extended in a future giving ideas appeared
during the implementation of the language.

13.1. Optimization

Although the name of the tool is GOS (Girona Optimization System), in the first iteration
(the scope of this project) no support for optimization has been considered. Even so, the API
that GOS uses, supports optimization, so it will be one of the first tasks to be done after the
completion of this project.
The API supports Weighted Partial MaxSAT that is an extension of SAT where, apart

from hard clauses (clauses that must be always satisfied), soft clauses can also be defined.
These soft clause can be violated, each at its own associated cost. The goal is to satisfy all
the hard clauses, and minimize the total cost of the unsatisfied soft clauses.
To implement this, it is only necessary to add support to BUP to define soft clauses with an
associated cost.

13.2. Satisfiability Modulo Theories (SMT)

SAT uses propositional logic as the formalization language. That involves a high degree of
efficiency but a lower expressiveness. In the other hand, SMT uses propositional logic and
domain-specific reasoning that improves the expressivity.

SMT allows that the literals of the clauses are not just Boolean variables (or their nega-
tion), but also predicates of other theories.
Currently, the API only supports Linear Integer Arithmetic (LIA) theory, i.e. linear equations
and inequalities with integer variables. For example, a clause could look like 2x1+3x2 ≤ 4∨b,
where x1 and x2 are integer variables, and b is a Boolean variable. BUP language could be
easily extended to support integer variables and LIA expressions.
Regarding optimization with SMT, the API already supports optimization of LIA expres-
sions such as x+ 2y − z, where x, y, z, are integer variables.

There are more SMT theories apart from LIA that, to be included to BUP, would first
have to be supported by the API, such as bitvectors, uninterpreted functions with equality,
etc.

91

92 Future Work

13.3. Object-oriented language

As already discussed in other sections, BUP lays the foundation stone for creating object-
oriented declarative modelling languages by allowing define a kind of tuples called entities to
define parameters and variables.
A further step in this path would be to be able to add local constraints on the variables of

an entity, making an entity have restrictions associated. So, in the moment of declaration of
the entity in the model you not only would be declaring new variables and parameters but
also some restrictions to the model.

The case of the sudoku, for example, you could define an entity called ”row” that by it-
self had the restrictions of not repeating any number.

The possibilities are endless and there are no precedents in the languages that we currently
have. Implementing it in this project was ruled out because the research task was very large
and uncertain.

13.4. Pseudo-boolean constraints

Another interesting future work is to support pseudo-boolean constraints. Pseudo-boolean
constraints are expressed as:

a1x1 + a2x2 + · · ·+ anxn#K

where # ∈ {<,≤,=,≥, >} and {a1, a2, . . . , an} and K are integer values and {x1, x2, . . . , xn}
are boolean variables.

The L∧P API used to generate the SAT encoding already allows pseudo-booleans constraints
and it would not imply a lot of work for GOS to support this feature. The API allows the
inclusion of pseudo-boolean constraints given a K and two lists: a list of coefficients and a
list of variables.
Thus, GOS could support pseudo-boolens in two ways:

• As a predicate: PB(<listOfSortedCoefs>, <listOfSortedVariables>, K)

• As an expression: a1x1 + a2x2 + · · ·+ anxn#K

13.5. Functions

Some models have complex constraints that are repeated in different parts of the model. Hav-
ing the possibility of defining functions (predicates) that given certain input adds constraints
to the model, would simplify many models.

An example of that could be a custom implementation of a cardinality constraint, by
defining and using it in the model.

13.6. Different implementations of cardinality constraints 93

13.6. Different implementations of cardinality constraints
The API used to generate the SAT encoding allows different implementations of some pre-
defined constraints. In the end of this project, GOS use the default encodings to translate
all the cardinality constraints.
A future work of this project could be add support to being able to select the wanted

implementation when you are creating the model. It is as simple as add a new optional
parameter or annotation to the constraint call allowing the user specify the implementation
wanted.

