
Projecte fi de grau

Estudi: Grau en Enginyeria Informàtica

Títol: Detecting colorectal polyps in colonoscopy:
What can deep learning do?

Document: Memòria

Alumne: Laura Galera Alfaro

Tutor: Xavier Lladó Bardera
Departament: Arquitectura i Tecnologia de Computadors
Àrea: Visió per computador i robòtica

Tutor extern: Pierre Baldi
Departament: Institute for Genomics and Bioinformatics
Àrea: Deep Learning

Convocatòria (mes/any): Juny 2022

Bachelor’s thesis

Detecting colorectal polyps in
colonoscopy: What can deep

learning do?

Laura Galera Alfaro
June 2022

Bachelor’s degree in Computer Engineering

Advisors:

Dr. Pierre Baldi
University of California, Irvine

Institute for Genomics and Bioinformatics

Dr. Xavier Lladó Bardera
Universitat de Girona

Departament d’ Arquitectura i Tecnologia de Computadors

Amin Tavakoli, MSc.
University of California, Irvine

Institute for Genomics and Bioinformatics

Acknowledgements

I would like to express my most sincere gratitude to Dr. Pete Balsells and
Dr. Roger Rangel for awarding me a Balsells Mobility Fellowship to conduct
my bachelor’s thesis at the University of California, Irvine. I would have never
imagined myself meeting and learning from so many bright minds.

I am deeply grateful to Dr. Pierre Baldi for welcoming me at the Institute
for Genomics and Bioinformatics and for his invaluable guidance. His unas-
suming approach to research and science is a source of inspiration. I also want
to express my warmest gratitude to Amin Tavakoli, for all of the kind words
and assistance he has provided. This thesis would not have been possible with-
out them.

I would like to thank my advisor Dr. Xavier Lladó for monitoring my progress
and for his valuable advice. It has been a pleasure to work under his guidance.

My sincere thanks go to the new friends I have made in California who have
helped me to strike a balance with life outside the lab. I will never forget the
Spanish dinners, playing flamenco songs, or the gatherings at the beach with
the students of IGB.

Lastly, my parents deserve endless gratitude for their unconditional, unequiv-
ocal, and loving support. My accomplishments and success are because they
believed in me. Deepest thanks to my brothers, who keep me grounded, re-
mind me of what is important in life, and always take care of me. I also want
to thank Connie and Bob for their generous hospitality.

I hope, from the bottom of my heart, that God brings joy to all them.

Contents

List of abbreviations v

List of Figures vi

List of Tables ix

1 Introduction 2
1.1 Problem statement . 2
1.2 Project objectives . 4
1.3 Statement of originality . 5
1.4 Personal motivation . 5
1.5 Outline . 5

2 Feasibility study 7
2.1 Technical study . 7
2.2 Economical study . 8

2.2.1 Equipment cost . 8
2.2.2 Human resources . 9
2.2.3 Legal study . 10

3 Methodology 11
3.1 Methods . 11
3.2 Development . 12

4 Thesis planning 14
4.1 Planned tasks . 14
4.2 Estimated timeline . 16

5 Background theory 17
5.1 Artificial Intelligence . 17
5.2 Machine learning . 18
5.3 Deep learning . 20

5.3.1 Deep Neural Networks 21
5.3.2 Convolutional Neural Networks 22

5.4 Methods to combat overfitting 24
5.4.1 Early stopping . 25

Contents iii

5.4.2 Regularization . 26
5.4.3 Dropout layer . 27
5.4.4 Data augmentation . 28
5.4.5 Transfer learning . 28
5.4.6 Ensemble . 33

5.5 Metrics and assessment . 33
5.5.1 Confusion matrix . 34
5.5.2 AUC-ROC Curve . 35
5.5.3 K-fold Cross-validation 36

6 Studies and decisions 38
6.1 System requirement . 38

6.1.1 Functional requirements 38
6.1.2 Non-functional requirements 39

6.2 Hardware . 39
6.3 Software . 40

6.3.1 Python 3.9.7 . 40
6.3.2 Anaconda . 41
6.3.3 Jupyter Notebook . 41
6.3.4 Google Colab . 41
6.3.5 CUDA 11.4 . 42
6.3.6 CuDNN 8.2.4 . 42
6.3.7 TensorFlow 2.8 . 43
6.3.8 Keras . 43
6.3.9 Numpy . 44
6.3.10 Matplotlib . 44
6.3.11 Seaborn . 45
6.3.12 Pandas . 45
6.3.13 Sklearn . 46
6.3.14 cv2 . 46
6.3.15 Gimp . 47
6.3.16 LATEX . 47

7 Analysis and design 49
7.1 Data set . 49
7.2 Pipeline . 50
7.3 Hyperparameter optimization 51

8 Implementation and results 56
8.1 Data loading and preprocessing 56

8.1.1 Preparing data for K-fold cross validation 56

iv Contents

8.1.2 Loading data . 58
8.1.3 Data Augmentation . 59

8.2 Neural Network Architectures 61
8.2.1 Customized CNN . 61
8.2.2 VGG16 . 62
8.2.3 ResNet50 . 63
8.2.4 DenseNet121 . 64

8.3 Training . 65
8.4 Ensemble . 68
8.5 Results . 69

8.5.1 Metrics . 69
8.5.2 Confusion Matrix . 72
8.5.3 AUC-ROC Curve . 73

9 Conclusions 75
9.1 Summary of difficulties . 76

10 Future work 78

Bibliography 79

A Installation manual 81
A.1 DRIVERS . 81
A.2 NVIDIA TOOLKIT & CuDNN 82
A.3 ANACONDA . 84

List of abbreviations

ADR Adenoma detection rate

AI Artificial intelligence

AUC Area under curve

CAD Computer-aided diagnosis

CNN Convolutional Neural Network

CRC Colorectal cancer

DNN Deep neural network

FN False negative

FP False positive

ML Machine learning

NBI Narrow band imaging

NLP Natural language processing

PPV Positive Predictive Value

ROC Receiver operating characteristic

TN True negative

TNR True Negative Rate

TP True positive

TPR True Positive Rate

List of Figures

1.1 Stages of colorectal cancer . 2
1.2 Colonscopy procedure . 3
1.3 Digital chromoendoscopy . 4

3.1 Life cycle of scientific research 11
3.2 Activity diagram describing the methodology 13

4.1 Hours per task . 16
4.2 Estimated timeline table . 16

5.1 sub-specialities of AI . 18
5.2 Baseline machine learning methodology. 19
5.3 Main types of machine learning 20
5.4 Deep feedforward neural network with 2 hidden layers 21
5.5 Architecture of a single neuron in a neural network. 22
5.6 Example of convolutional operation on input image. 23
5.7 Example of max-pooling. 23
5.8 Examples of underfitting, optimum and overfitting. Source: IBM

Garage Methodology. 25
5.9 Relationship between the number of epochs and the validation

and training error . 26
5.10 Two sets of equivalent Hypothesis 27
5.11 Examples of data augmentation on the same image. Source:

Medium. 28
5.12 Overview of architectures until 2018 29
5.13 VGG16 architecture . 30
5.14 ResNet architecture . 31
5.15 Skip connection . 32
5.16 Dense blocks in different DenseNet architectures 32
5.17 Confusion matrix . 34
5.18 Comparison ROC curves . 36

6.1 Python logo . 40
6.2 Anaconda logo . 41
6.3 Jupyter Notebook logo . 41

List of Figures vii

6.4 Google Colab logo . 42
6.5 CUDA logo . 42
6.6 cuDNN logo . 42
6.7 TensorFlow logo . 43
6.8 Keras logo . 44
6.9 Numpy logo . 44
6.10 Matplotlib logo . 45
6.11 Seaborn logo . 45
6.12 Pandas logo . 46
6.13 Sklearn logo . 46
6.14 OpenCV logo . 47
6.15 Gimp logo . 47
6.16 LATEXlogo . 48

7.1 Exemple of the data set used 49
7.2 Pipeline . 50
7.3 Comparison between learning rates. 54

8.1 Structure of the sub-directories requested to perform 5-fold
cross validation. This is the result after runing the script kfold_split 57

8.2 Function used to load the data set of colonoscopy images . . . 58
8.3 Set of images extracted from the train set 59
8.4 Example of images after data augmentation. Horizontal and

vertical flips, rotations in the range of 90°, and 10% of zoom
were applied. 60

8.5 Architecture of the CNN built from scratch. 61
8.6 Importing VGG16 model. 62
8.7 Fine-tuning the VGG16 model 63
8.8 Importing ResNet50. 63
8.9 Fine-tuning the ResNet50 model 64
8.10 Importing DenseNet121. 64
8.11 Fine-tuning the DenseNet121 model 65
8.12 Example of how to compile and train a model in Keras. 65
8.13 Example of plots for loss vs epochs and accuracy vs epoch when

training a model . 66
8.14 Declaration of callbacks. 67
8.15 Declaration of Adam optimizer. 67
8.16 Code for saving in local a model that has been trained. 68
8.17 Function for ensembling an odd list of models given the list of

images to predict. 69

viii List of Figures

8.18 Summary of the evaluation metrics for every trained model.
The metrics selected are: Train accruacy, test accuracy, preci-
sion, recall, F1-score, AUC, True positive, False positive, True
negative, and False negative. 70

8.19 Metrics ensemble of VGG16, ResNet50 and DenseNet121. . . . 71
8.20 Graphic of the metrics obtained from the customized CNN,

VGG16, ResNet50, DenseNet121 and the Ensemble. 71
8.21 Summary of the confusion matrix for each model that was trained 72
8.22 Confusion matrix of the ensemble. 73
8.23 Summary of AUC-ROC curve for our own CNN, VGG16, ResNet50,

and DenseNet121. 74

A.1 Example of available drivers to install in a NVIDIA GeForce
RTX 3050 . 81

A.2 Drivers installed in our system 82
A.3 Options to install CUDA . 82
A.4 Command to check whether CUDA is installed 83
A.5 Command to check whether CUDA is installed 83
A.6 Anaconda graphic interface and its feature of administrating

environments . 84
A.7 Jupyter notebook opened in a browser. 85

List of Tables

2.1 Equipment cost. 8
2.2 Human resources estimated cost. 10

6.1 Memory description of the machine employed 39
6.2 CPU description of the machine employed 39
6.3 GPU description of the machine employed 40

7.1 Hyperparameters that were selected for optimization, together
with the range of values they could take. 54

7.2 Hyperparameters selected for each model 55

8.1 Distribution of images in train and test set. 57
8.2 Percentage of images in train and test set. 57
8.3 List of transformations that were applied or discarded during

data augmentation. 60
8.4 Models, train set and test set for each of the ensembles. 69

9.1 Accuracy and AUC for our own CNN, VGG16, ResNet50, and
DenseNet121. 75

9.2 Comparison between parameters for our own CNN, VGG16,
ResNet50, and DenseNet121. 76

Chapter 1

Introduction

1.1 Problem statement

Colorectal cancer (CRC) is the third leading cause of cancer-related deaths
in men and women, and the second most common cause of cancer deaths in
the world when men and women are combined, with nearly 1 million patients
who die every year [H.Sung 2021]. CRC is characterized by the unchecked di-
vision of abnormal cells in the colon or rectum. Most of the time it begins as
a polyp, which is a noncancerous growth that develops in the mucosal layer of
the colon or rectum. Once a polyp progresses to cancer, it can grow into the
wall of the colon or rectum where it may invade blood or lymph vessels that
carry away cellular waste and fluid (Figure 1.1). Cancer cells are then spread
to other organs and tissues, forming tumors [Society 022].

Figure 1.1: Stages of colorectal cancer growth originated by a polyp. Source:
Terese Winslow, U.S. Govt.

The death rate (the number of deaths per 100,000 people per year) from
colorectal cancer has been dropping for several decades as a result of perform-
ing early screening tests on potential patients [Society 022]. Colonoscopy is

1.1. Problem statement 3

the gold-standard screening procedure to inspect the large intestine. It is per-
formed using a hand-held flexible tube device called a colonscope, which has a
high definition camera mounted at the tip of the scope. The visual data that
the camera feeds to the screen helps to evaluate, biopsy, and remove mucosal
lessions (Figure 1.2). With such immense utility, colonoscopy has moved at the
forefront of making colorectal cancer an early detected disease [Stauffer 022].

Figure 1.2: During a colonscopy, the doctor inserts a colonoscope into the
rectum to check the entire colon. Source: Mayo fundation for medial education
and research.

Despite these improvements, seven to nine percent of colorectal cancers still
occur due to missed polyps or incompletely removed polyps during colonscopy
[S.J. Winawer 1993]. Adenoma detection rate (ADR; percentage of screen-
ing colonoscopies with at least one adenoma found) is a reportable rate of
the endoscopist’s ability to find adenomas, the most prevalent precancer-
ous polyp, and is inversely related to the risk of interval colorectal cancer
[Liem 2018]. Unfortunately, ADR varies widely (7% - 53%) among colono-
scopies [D.A. Corley 2014]. ADR depends mostly on the skill and experience
of the colonoscopist, as well as characteristics of each patient, and procedural
factors [Moreno 2018].

Several novel technologies have been developed to improve ADR. For in-
stance, advancements in endoscope design, developments in accessories and
new image enhancement techniques (Figure 1.3). Not only the introduction of
sophisticated machinery [Bond 2015], but the developments in artificial intel-
ligence (AI), and specially deep convolutional networks, have made computer-
aided diagnosis (CAD) a promising path towards medical automation.

4 Chapter 1. Introduction

Figure 1.3: Digital chromoendoscopy. Advances in endoscope technology that
manipulate wavelengths of the light to accentuate lesion characteristics.
Source: World J Gastrointest Endosc.

However, there are some drawbacks that cast doubt on the capability of
CAD and its adaptation to the medical system. First of all, some methods
are built from a theoretical model of polyp appearance [Tajbakhsh 2015], and
therefore limited to certain polyp morphologies which may not correspond
to the scene where polyp appearance varies greatly. Secondly, AI systems
are trained to solve only one single and narrow task. In contrast to a human
endoscopist, these systems cannot use holistic information about the patient to
elaborate a final diagnosis, reflecting the idea of weak AI [Wittenberg 2020].
Thirdly, many models do not consider the presence of other elements such
as folds or blood vessels that can affect their performances [Bernal 2015].
Last but not least, many methods have been trained and tested on good
quality image frames which might cause instability when working with real
time visibility conditions.

1.2 Project objectives

The main objective of this project is to use deep learning methods to train
a system capable of detecting polyps on colonoscopy images to test the ability
of computer-assisted image analysis. To this end, the gradual achievements
that must be accomplished are:

• Acquiring a thorough knowledge of deep learning theory and their work-
ing applications.

1.3. Statement of originality 5

• Analyzing data from colonoscopies and understanding its most impor-
tant features.

• Developing a CAD system to detect polyps on colonoscopy images.

• Optimizing the parameters involved in training.

• Comparing results from different approaches and combining them to get
a more accurate model.

1.3 Statement of originality

The thesis presented here for examination for a BSc degree from the Uni-
versity of Girona is solely my own work and it was developed in collaboration
with the Institute for Genomics and Bioinformatics at the University of Cal-
ifornia, Irvine. No other sources than those mentioned in the text and its
references have been used in creating it.