13.7. Mathematical model documentation with LATEX
This task was initially in the scope of the project, but it was ruled out because the correct
functioning of the language and the compiler was prioritized.
It consists on adding an option to the compiler to generate the mathematical documentation

of the model given a model file. This could be done by creating a new ANTLR visitor that
explores the already generated parse-tree and generates LATEX code when visiting viewpoint
and constraint block nodes.
Furthermore, it could be added a new type of comments, for example, starting with @ like

JavaDoc does, that would be ignored by the rest of visitors and would allow the user add
more information in the generated documentation file.

Bibliography
Add Gritman, Anthony Ha, Tony Quach, D. W. (2017). Conflict Driven Clause Learning
(Tech. Rep.).

Ansótegui, C., Bofill, M., Palahí, M., Suy, J., & Villaret, M. (2013, nov). Solving weighted
CSPs with meta-constraints by reformulation into satisfiability modulo theories. Con-
straints, 18(2), 236–268. doi: 10.1007/s10601-012-9131-1

Bessière, C. (2007). Principles and practice of constraint programming–CP 2007: 13th inter-
national conference, CP 2007, Providence, RI, USA, September 23-27, 2007 proceedings.
Lecture Notes in Computer Science(4741), xv, 887. doi: 10.1007/978-3-540-74970-7

Bofill, M., Palahí, M., Suy, J., & Villaret, M. (2012, jul). Solving constraint satisfaction
problems with SAT modulo theories. Constraints, 17(3), 273–303. doi: 10.1007/s10601
-012-9123-1

Büning, H. K., & Schmitgen, S. (1986). Prolog. Wiesbaden: Vieweg+Teubner Verlag.
Retrieved from http://link.springer.com/10.1007/978-3-322-92747-7 doi: 10.1007/
978-3-322-92747-7

Coll, J. (2019). Scheduling Through Logic-Based Tools (Doctoral dissertation, Uni-
versitat de Girona). Retrieved from http://hdl.handle.net/10803/667963http://
creativecommons.org/licenses/by/4.0/deed.ca

Crockford, D. (2006). The application/json media type for javascript object notation (json).
RFC 4627 .

Eén, N., & Sörensson, N. (2004). An extensible SAT-solver. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2919, 502–518. doi: 10.1007/978-3-540-24605-3_37

Federico, T. (2019). Why you should not use (f)lex, yacc and bison - Federico Tomassetti -
Software Architect.

Frisch, A. M., Harvey, W., Jefferson, C., Martínez-Hernández, B., & Miguel, I. (2008).
Essence: A constraint language for specifying combinatorial problems. Constraints, 13(3),
268–306.

Gherardi, L., Brugali, D., & Comotti, D. (2012). A java vs. c++ performance evaluation:
a 3d modeling benchmark. In International conference on simulation, modeling, and pro-
gramming for autonomous robots (pp. 161–172).

Kolisch, R., & Sprecher, A. (1997). PSPLIB - A Project Scheduling Problem Library.
European Journal of Operational Research, 96(1), 205-216.

95

http://link.springer.com/10.1007/978-3-322-92747-7
http://hdl.handle.net/10803/667963http://creativecommons.org/licenses/by/4.0/deed.ca
http://hdl.handle.net/10803/667963http://creativecommons.org/licenses/by/4.0/deed.ca

96 Bibliography

Parr, T. (2010). Language Implementation Patterns: Techniques for Implementing Domain-
Specific Languages.

Parr, T. (2013). The definitive antlr 4 reference. Pragmatic Bookshelf.

Procaccia, A. D. (2008). Mathematical Foundations of AI (Tech. Rep.).

Russell, S., & Norvig, P. (2010). Artificial Intelligence A Modern Approach Third Edition.
Prentice Hall. doi: 10.1017/S0269888900007724

Stephen A. Edwards. (2007). COMS W4115 Programming Languages and Translators. Re-
trieved from http://www1.cs.columbia.edu/{~}sedwards/classes/2007/w4115-fall/
index.html

Stuckey, P. J., Marrioo, K., & Tack, G. (2018). MiniZinc Handbook Release 2.2.1 (Tech.
Rep.).

Wikipedia. (2020a). Declarative programming — Wikipedia, the free encyclopedia.
http://en.wikipedia.org/w/index.php?title=Declarative%20programming&oldid=
960959661. ([Online; accessed 09-May-2020])

Wikipedia. (2020b). LL parser — Wikipedia, the free encyclopedia. http://en.wikipedia
.org/w/index.php?title=LL%20parser&oldid=956137467. ([Online; accessed 04-May-
2020])

Zhou, N. F., & Kjellerstrand, H. (2016). The picat-sat compiler. In Lecture notes in computer
science (including subseries lecture notes in artificial intelligence and lecture notes in
bioinformatics) (Vol. 9585, pp. 48–62). Springer Verlag. doi: 10.1007/978-3-319-28228-2_4

http://www1.cs.columbia.edu/{~}sedwards/classes/2007/w4115-fall/index.html
http://www1.cs.columbia.edu/{~}sedwards/classes/2007/w4115-fall/index.html
http://en.wikipedia.org/w/index.php?title=Declarative%20programming&oldid=960959661
http://en.wikipedia.org/w/index.php?title=Declarative%20programming&oldid=960959661
http://en.wikipedia.org/w/index.php?title=LL%20parser&oldid=956137467
http://en.wikipedia.org/w/index.php?title=LL%20parser&oldid=956137467

Acronyms

ANTLR Another Tool for Language Recognition.
CDCL Conflict-Driven Clause Learning.
CFG Context-Free Grammars.
CNF Conjunctive Normal Form.
CP Constraint Programming.
CSP Constraint Satisfaction Problems.
DPA Deterministic Pushdown Automation.
IID Iterative and Incremental Development.
LRT Language Recognition Tools.
REGEX Regular Expressions.
SAT Boolean Satisfiability.
SMT Satisfiability Modulo Theories.

97

A. Install and Run Instructions
There are two ways of using GOS:

Online version Click here and use GOS without installing anything.

Downloadable version There is a GitHub repository with the compiler binaries. Using
CMake is really simple to get the executable.

To get the compiler executable follow the following steps:
1. Clone the GOS GitHub repository

1 git clone https://github.com/roger21gm/GOS
2. Change current directory to the cloned repository

1 cd GOS
3. Create a directory to build the project

1 mkdir build
4. Change current directory to the created build directory

1 cd build
5. Run CMake to generate the makefile according to your OS and hardware

1 cmake ..
6. Finally run the makefile to generate the executable

1 make
Once make process ends, the executable GOS is generated inside build directory. You
can use the compiler by adding two input files:
• Model file written in BUP (see 8.1)
• Parameters file written in JSON (see 8.2)

Having the current directory inside the build directory, to run the compiler and get a
solution only write:

1 ./gos <path_to_model_file> <path_to_model_file>

On the other hand, if you want to get the CNF formula in DIMACS format include the
option -pf=1 or --print-formula:

1 ./gos -pf=1 <path_to_model_file> <path_to_model_file>

99

csp2sat.online

B. JSON input grammar

1 /** Taken from "The Definitive ANTLR 4 Reference" by Terence Parr */
2

3 // Derived from http://json.org
4 grammar JSON;
5

6 json
7 : value
8 ;
9

10 obj
11 : '{' pair (',' pair)* '}'
12 | '{' '}'
13 ;
14

15 pair
16 : STRING ':' value
17 ;
18

19 arr
20 : '[' value (',' value)* ']'
21 | '[' ']'
22 ;
23

24 value
25 : STRING
26 | NUMBER
27 | obj
28 | arr
29 | 'true'
30 | 'false'
31 | 'null'
32 ;
33