1.4 Personal motivation

I wanted this project to be a combination of two personal interests. On one
hand, I studied computer engineering because I have always been intrigued
by the human reasoning, and found in machines a new paradigm for exploring
this area. Also, I have been accepted to a master program in Artificial Intel-
ligence at Stockholm University. Hence, this project was a nice way to start
learning more advanced concepts of AI.

On the other hand, I am very interested in everything related to health
and nutrition. I find it fascinating how the body heals and fights disease, as
well as how genetic affects health. That is the reason why I chose the Institute
for Genomics and Bioinformatics as the group to help me conduct this project.
Besides the use big companies do of AI, I wanted to explore its applications
in Science.

1.5 Outline

This project is structured into multiple chapters that provide a guidance
to the problem of detecting polyps in colonscopy images:

6 Chapter 1. Introduction

• Introduction: First chapter presents the problem of detecting polyps
in colonoscopy and its relation with colorectal cancer. It states the ob-
jectives expected to be accomplished, the personal motivation behind it
and the structure followed in this document.

• Feasibility study: A hypothetical study of the technical, economical
and legal part of the project.

• Methodology: It offers a description of the methodology used in the
development of this project.

• Thesis planning: This chapter shows the distribution of tasks bearing
in mind the available time.

• Background theory: The aim of this chapter is to provide a brief
explanation of the theoretical concepts to understand the experiments.

• Studies and decisions: This chapter provides a description of the
system requirements and presents the hardware and software necessary
for the experiments.

• Analysis and design: The purpose of this chapter is to analyze the
components of the research and propose a design that structures every
part.

• Implementation and results This chapter is devoted to describe the
software implementation, present the results from the tests realized and
compare them among all the models.

• Conclusions: This chapter is a summary of the achievements, including
the difficulties faced during the process.

• Future work: This chapter offers an overview of the future work that
could be done to improve the project.

• Installation manual: This appendix is a guide about how the environ-
ment must be set up in order to run the software.

Chapter 2

Feasibility study

Before developing any project, it is important to analyze relevant factors
to ascertain the likelihood of completing the project successfully.

The challenge of machine learning (ML) systems is the difficulty of estimat-
ing how complex it is to develop, deploy and maintain a model. Nevertheless,
since this project is merely based on a research component, the study is fo-
cused on whether it is feasible to solve the problem satisfactorily using deep
learning with the available data and resources.

2.1 Technical study

Everything starts with research, a living part that evolves and solidifies as
further investigation is carried out. Although it is not possible to ensure that
all the objectives will be accomplished, there are two critical foundations that
need to be considered beforehand [Kohli 2017]:

• Defining the use case

An ideal use case defines a project which is specific, measurable, and
achievable, and has well-defined users and value.

Use cases for medical purposes vary considerably. Academicians may be
satisfied with finding efficient answers that result in publications and
further funding. In contrast, industry desires to make ML models that
work in disparate online production environments.

The outline of this project does not include the commercialization of a
product or a service. As it has been mentioned before, it has an academ-
ical outcome. Therefore, the technical study is based on analyzing which
technology and equipment are necessary for carrying out experiments in
the most efficient way.

• Importance of the dataset

Well-annotated datasets that cover the entities described in the use case,
including normal cases and those with pathology ranging from very subtle

8 Chapter 2. Feasibility study

findings to very severe are crucial to training accurate, generalizable
models.

Not only the quantity but also the quality of the data plays a major role
in making a project like this one succeed. It is not possible for any deep
learning model to learn without data. Hence, it is crucial to spend time
on acquiring an ideal image dataset which has adequate data volume,
annotation, truth, and reusability.

Computer-based image recognition and analysis require high-quality
data. The goal is to obtain data from a wide range of patient popu-
lations so the dataset is diverse and accurately reflects representative
disease states and outcomes. Frequently, many healthcare organizations
contact medical experts to review and label data to guard against inac-
curate labels and ensure that a dataset is meaningful, like in this project.
However, depending on the imaging modality, non-clinicians trained to
spot abnormalities may label images as normal or suspect and then clin-
icians review only the subset of suspect images.

2.2 Economical study

2.2.1 Equipment cost

The equipment cost makes reference to the amount of money spent on any
hardware and software licence required in this project.

The hardware and software components are listed in Table 2.1 along with
the units and costs.

Component Units Unit price Cost
Computer 1 $1,322.43 $1,322.43
Software (TensorFlow, Sklearn, etc) 1 $0 $0
Total $1,322.43

Table 2.1: Equipment cost.

Something to bear in mind is that, in an hypothetical case, a team formed
by multiple researchers would be working on this project. Consequently, more
equipment would be needed. At the same time, it would be great if the group
disposed of a server with GPU clusters.

2.2. Economical study 9

2.2.2 Human resources

This section shows a hypothetical case where multiple work profiles con-
tributed to the project and how much each service cost, even though in reality
everything was done by one person.

Roles:

• Data Analyst

One of the responsibilities of a data analyst is to acquire data from
primary or secondary data sources and maintain databases.

The average hourly wage for a data analyst in the United States is
$35.80.

• Research Scientist

A research scientist usually has some specialized knowledge in natu-
ral language processing (NLP), statistics, computer vision, speech, or
robotics and they acquire it through a Ph.D. or extensive research ex-
perience.

The average hourly wage for a mid-level computer and information re-
search scientist in the United States is $61.72.

• Data engineer

A data engineer implements, tests, and maintains infrastructural com-
ponents for proper data collection, storage, and accessibility. Besides
working with big data, building and maintaining a data warehouse, a
data engineer takes part in model deployment.

The average hourly pay for a data engineer in the United States is
$54.98.

Table 2.2 shows each task, together with the profile assigned to carry it
out and the estimated cost.

10 Chapter 2. Feasibility study

Task Profile Time Cost
Data collection Data Analyst 30h $1,074.00
Data pre-processing Research Scientist 20h $1,234.40
Data analysis and visualization Research Scientist 20h $1,234.40
Model development Research Scientist 140h $8,640.80
Model training Research Scientist 60h $3,703.20
Model optimization Research Scientist 20h $1,234.40
Deploy the model Data engineer 50h $2,749.00
Documentation Research Scientist 90h $5,554.80
Total 430h $25,425.00

Table 2.2: Human resources estimated cost.

In conclusion, the estimated total cost is $25,425.00 + $1,322.43 = $26,747.43.

2.2.3 Legal study

Legal issues have become a significant part of medical imaging. It is espe-
cially difficult to share and distribute medical data due to privacy concerns
and potential abuse of personal information. To overcome these limitations,
in the last few years, research collaborations have started to promote sharing
patient data thanks to de-identification methods. However, before working on
projects which involve medical imaging, it is important to analyze the obliga-
tions regarding the protection of individuals and their personal data.

Regarding this project, there was no legal regulation applied because the
images used were totally anonymous. In other words, it is impossible to tell
to whom the image belongs, and it is impossible to guess gender, ethnicity
or age. For example, in the case of working with DNA, face pictures or bone
scans, it would be required to apply de-identification methods or stipulate
which legal privacy was going to be followed.

Chapter 3

Methodology

This chapter describes the methodology employed in this project. Due to
the strong research component, it has followed an iterative and incremental
evolution which starts with the formulation of a question, and continues with
carrying out experiments based on deductions until reaching a conclusion.

3.1 Methods

In this project, we have designed and trained deep convolutional neural
networks (CNN) to detect polyps using a representative set of 2,000 hand
labeled images from screening colonoscopies collected from over 2,000 patients.
The outputs of the best models have been combined to power up the accuracy
in detecting polyps. Figure 3.1 shows in which high-level tasks the research
has been split into.

Figure 3.1: Life cycle of the research. Each phase is later concreted in multiple
tasks.