34

35 STRING
36 : '"' (ESC | SAFECODEPOINT)* '"'
37 ;
38

39

40 fragment ESC
41 : '\\' (["\\/bfnrt] | UNICODE)
42 ;

101

102 JSON input grammar

43 fragment UNICODE
44 : 'u' HEX HEX HEX HEX
45 ;
46 fragment HEX
47 : [0-9a-fA-F]
48 ;
49 fragment SAFECODEPOINT
50 : ~ ["\\\u0000-\u001F]
51 ;
52

53

54 NUMBER
55 : '-'? INT ('.' [0-9] +)? EXP?
56 ;
57

58

59 fragment INT
60 : '0' | [1-9] [0-9]*
61 ;
62

63 // no leading zeros
64

65 fragment EXP
66 : [Ee] [+\-]? INT
67 ;
68

69 // \- since - means "range" inside [...]
70

71 WS
72 : [\t\n\r] + -> skip
73 ;

C. BUP grammar

1 grammar BUP;
2

3 WS
4 : [\t\n\r] + -> skip
5 ;
6

7 LINE_COMMENT : '//' ~[\r\n]* -> skip;
8

9 BLOCK_COMMENT : '/*' .*? '*/' -> skip;
10

11 // basic structure
12 TK_ENTITIES: 'entities';
13 TK_VIEWPOINT: 'viewpoint';
14 TK_CONSTRAINTS: 'constraints';
15 TK_OUTPUT: 'output';
16

17 TK_COLON: ':';
18 TK_SEMICOLON: ';';
19

20 TK_UNDERSCORE: '_';
21

22 TK_ASSIGN: ':=';
23

24 TK_PARAM: 'param';
25 TK_VAR: 'var';
26 TK_AUX: 'aux';
27

28 TK_CONSTRAINT: 'constraint';
29

30 TK_INT_VALUE: ('1'..'9')('0'..'9')* | '0';
31 TK_BOOLEAN_VALUE: 'true' | 'false';
32

33 TK_BASE_TYPE_INT : 'int';
34 TK_BASE_TYPE_BOOL : 'bool';
35

36 TK_IN: 'in';
37 TK_RANGE_DOTS: '..';
38

39 TK_IF: 'if';
40 TK_ELSEIF: 'else if';
41 TK_ELSE: 'else';
42

103

104 BUP grammar

43 TK_LPAREN: '(';
44 TK_RPAREN: ')';
45

46 TK_LCLAUDATOR: '[';
47 TK_RCLAUDATOR: ']';
48

49 TK_LBRACKET: '{';
50 TK_RBRACKET: '}';
51

52

53 TK_COMMA: ',';
54 TK_DOT: '.';
55

56 TK_WHERE: 'where';
57

58 TK_FORALL: 'forall';
59

60

61 //EXPRESSIONS
62 TK_OP_AGG_SUM: 'sum';
63 TK_OP_AGG_LENGTH: 'length';
64 TK_OP_AGG_MAX: 'max';
65 TK_OP_AGG_MIN: 'min';
66

67 TK_OP_LOGIC_NOT: 'not';
68 TK_OP_LOGIC_AND: 'and';
69 TK_OP_LOGIC_OR: 'or';
70

71 TK_OP_ARIT_SUM: '+';
72 TK_OP_ARIT_DIFF: '-';
73 TK_OP_ARIT_MULT: '*';
74 TK_OP_ARIT_DIV: '/';
75 TK_OP_ARIT_MOD: '%';
76

77 TK_OP_REL_LT: '<';
78 TK_OP_REL_GT: '>';
79 TK_OP_REL_GE: '>=';
80 TK_OP_REL_LE: '<=';
81 TK_OP_REL_EQ: '==';
82 TK_OP_REL_NEQ: '!=';
83