12 Chapter 3. Methodology

3.2 Development

The methodology adhered to this project is based on developing an ongoing
process which represents the previous methods. The different steps are:

1. Stating the problem and the objectives of the research.

2. Doing background research in previous publications attacking the same
or similar problems.

3. Deciding on a programming language and framework.

4. Learning about the tools that are going to be used.

5. Dividing the project into smaller tasks.

6. Selecting one task.

7. Studying how to implement that part.

8. Implementing the task.

9. Questioning whether the results fulfil the expectations or not.

• The results are not the ones expected. Hence, go back to point
7.

• The results are the ones expected. Hence, go to point 10.

10. Storing the necessary data and representing the results in a clear and
appealing way.

11. Selecting another task.

• There are more tasks left. Hence, go back to point 6.

• All the tasks have been completed. Hence, go to point 12.

12. Combining all the results to come up with a conclusion.

13. Writing down the report.

Figure 3.2 illustrates the previous process by making use of a diagram.

3.2. Development 13

Figure 3.2: Activity diagram describing the employed methodology.

Chapter 4

Thesis planning

This thesis was developed under a Balsells Mobility Fellowship, a fellowship
awarded to seven Catalan engineering students to conduct their Bachelor’s or
Master’s thesis at the University of California, Irvine. Concretely, this research
work was conducted at the Institute for Genomics and Bioinformatics, under
the guidance of Dr. Pierre Baldi and Amin Tavakoli (MSc) from February 21st
to June 9th, 2022.

The following subsections describe the tasks involved in this thesis and an
estimated timeline table to help visualize the distribution of days in which
they were expected to be completed.

4.1 Planned tasks

Searching of existing literature
Before embarking on the actual work, a week was designated to perform

a thorough search of existing literature, which helped to put the proposed
research in better perspective. It included reading papers and previous thesis
related to polyps detection using CNN or with a similar focus.

Setting up the environment
The next week was mostly devoted to evaluate which frameworks and

programming technologies could be of great use to implement deep learning
models. It resulted in setting up the machine with a suitable environment
before the experimental phase.

Acquiring working knowledge: TensorFlow
After deciding to use TensorFlow and Keras, it took around two weeks to

get familiarized with them by customizing a CNN to classify a small batch of
polyps and non-polyps images. It was a good practice to understand better
the theoretical background behind CNN.

4.1. Planned tasks 15

Customizing a CNN from scratch
More preliminary experiments were carried out in the following weeks of

March. This was the time to improve the already built CNN and investigate
ways to deal with overfitting. It was also possible to acquire more data.

Fine-tuning a pre-trained model: VGG16
The first two weeks of April were meant to fine tune the first pre-trained

model; VGG16. It included analyzing which hyperparameters worked better,
such as which layers unfreeze, which was the optimal learning rate, etc.

Fine-tuning a pre-trained model: ResNet50
A similar process as the one discussed before was followed, except that the

model in this case was ResNet50. It took approximately the same amount of
time.

Fine-tuning a pre-trained model: DenseNet121
By the beginning of May, DenseNet121 was the only pre-trained model

left. Two more weeks were spent on fine-tuning that model and, at the end,
some time was dedicated to present the results of all the models by elaborat-
ing confusion matrices and ROC curves.

Ensemble learning: combining pre-trained models
The aim of that week was to create an ensemble of the three pre-trained

models and spend time on making a comparison of the final results.

Writing the report
Although some chapters were written along the process, the last three

weeks were decisive to write the last chapters, as well as making any suggested
changes by the advisors.

16 Chapter 4. Thesis planning

4.2 Estimated timeline

Figure 4.1: Table showing the hours estimated per each task, plus the color
assigned to it.

Figure 4.2: Estimated timeline table. Each task has been scheduled on a 5-
months calendar. Weeks start on Sunday.

Chapter 5

Background theory

This chapter provides an overview of the theoretical concepts that are
crucial for understanding the experiments presented in posterior chapters. It
has been organized in 5 sections, from introductory ideas to more specific
ones.

5.1 Artificial Intelligence

Less than a decade after decrypting Enigma and helping win World War
II, mathematician Alan Turing made a new question that changed everyone’s
life: “Can machines think?”. That question was formulated in his seminal work,
“Computing Machinery and Intelligence” [Turing 1950], which was published
in 1950. There he described how to create intelligent machines and in partic-
ular how to test their intelligence. The Turing Test is still considered today as
a benchmark to identify intelligence of an artificial system; a human should
be able to distinguish in a teletype dialogue whether he is talking to a man
or a machine.

The term “AI” could be attributed to John McCarthy of MIT, which Mar-
vin Minsky defines as “the construction of computer programs that engage
in tasks that are currently more satisfactorily performed by human beings
because they require high-level mental processes such as: perceptual learning,
memory organization and critical reasoning” (1956). From that point until
the new century, AI experienced ups and downs: years of astonishing achieve-
ments, such as expert systems, in contrast with the well-known AI winters
characterized by financial setbacks.

However, since 2010, a new bloom based on massive data and new com-
puting power has boosted AI. It is no longer a question of coding rules, but
of letting computers discover them alone by correlation and classification, on
the basis of a massive amount of data. This situation has led AI to be applied
to multiple fields, like chemistry and economics. Nowadays, AI branches out
into multiple files (Figure 5.1).

18 Chapter 5. Background theory

Figure 5.1: Sub-specialities of AI by 2021. Source: Bangbit technologies.

5.2 Machine learning

Machine learning is a subset of AI that focuses on the use of data and algo-
rithms to imitate the way that humans learn, gradually improving its accuracy.

Instead of explicitly programming knowledge into computers, machine
learning attempts to automatically learn meaningful relationships and pat-
terns by observing examples. In its most basic form, the machine learning
approach performs the task of acquiring domain knowledge by collecting a
sufficiently large number of examples of desired behaviour for the algorithm
of interest. These examples constitute the training set.

The examples in the training set (Figure 5.2) are fed to a learning algorithm
to produce a trained “machine” that carries out the desired task. Learning is
made possible by the choice of a set of possible “machines”, also known as the
hypothesis class, from which the learning algorithm makes a selection during
training. An example of a hypothesis class is given by a neural network ar-
chitecture with learnable synaptic weights. Learning algorithms are generally
based on the optimization of a performance criterion that measures how well
the selected “machine” matches the available data.

5.2. Machine learning 19

Figure 5.2: Baseline machine learning methodology.

There are three main classes of machine learning techniques (Figure 5.3):

• Supervised learning

In supervised learning, the training set consists of pairs of input and de-
sired output, and the goal is to learn a mapping function between input
and output spaces. What characterizes supervised learning is that the
data is labeled and the ML algorithm measures its accuracy through the
loss function, adjusting until the error has been sufficiently minimized.
Classification and regression are two major approaches in supervised
learning.

• Unsupervised learning

In unsupervised learning, the training set consists of unlabelled inputs,
in other words, of inputs without any assigned desired output. This type
of learning generally aims at discovering hidden patterns or data group-
ings without the need for human intervention. Unsupervised machine
learning is mainly used in clustering, a task of dividing data into groups
with similar properties.

• Reinforcement learning

Reinforcement learning lies between supervised and unsupervised learn-
ing. In a certain sense, some form of supervision exists, but this does not
come in the form of the specification of a desired output for every input
in the data. Instead, a reinforcement learning algorithm receives feed-
back from the environment only after selecting an output for a given
input or observation. The feedback indicates the degree to which the
output, known as action in reinforcement learning, fulfils the goals of
the learner.

20 Chapter 5. Background theory

Figure 5.3: Main types of machine learning. Source: Machine Learning Tech-
niques for Personalised Medicine Approaches in Immune-Mediated Chronic
Inflammatory Diseases: Applications and Challenges.

5.3 Deep learning

Deep learning is a sub-field of machine learning that attempts to reach
conclusions from analyzing data with a given logical structure. In contrast
with traditional machine learning algorithms, deep learning algorithms are
in a higher level of abstraction. They have the capacity of performing the
laborious process of feature extraction. Each algorithm applies a nonlinear
transformation to its input and uses what it learns to create a statistical
model as output. It is done in multiple iterations until the output has reached
an acceptable level of accuracy. The name “deep” comes from the number of
layers that data has to pass through during these iterations.

Deep learning has been successfully applied to several problems; from self
driving cars to speech recognition. In this particular project, deep learning is
used in the task of classifying whether colonoscopy screenshots contain polyps
or not. In order to achieve this, it has been necessary to understand how
convolutional neural networks work, study how to combat some problems that
threaten the precision of these models, and explain which metrics are mainly
used to measure the accuracy of these models.

5.3. Deep learning 21

5.3.1 Deep Neural Networks

Deep neural networks (DNNs) are a set of algorithms, modeled loosely
after the human brain. DNNs are represented by as a directed acyclic graph
(Figure 5.4) composed by several stacked layers of neurons that attempt to
approximate a certain function. They do so by transmitting a signal from
the input layer to the output layer through hidden layers. A neuron on a
layer has the task of detecting patterns from the incoming connections. The
neuron combines input from the data with a set of coefficients, or weights,
that either amplify or dampen that input. By doing that, each layer has the
ability of capturing features from the data, and these features become more
sophisticated the deeper the signal goes in the network.

Figure 5.4: Deep feedforward neural network with 2 hidden layers. Two or
more hidden layers comprise a Deep Neural Network

A unit in a layer is seen as a neuron, whereas arrows symbolize connections
between neurons and each one holds a weight. Each node has a value associ-
ated and it is computed as a function of its incoming nodes and edges (Figure
5.5). It is done in the following way: the input-weight products are summed
and then the sum is passed through a node’s so-called activation function
that squashes the resulting value between 0 and 1 to determine whether and
to what extent that signal should progress further through the network to
affect the ultimate outcome.

A DNN learns by optimizing a loss function that computes the distance
between the current output of the algorithm and the expected output. Gen-
erally, the loss function must be differentiable, because many optimization
algorithms rely on the gradient vector. These algorithms try to minimize the
loss function, and Gradient Descent is the most common one.

22 Chapter 5. Background theory

Figure 5.5: Architecture of a single neuron in a neural network.

5.3.2 Convolutional Neural Networks

A convolutional neural network (CNN) is a type of neural network com-
monly applied to analyze visual imagery due to its inspiration in the organiza-
tion of animal visual cortex. The innovation of convolutional neural networks
is the ability to automatically learn a large number of filters in parallel under
the constraints of a specific predictive modeling problem, such as image clas-
sification. Hence, they are the perfect fit for this project.

A CNN is designed to automatically and adaptively learn spatial hierar-
chies of features through backpropagation by using multiple building blocks.
In contrast to regular neural networks, CNNs use parameter sharing. All neu-
rons in a particular feature map share weights which makes the whole system
less computationally intense. Moreover, CNNs have neurons arranged in 3 di-
mensions: width, height, depth.

There are three main types of layers to build CNN architectures:

• Convolutional layer

This layer is the first layer that is used to extract the various features
from the input images, such as edges or some other feature in the image.

The convolutional layer computes the convolutional operation of the
input images using kernel filters to extract fundamental features. The
kernel filters are of the same dimension but with smaller constant pa-
rameters compared to the input images. Depth must be the same for
the matrix of inputs and the filter mask. The filter mask slides over the
entire input image step by step and estimates the dot product between
the weights of the kernel filters with the value of the input image, which
results in producing a matrix called the feature map (Figure 5.6).

5.3. Deep learning 23

Figure 5.6: Example of convolutional operation on input image.

• Pooling layer

A pooling layer is usually incorporated between two successive convo-
lutional layers. The pooling layer reduces the number of parameters
and computation by down-sampling the representation, keeping only
the most important information. Pooling layers help control overfitting
by reducing the number of calculations and parameters in the network.

A form of pooling is max pooling (Figure 5.7)., which is done by applying
a max filter to non-overlapping subregions of the initial representation.
There are also other forms of pooling: average, general.

Figure 5.7: Example of max-pooling.

• Fully-Connected layer

A fully-connected layer is the last layer in the convolutional neural net-
work. It is called fully-connected because all inputs from one layer are
connected to every activation unit of the next layer. It works as a clas-
sifier that determines to which class an image belongs to and it has as
many neurons as number of classes. The layer receives an input vector,

24 Chapter 5. Background theory

and successively applies a linear combination and an activation function
in order to classify the image input. Finally, the output is a vector of
size corresponding to the number of classes in which each component
represents the probability that the input image belongs to a class.

In this project, the last layer has a single neuron with an activation
function such as Sigmoid because it is a binary problem.

Activation functions
As it was already mentioned, an activation function in a neural network

defines how the weighted sum of the input is transformed into an output from
a node or nodes in a layer of the network. Technically, the activation function
is used within or after the internal processing of each node in the network,
although networks are designed to use the same activation function for all
nodes in a layer.

The choice of activation function has a large impact on the capability and
performance of the neural network, and different activation functions may be
used in different parts of the model. The most used ones are:

• Rectified Linear Activation (ReLU)

ReLU performs a threshold operation to each input element where values
less than zero are set to zero, otherwise, the value is returned.

• Logistic (Sigmoid)

Sigmoid takes any real value as input and outputs values in the range of
0 to 1. The larger the input (more positive), the closer the output value
will be to 1.0, whereas the smaller the input (more negative), the closer
the output will be to 0.0.

• Hyperbolic Tangent (Tanh)

Tanh takes any real value as input and outputs values in the range of -1
to 1. The larger the input (more positive), the closer the output value
will be to 1.0, whereas the smaller the input (more negative), the closer
the output will be to -1.0.

5.4 Methods to combat overfitting

The main goal of any machine learning model is to generalize well. It means
that the target function learnt from the training data should generalize well

5.4. Methods to combat overfitting 25

enough to other samples that have not been included in the modelling process.
However, a model can face generalization problems when its capacity is higher
than needed or when its capacity falls behind the complexity of a task. These
problems are known as overfitting and underfitting (Figure 5.8) and they
degrade the performance of the machine learning models.

Figure 5.8: Examples of underfitting, optimum and overfitting. Source: IBM
Garage Methodology.

Underfitting is a state where the model fails to significantly grasp the rela-
tionship between the input values and target variables, generating a high error
rate on both the training set and unseen data. This may be the case when the
model is too simple to capture patterns in the data. Therefore, the first thing
to try is to increase the model complexity, for instance by adding hidden layers.

Overfitting is the opposite of underfitting. An overfit model has overly
memorized the data set it has seen and is unable to generalize the learning
to an unseen data set. It results in high error rates on test data. Overfitting
a model is more common than underfitting one and harder to identify. The
following subsections study which methods are useful to avoid overfitting when
training CNNs [Grosse 2020].

5.4.1 Early stopping

Early stopping is an optimization technique used to reduce overfitting
when training a learner with an iterative method, such as gradient descent.
The main idea behind early stopping is to stop training before a model starts
to overfit.

When training, the training error ought to continue improving. The test
error generally improves at first, but it may eventually start to increase as the
network starts to overfit. This suggests to stop the training at the point where

26 Chapter 5. Background theory

the generalization error starts to increase. Hence, the validation error has to
be monitored during training to determine when to stop.

Figure 5.9: Relationship between the number of epochs and the validation and
training error. (left) Idealized version. (right) Accounting for fluctuations in
the error, caused by stochasticity in the SGD updates. Source: University of
Toronto.

However, implementing early stopping is not so simple because the training
and validation errors fluctuate during training. One common heuristic is to
space the validation error measurements far apart.