84 TK_OP_IMPLIC_R: '->';
85 TK_OP_IMPLIC_L: '<-';
86 TK_OP_DOUBLE_IMPLIC: '<->';
87

88 TK_INTERROGANT: '?';
89

90 TK_CONSTRAINT_OR_PIPE: '|';
91 TK_CONSTRAINT_AND: '&';
92 TK_CONSTRAINT_NOT: '!';
93

105

94 TK_CONSTRAINT_AGG_EK : 'EK';
95 TK_CONSTRAINT_AGG_EO : 'EO';
96 TK_CONSTRAINT_AGG_ALK : 'ALK';
97 TK_CONSTRAINT_AGG_ALO : 'ALO';
98 TK_CONSTRAINT_AGG_AMK : 'AMK';
99 TK_CONSTRAINT_AGG_AMO : 'AMO';

100

101 TK_IDENT: (('a'..'z' | 'A'..'Z' | '_')('a'..'z' | 'A'..'Z' | '_' | '0'..'9')* ←↩
↪→);

102

103

104 //OUTPUT
105 fragment ESCAPED_QUOTE : '\\"';
106 TK_STRING : '"' (ESCAPED_QUOTE | ~('"'))*? '"';
107

108 TK_STRING_AGG_OP: '++';
109

110 // SINTÀCTIC
111 bup: entityDefinitionBlock? viewpointBlock constraintDefinitionBlock ←↩

↪→ outputBlock?;
112

113 definition: varDefinition | paramDefinition;
114

115 entityDefinitionBlock: TK_ENTITIES TK_COLON entityDefinition* ;
116 entityDefinition: name=TK_IDENT TK_LBRACKET definition* TK_RBRACKET ←↩

↪→ TK_SEMICOLON;
117

118 viewpointBlock: TK_VIEWPOINT TK_COLON definition*;
119

120 constraintDefinitionBlock: TK_CONSTRAINTS TK_COLON constraintDefinition*;
121

122 outputBlock: TK_OUTPUT TK_COLON (string TK_SEMICOLON)*;
123

124 varDefinition: TK_VAR type=TK_BASE_TYPE_BOOL? name=TK_IDENT arrayDefinition ←↩
↪→ TK_SEMICOLON;

125 paramDefinition: (
126 TK_PARAM type=(TK_BASE_TYPE_BOOL | TK_BASE_TYPE_INT)
127 | type=TK_IDENT
128) name=TK_IDENT arrayDefinition TK_SEMICOLON;
129

130 arrayDefinition: (TK_LCLAUDATOR arraySize=expr TK_RCLAUDATOR)*;
131

132

133 // EXPRESSIONS
134

135 expr:
136 exprListAgg #exprTop
137 | condition=exprAnd TK_INTERROGANT op1=expr TK_COLON op2=expr #exprTernary;
138

139 opAggregateExpr: TK_OP_AGG_LENGTH | TK_OP_AGG_MAX | TK_OP_AGG_MIN | ←↩
↪→ TK_OP_AGG_SUM;

106 BUP grammar

140 exprListAgg:
141 opAggregateExpr TK_LPAREN list TK_RPAREN #exprListAggregateOp
142 | exprAnd #exprAnd2;
143

144 exprAnd: exprOr (TK_OP_LOGIC_AND exprOr)*;
145 exprOr: exprEq (TK_OP_LOGIC_OR exprEq)*;
146

147 opEquality: TK_OP_REL_EQ | TK_OP_REL_NEQ;
148 exprEq: exprRel (opEquality exprRel)*;
149

150 opRelational: TK_OP_REL_LT | TK_OP_REL_GT | TK_OP_REL_GE | TK_OP_REL_LE;
151 exprRel: exprSumDiff (opRelational exprSumDiff)*;
152

153 opSumDiff : TK_OP_ARIT_SUM | TK_OP_ARIT_DIFF;
154 exprSumDiff: exprMulDivMod (opSumDiff exprMulDivMod)*;
155

156 opMulDivMod: TK_OP_ARIT_MULT | TK_OP_ARIT_DIV | TK_OP_ARIT_MOD;
157 exprMulDivMod: exprNot (opMulDivMod exprNot)*;
158