5.4.2 Regularization

The basic idea of regularization through the cost function is to penalize the
higher-order polynomials to the extent that the model is still able to represent
the patterns in the data, but it does not get confused by noise. It consists of
adding another term, called a regularization term, or regularizer, which pe-
nalizes hypotheses that are somehow pathological and unlikely to generalize
well.

The total cost, then is:

E(θ) = 1

N

N∑
i=1

L(y(x,θ), t)︸ ︷︷ ︸
training loss

+ R(θ)︸ ︷︷ ︸
regularizer

(5.1)

For instance, there are two sets of weights as shown in Figure 5.10 that
make identical predictions in the training set, so they are equivalent. However,
Hypothesis A is better because it is more stable. E.g., suppose the input (x1
= 1, x2 = 0) on the test set; in this case, Hypothesis A will predict 1, while
Hypothesis B will predict -8.

5.4. Methods to combat overfitting 27

Figure 5.10: Two sets of weights which make the same predictions assuming
inputs x1 and x2 are identical. (left) Hypothesis A. (right) Hypothesis B.
Source: University of Toronto.

A regularizer that would favor Hypothesis A by assigning it a smaller
penalty is L2. L2 regularization tends to favor hypotheses where the norms
of the weights are smaller. It is defined as follows (The hyperparameter λ is
sometimes called the weight cost.):

RL2(w) =
λ

2

D∑
j=1

w2
j (5.2)

5.4.3 Dropout layer

Dropout is a technique where randomly selected neurons are ignored dur-
ing training or “dropped-out” randomly. This has the effect of making the
layer look-like and be treated-like a layer with a different number of nodes
and connectivity to the prior layer. This means that the contribution of the
neurons dropped-out to the activation of downstream neurons is temporarily
removed on the forward pass and any weight updates are not applied to the
neuron on the backward pass.

As a neural network learns, neuron weights settle into their context within
the network. Weights of neurons are tuned for specific features providing some
specialization. Neighboring neurons rely on this specialization, which if taken
too far can result in a fragile model too specialized to the training data.

Dropout is implemented as per-layer in a neural network that can be used
with most types of layers. It has a hyperparameter that specifies the probabil-
ity at which outputs of the layer are dropped out, or inversely, the probability
at which outputs of the layer are retained.

28 Chapter 5. Background theory

5.4.4 Data augmentation

Another option is to artificially augment the training set by introducing
distortions into the inputs, a procedure known as data augmentation (Figure
5.11). For instance, by shifting an image by a few pixels, adding noise, rotating
it slightly, or applying some sort of warping. This can increase the effective size
of the training set. Of course, not all transformations are useful. It depends
on the task; for instance, in object recognition, it might be advantageous to
flip images horizontally, whereas this would not make sense in the case of
handwritten digit classification.

Figure 5.11: Examples of data augmentation on the same image. Source:
Medium.

5.4.5 Transfer learning

Transfer learning is a machine learning technique that reuses a completed
model that was developed for one purpose for a new model that accomplishes
a new task. Analogous to human learning, transfer learning offers the capa-
bility of transfer knowledge across tasks instead of learning everything from
scratch. The more similar the tasks, the easier is to cross-utilize knowledge.
For instance, a model trained to recognize lions is likely to work well at rec-
ognizing tigers by making some changes on its inputs, outputs and layers.

There are complex tasks that require a lot of data, and are very specific.
However, most deep learning models are specialized to a particular domain.

5.4. Methods to combat overfitting 29

Transfer learning solves that by generalizing the features learnt by a model.
It has been possible thanks to two majors reasons. Firstly, the creation of
a huge dataset called “ImageNet” containing more than 14 million images
hand-annotated with more than 20,000 categories. The second reason is the
elaboration of advanced CNN architectures trained on datasets such as Ima-
geNet.

Figure 5.12: Overview of architectures until 2018. Source: Simone Bianco et
al. 2018.

There are many architectures that can be pre-trained to perform a new
task. Some CNN architectures are more popular than others, but it is impor-
tant to consider not only their accuracy, but also their computational com-
plexity. Figure 5.12 provides an overview of the top-performing CNNs until
2018. Moreover, the way in which these architectures are trained can be also

30 Chapter 5. Background theory

considered a new hyperparameter of the model. There are three strategies to
fine-tune a model, which are training the entire model, training some layers
and leaving the others frozen or freezing the convolutional base.

For this project, VGG16, ResNet50 and DenseNet121 have been the pre-
trained models chosen for the task of detecting polyps due to their complexity-
accuracy relationship.

5.4.5.1 VGG16

VGG16 is a convolutional neural network that was proposed by K. Si-
monyan and A. Zisserman at the University of Oxford in 2014 [Simonyan 2014].
They called it VGG after the department of Visual Geometry Group in the
University of Oxford that they belonged to. The number 16 comes from the
16 layers that constitute the convolutional neural network.

As shown in Figure 5.13, VGG16 consists of a sequence of convolutional
layers of filter size 3x3, stride one, and padding 1, followed by a max-pooling
layer of size 2x2. The convolution stacks are followed by three fully connected
layers, two with size 4,096 and the last one with size 1,000. The last one is
the output layer with Softmax activation. The size of 1,000 refers to the total
number of possible classes in ImageNet.

Figure 5.13: VGG16 architecture. Source: Great Learning Team.

A big difference compared to other models is that VGG uses a very small 3
x 3 receptive field (filters) throughout the entire network. However, one of the
crucial downsides of the VGG16 network is that it is a huge network, which
means that it takes more time to train its parameters. The total number of
parameters in this model is over 138M, and the size of the model is over
500MB. This makes deploying VGG a tiresome task. Another problem is the
Vanishing Gradient Problem. During backpropagation, the value of gradient
decreases significantly, thus hardly any change comes to weights.

5.4. Methods to combat overfitting 31

5.4.5.2 ResNet50

ResNet50 is a convolutional neural network belonging to the family of
Residual networks that were introduced by Kaiming He, Xiangyu Zhang,
Shaoqing Ren, and Jian Sun in 2016 [He 2016].

ResNet50 is characterized by 50 layers, and has over 23 million train-
able parameters. Its architecture (Figure 5.14) consists on one convolution
and pooling step followed by 4 residual blocks of similar behavior. Each of
the blocks, called residual blocks, follow the same pattern. They perform 3x3
convolution with a fixed feature map dimension (F) [64, 128, 256, 512] respec-
tively, bypassing the input every 2 convolutions. These blocks are repeated
[3,4,6,3] respectively. Finally, the resulting feature map goes through a global
average pooling and a fully connected layer with Softmax to generate the final
output.

Figure 5.14: ResNet architecture. Source: Deep Residual Learning for Image
Recognition.

ResNet first introduced the concept of skip connection (Figure 5.15). The
idea is to connect the input of a layer directly to the output of a layer after
skipping a few connections. Instead of multiplying input ‘x’ by the weights
of the layer followed by adding a bias term, the value of ‘x’ is added to the
output layer.

These skip connections alleviate the issue of vanishing gradient by setting
up an alternate shortcut for the gradient to pass through. In addition, they
enable the model to learn an identity function. This ensures that the higher
layers of the model do not perform any worse than the lower layers.

32 Chapter 5. Background theory

Figure 5.15: Skip connection in a residual block.

5.4.5.3 DenseNet121

DenseNet [Huang 2016] is a convolutional neural network where each layer
is connected to all other layers that are deeper in the network. The first layer
is connected to the 2nd, 3rd, 4th and so on. This is done to enable maximum
information flow between the layers of the network.

Figure 5.16: Dense blocks in different DenseNet architectures. Source:
DenseNet paper-edited by author.