159 exprNot: op=TK_OP_LOGIC_NOT? expr_base;
160

161 expr_base: valueBaseType | TK_LPAREN expr TK_RPAREN | varAccess;
162

163 varAccess: id=TK_IDENT varAccessObjectOrArray*;
164

165 varAccessObjectOrArray:
166 TK_DOT attr=TK_IDENT
167 | TK_LCLAUDATOR index=expr TK_RCLAUDATOR
168 | TK_LCLAUDATOR underscore=TK_UNDERSCORE TK_RCLAUDATOR;
169

170 valueBaseType: integer=TK_INT_VALUE | boolean=TK_BOOLEAN_VALUE;
171

172

173 // CONSTRAINTS
174

175 constraintDefinition: (forall | ifThenElse | constraint) TK_SEMICOLON;
176

177 auxiliarListAssignation: TK_IDENT TK_IN list;
178

179 localConstraintDefinitionBlock: constraintDefinition*;
180

181 forall: TK_FORALL TK_LPAREN auxiliarListAssignation (TK_COMMA ←↩
↪→ auxiliarListAssignation)* TK_RPAREN TK_LBRACKET ←↩
↪→ localConstraintDefinitionBlock TK_RBRACKET;

182

183 ifThenElse:
184 TK_IF TK_LPAREN expr TK_RPAREN TK_LBRACKET localConstraintDefinitionBlock ←↩

↪→ TK_RBRACKET
185 (TK_ELSEIF TK_LPAREN expr TK_RPAREN TK_LBRACKET ←↩

↪→ localConstraintDefinitionBlock TK_RBRACKET)*
186 (TK_ELSE TK_LBRACKET localConstraintDefinitionBlock TK_RBRACKET)?;

107

187

188 list: min=expr TK_RANGE_DOTS max=expr #rangList
189 | TK_LCLAUDATOR listResultExpr TK_CONSTRAINT_OR_PIPE ←↩

↪→ auxiliarListAssignation (TK_COMMA auxiliarListAssignation)* (TK_WHERE ←↩
↪→ condExpr=expr)? TK_RCLAUDATOR #comprehensionList

190 | TK_LCLAUDATOR listResultExpr (TK_COMMA listResultExpr)* TK_RCLAUDATOR #←↩
↪→ explicitList

191 | varAccess #varAccessList;
192

193

194 listResultExpr:
195 varAcc=varAccess
196 | resExpr=expr
197 | constraint_expression
198 | string;
199

200 constraint: constraint_expression | constraint_aggreggate_op;
201

202 constraint_expression: constraint_double_implication;
203

204 constraint_double_implication: constraint_implication (TK_OP_DOUBLE_IMPLIC ←↩
↪→ constraint_implication)*;

205

206

207 implication_operator: (TK_OP_IMPLIC_L | TK_OP_IMPLIC_R);
208 constraint_implication: constraint_or (implication_operator constraint_or)*;
209

210

211 constraint_or: constraint_or_2 (TK_CONSTRAINT_OR_PIPE constraint_or_2)* #←↩
↪→ cOrExpression;

212

213 constraint_or_2:
214 TK_CONSTRAINT_OR_PIPE TK_CONSTRAINT_OR_PIPE TK_LPAREN list TK_RPAREN #←↩

↪→ cOrList
215 | constraint_and #cAnd;
216

217

218 constraint_and: constraint_and_2 (TK_CONSTRAINT_AND constraint_and_2)* #←↩
↪→ cAndExpression;

219

220 constraint_and_2:
221 TK_CONSTRAINT_AND TK_CONSTRAINT_AND TK_LPAREN list TK_RPAREN #cAndList
222 | constraint_literal #cLit;
223

224 constraint_literal: TK_CONSTRAINT_NOT? constraint_base;
225

226 constraint_base:
227 varAccess
228 | TK_BOOLEAN_VALUE
229 | TK_LPAREN constraint_expression TK_RPAREN;
230