To preserve the feed-forward nature, each layer obtains inputs from all the
previous layers and passes on its own feature maps to all the layers which will
come after it. Unlike Resnets it does not combine features through summation
but combines the features by concatenating them. Hence, the ‘ith’ layer has ‘i’
inputs and consists of feature maps of all its preceding convolutional blocks.
Its own feature maps are passed on to all the next ‘I-i’ layers. This introduces
‘(I(I+1))/2’ connections in the network, rather than just ‘I’ connections.

5.5. Metrics and assessment 33

DenseNet121 (Figure 5.16) starts with a basic convolution and pooling
layer. Then there is a dense block followed by a transition layer, repeated 3
times, and finally a dense block followed by a classification layer. A dense block
has two convolutions, with 1x1 and 3x3 sized kernels, and each block is run for
6, 12, 24, 16 repetitions respectively. The transition layers reduce the number
of channels to half of the existing channels applying a batch normalization, a
1x1 convolution and a 2x2 pooling layers.

5.4.6 Ensemble

Ensemble methods combine a group of predictive models to get an aver-
age prediction. It not only reduces the variance of predictions but also can
result in predictions that are better than any single model. Generally, ensem-
ble learning involves training more than one network on the same dataset,
then using each of the trained models to make a prediction before combining
the predictions in some way to make a final outcome.

A key part of an ensemble learning method involves combining the predic-
tions from multiple models. It again depends on the problem. In the case of
having a binary classification problem, there is what is called “voting”. There
are many types of voting, but the simplest one consists of selecting the label
with the most votes. This only works when the number of models is odd. Other
methods include majority voting, unanimous voting, and weighted voting.

5.5 Metrics and assessment

An essential part of this project is to evaluate a model against some met-
rics that help to monitor and measure its performance. The feedback resulting
from these metrics is convenient to understand the weakness of a model and
to be able to compare its power with other models.

There are various metrics used for evaluation. It also depends on which
type of problem is being addressed. For classification, the most widespread
metric is confusion matrix, from which you can derive significant terms also
useful for assessment. In addition to confusion matrix, another popular metric
is ROC (Receiver operating characteristic) curve and, in particular, the area
under the ROC Curve (AUC). Added to this, performing cross validation
gives robustness to the evaluation because it results in the mean and the
standard deviation of the model’s accuracy over k folds. That is why K-fold
cross validation is considered a metric too.

34 Chapter 5. Background theory

5.5.1 Confusion matrix

A confusion matrix is a NxN matrix, where N is the number of classes
being predicted. It shows how a classification model gets confused when it
makes predictions. The matrix (Figure 5.17) is organized into columns and
rows, representing the predicted classes and the actual classes respectively.

Figure 5.17: Confusion matrix

A binary confusion matrix is created thanks to four values:

• True positive (TP): outcome where the model correctly predicts the
positive class.

• False positive (FP): outcome where the model incorrectly predicts the
positive class.

• True negative (TN): outcome where the model correctly predicts the
negative class.

• False negative (FN): outcome where the model incorrectly predicts
the negative class.

Logically, summing the main diagonal gives the total of correct predictions.
Whereas summing the antidiagonal gives the total of incorrect predictions.

From the previous values, there are some new metrics that can be calcu-
lated including accuracy, precision, recall, specificity, and F1 score.

Accuracy
Accuracy is the most common and simple performance metric for classifi-

cation. It is the ratio of the number of correct predictions to the total number

5.5. Metrics and assessment 35

of predictions made for a data set, or in other words, the probability of clas-
sifying an input correctly. It is especially meaningful when the data set is
balanced.

Accuracy =
TP + TN

TP + TN + FP + FN

Precision
Precision or positive Predictive Value (PPV) is the ratio of true positives

to all the positives predicted by the model. The more False positives the model
predicts, the lower the precision.

Precision =
TP

TP + FP

Recall
Recall or true positive rate (TPR) is the ratio of true positives to all the

actual positives in a dataset. The more false negatives the model predicts, the
lower the recall.

Recall =
TP

TP + FN

Specificity
Specificity or true negative rate (TNR) is the ratio of true negatives to all

the actual negatives in a dataset. The more false positives the model predicts,
the lower the specificity.

Specificity =
TN

TN + FP

F1-score
F1-score or F-measure combines precision and recall. Mathematically, F1-

score is the weighted average of the precision and recall. The classifier will
only get a high F-score if both precision and recall are high.

F1 =
2

1
precision

+ 1
recall

=
2 · precision · recall
precision+ recall

5.5.2 AUC-ROC Curve

The Receiver Operator Characteristic (ROC) is a probabilistic curve that
plots the true positive rate (TPR) against the false positive rate (FPR) at
various threshold values (Figure 5.18). The true-positive rate is also known

36 Chapter 5. Background theory

as sensitivity, recall or probability of detection. The false-positive rate is also
known as probability of false alarm and can be calculated as (1 - specificity).

The area under the curve (AUC) is a value between 0 and 1 that measures
the ability of a classifier to distinguish between classes. It is used as a summary
of the ROC curve. The higher the AUC, the better the performance of the
model at distinguishing between the positive and negative classes.

Figure 5.18: Comparison of multiple ROC curves and how much overlap there
are between classes for each case. Source: Stephanie Glen.

5.5.3 K-fold Cross-validation

K-fold cross-validation (Algorithm 1) is a statistical method used to esti-
mate the skill of machine learning models on unseen data. Particularly, this
resampling procedure is of good practize when the models learn on a limited
data sample. Cross-validation allows to train the model on different distributed
samples and obtain the mean and the standard deviation for the metrics of
interest.

It receives the name “K-fold Cross-validation” because it has a single pa-
rameter called k. This parameter makes reference to the number of groups
that a given data sample is to be split into. One approach to choose k is to
explore the effect of different k values on the estimate of model performance
and compare this to an ideal test condition.

5.5. Metrics and assessment 37

Algorithm 1 K-fold cross validation

Shuffle the dataset randomly

Split the dataset into k groups

for each unique group do

Take the group as a test data set

Take the remaining groups as a training data set

Fit a model on the training set and evaluate it on the test set

Retain the evaluation score and discard the model

end for

Summarize the skill of the model using the sample of model evaluation scores

Chapter 6

Studies and decisions

This chapter is devoted to study which tools are necessary to develop the
project and to understand why they are considered to be of good use. The first
part of the chapter is focused on explaining which requirements the system
must satisfy, both, functional and non-functional. Whereas, the second part
names and describes the technology chosen for the project.

6.1 System requirement

The Project Management Body of Knowledge, Seventh Edition defines
requirement as a condition or capability that is required to be present in a
product, service, or result to satisfy a business need [Institute 2021].

This section explores which requirements are necessary to detect polyps.
It is important to differentiate the final system from the work behind. The
process of building and training a CNN requires computational power, sophis-
ticated libraries and, usually, a big amount of time. However, once the model
has been trained and saved, it can be used anytime. Generally, the time of
response is of the order of seconds.

Requirements can be classified into functional and non-functional require-
ments:

• Functional requirements are capabilities that the product must do
to satisfy specific user needs.

• Non-functional requirements include usability, performance, relia-
bility and security requirements.

6.1.1 Functional requirements

The functional requirements of the system are:

• Given a set of images or a single one belonging to a colonoscopy, classify
whether it contains a polyp or not. It is a binary classification.

6.2. Hardware 39

6.1.2 Non-functional requirements

Thanks to Jupyter Notebook and Python3, any computer should be able
to run the code and classify images. Obviously, enough RAM is necessary to
read the desired images.

6.2 Hardware

When it comes to designing and training a model, it would be wise to uti-
lize a powerful computer. Otherwise, the computer could run out of memory
in the middle of the process.

Table 6.1, 6.2 and 6.3 provide a view of the characteristics of the machine
employed for the project. It is recommended to use a similar one since it has
not been tested on computers with less capability.