108 BUP grammar

231 aggregate_op:
232 TK_CONSTRAINT_AGG_EK
233 | TK_CONSTRAINT_AGG_EO
234 | TK_CONSTRAINT_AGG_AMK
235 | TK_CONSTRAINT_AGG_AMO
236 | TK_CONSTRAINT_AGG_ALK
237 | TK_CONSTRAINT_AGG_ALO;
238

239 constraint_aggreggate_op: aggregate_op TK_LPAREN list (TK_COMMA param=expr)? ←↩
↪→ TK_RPAREN;

240

241

242 //OUTPUT
243 string:
244 string concatString
245 | TK_LPAREN string TK_RPAREN
246 | stringTernary
247 | varAccess
248 | expr
249 | list
250 | TK_STRING;
251

252 stringTernary:
253 condition=exprAnd TK_INTERROGANT op1=string TK_COLON op2=string;
254

255 concatString:
256 TK_STRING_AGG_OP string concatString?;

	Introduction
	Motivations
	Purpose
	Objectives
	Contextual description

	Feasibility Study
	Technological viability
	Economical viability

	Methodology
	Project planning
	Working plan
	Schedule

	Work framework and preliminary concepts
	regex
	cfg
	Language Recognition
	Error recovery strategies

	csp
	sat
	cnf

	sat solving
	Declarative programming

	System requirements
	Functional requirements
	Nonfunctional requirements
	Hardware requirements
	Software requirements

	Studies and decisions
	antlr
	Lexical Analysis
	Syntactic Analysis
	Semantic Analysis
	Listeners vs Visitors
	Target: C++ vs Java

	ANTLR vs other lrt

	JSON as input format
	Allow structs as data type
	MiniSAT as sat solver
	Use of CMake to build the project

	BUP: Language Specification
	Model file
	Entity definition block
	Viewpoint block
	Variable declaration
	Parameter declaration
	Entity declaration
	Array declaration

	Constraints block
	Output block
	Data
	Basic types
	Defined types: Entities
	n-dimentional arrays

	Identifiers
	Comments
	Expressions
	Data access
	Identifier access
	Array index access
	Matrix row access
	Entity attribute access

	Lists
	List Aggregation Operators
	length
	sum
	max
	min

	Constraints
	Propositional Formula
	Variable
	Negation
	And
	Or
	Implication
	Double implication

	Cardinality constraints
	forall structure
	if structure

	Strings

	Parameters file

	Analysis and design of the system
	Main flow
	Input data read
	Entity definition
	Variable declaration
	Parameter declaration and assignation
	Formula generation
	Print cnf formula: DIMACS format
	Solver application
	Output
	Default output
	Custom output

	Symbol Table
	Scope
	GlobalScope
	LocalScope

	Symbol
	Type
	ValueSymbol
	VariableSymbol
	AssignableSymbol

	ScopedSymbol
	ArraySymbol
	StructSymbol

	Visitors
	GOSInputVisitor
	GOSBaseVisitor
	GOSCustomBaseVisitor
	GOSTypeVarDefinitionVisitor
	GOSConstraintsVisitor
	GOSOutputVisitor

	Error handling
	Lexical Errors
	Syntactic Errors
	Semantic Errors

	SMT api
	SMTFormula
	GOSEncoding
	Controller

	GOS compiler arguments
	print-formula flag
	SolvingArguments

	Deploying
	Downloadable compiler
	Online compiler

	Results
	BUP programming language
	GOS compiler
	Model examples
	Sudoku
	Nonogram
	Multi-Skill Project Scheduling Problem (MSPSP)
	Model
	Viewpoint
	Constraints
	Output

	Instance example

	Conclusions
	Future Work
	Optimization
	smt
	Object-oriented language
	Pseudo-boolean constraints
	Functions
	Different implementations of cardinality constraints
	Mathematical model documentation with LaTeX

	Bibliography
	Acronyms
	Install and Run Instructions
	JSON input grammar
	BUP grammar