Memory
Total 15 GiB
Available 5,9 GiB
Swap 2 GiB

Table 6.1: Memory description of the machine employed

CPU
Model name AMD Ryzen 7 5800H with Radeon Graphics
Byte Order Little Endian
Core(s) per socket 8
Thread(s) per core 2
Socket(s) 1
CPU max MHz 3200
CPU min MHz 1200
L1d cache 256 KiB
L1i cache 256 KiB
L2 cache 4 MiB
L3 cache 16 MiB

Table 6.2: CPU description of the machine employed

40 Chapter 6. Studies and decisions

GPU
Graphics Processor NVIDIA GeForce RTX 3050 Laptop GPU
CUDA Cores 2048
Total Memory 4096 MB
Driver Version 470.42.01
CUDA Version 11.4

Table 6.3: GPU description of the machine employed

The operating system used is Ubuntu 20.04.2 LTS.

6.3 Software

In order to implement and execute the code of this project, it has been
necessary to prepare a specific environment where the required packages have
been installed. Annex Installation manual provides a detailed explanation of
setting it up.

The following subsections name and describe each tool.

6.3.1 Python 3.9.7

Python (Figure 6.1) is a high-level, interpreted, general-purpose program-
ming language. Its design philosophy emphasizes code readability with the use
of significant indentation.

Benefits that make Python the best fit for machine learning and AI-based
projects include simplicity and consistency, access to great libraries and frame-
works for AI and machine learning (ML), flexibility, platform independence,
and a wide community.

Figure 6.1: Python logo. Source: Python Software Foundation, 2022.

6.3. Software 41

6.3.2 Anaconda

Anaconda (Figure 6.2) is a distribution of the Python and R program-
ming languages for scientific computing (data science, machine learning ap-
plications, large-scale data processing, predictive analytics, etc.), that aims to
simplify package management and deployment.

One of its advantages is that Anaconda makes the task of installing li-
braries and packages very easy thanks to its feature of creating independent
environments.

Figure 6.2: Anaconda logo. Source: Anaconda, Inc.

6.3.3 Jupyter Notebook

Jupyter Notebook (Figure 6.3) is a web-based interactive computing plat-
form. The web application can be used to create and share documents that
contain live code, equations, visualizations, and text. It comes already installed
with Anaconda.

Figure 6.3: Jupyter Notebook logo. Source: Project Jupyter.

6.3.4 Google Colab

Google Colab (Figure 6.4) allows anybody to write and execute arbitrary
python code through the browser, and is especially well suited to machine
learning, data analysis and education. More technically, Colab is a hosted
Jupyter notebook service that requires no setup to use, while providing access
free of charge to computing resources including GPUs.

42 Chapter 6. Studies and decisions

Figure 6.4: Google Colab logo. Source: Google.

6.3.5 CUDA 11.4

CUDA (Figure 6.5) is a parallel computing platform and programming
model developed by NVIDIA for general computing on graphical processing
units (GPUs). With CUDA, developers are able to dramatically speed up
computing applications by harnessing the power of GPUs.

Figure 6.5: CUDA logo. Source: Nvidia Corporation.

6.3.6 CuDNN 8.2.4

The NVIDIA CUDA Deep Neural Network library (cuDNN) (Figure 6.6)
is a GPU-accelerated library of primitives for deep neural networks. cuDNN
provides highly tuned implementations for standard routines such as forward
and backward convolution, pooling, normalization, and activation layers.

Figure 6.6: cuDNN logo. Source: Nvidia Corporation.

6.3. Software 43

6.3.7 TensorFlow 2.8

TensorFlow (Figure 6.7) is a free and open-source software library for ma-
chine learning and artificial intelligence. It can be used across a range of tasks
but has a particular focus on training and inference of deep neural networks.

The main reasons for using TensorFlow are:

• TensorFlow provides an accessible and readable syntax which is essential
for making these programming resources easier to use.

• TensorFlow provides excellent functionalities and services when com-
pared to other popular deep learning frameworks.

• TensorFlow is a low-level library which provides more flexibility.

Figure 6.7: TensorFlow logo. Source: Google Brain Team.

6.3.8 Keras

Keras (Figure 6.8) is an open-source software library that provides a
Python interface for artificial neural networks. Keras acts as an interface for
the TensorFlow library.

It contains numerous implementations of commonly used neural-network
building blocks such as layers, objectives, activation functions, optimizers, and
a host of tools to make working with image and text data easier to simplify
the coding necessary for writing deep neural network code.

44 Chapter 6. Studies and decisions

Figure 6.8: Keras logo. Source: Google Brain Team.

6.3.9 Numpy

NumPy (Figure 6.9) is a library for the Python programming language,
adding support for large, multi-dimensional arrays and matrices, along with
a large collection of high-level mathematical functions to operate on these ar-
rays.

It has been used as a data structure to store the images in the right format.
Plus, it provides many functions to work with numpy arrays.

Figure 6.9: Numpy logo. Source: Community project.

6.3.10 Matplotlib

Matplotlib (Figure 6.10) is a plotting library for the Python program-
ming language and its numerical mathematics extension NumPy. It provides
an object-oriented API for embedding plots into applications using general-
purpose GUI toolkits like Tkinter, wxPython, Qt, or GTK. There is also a
procedural "pylab" interface based on a state machine (like OpenGL), de-
signed to closely resemble that of MATLAB, though its use is discouraged.

In this project, it has been used to display the original images and its
transformations after data augmentation.

6.3. Software 45

Figure 6.10: Matplotlib logo. Source: The Matplotlib Development team.

6.3.11 Seaborn

Seaborn (Figure 6.11) is a Python data visualization library based on mat-
plotlib. It provides a high-level interface for drawing attractive and informative
statistical graphics. It has been used to plot the heat maps regarding confu-
sion matrices.

It has been used to create the heat maps related to the confusion matrices.

Figure 6.11: Seaborn logo. Source: Michael Waskom

6.3.12 Pandas

Pandas (Figure 6.12) is a software library written for the Python program-
ming language for data manipulation and analysis. In particular, it offers data
structures and operations for manipulating numerical tables and time series.
It is free software released under the three-clause BSD license.

It has been used to store the metrics of each model in a csv.

46 Chapter 6. Studies and decisions

Figure 6.12: Pandas logo. Source: The pandas developers.

6.3.13 Sklearn

Sklearn (Figure 6.13) is a free software machine learning library for the
Python programming language. It features various classification, regression
and clustering algorithms including support-vector machines, random forests,
gradient boosting, k-means and DBSCAN, and is designed to interoperate
with the Python numerical and scientific libraries NumPy and SciPy.

It has been used to calculate the metrics on the test set after training the
model.

Figure 6.13: Sklearn logo. Source: The scikit-learn developers.

6.3.14 cv2

cv2 is the module import name for opencv-python. OpenCV (Open Source
Computer Vision Library) (Figure 6.14) is an open source computer vision and
machine learning software library. OpenCV was built to provide a common
infrastructure for computer vision applications and to accelerate the use of
machine perception in the commercial products.

It has been used to read the images, resize them and normalize them.

6.3. Software 47

Figure 6.14: OpenCV logo. Source: OpenCV team.

6.3.15 Gimp

Gimp (Figure 6.15) is a free and open-source raster graphics editor used
for image manipulation (retouching) and image editing, free-form drawing,
transcoding between different image file formats, and more specialized tasks.
It is not designed to be used for drawing, though some artists and creators
have used it for such.

It has been used for customizing all the diagrams and other figures added
to the documentation.

Figure 6.15: Gimp logo. Source: GIMP Development Team.

6.3.16 LATEX

LATEX (Figure 6.16) is a high-quality typesetting system; it includes fea-
tures designed for the production of technical and scientific documentation.
LaTeX is the de facto standard for the communication and publication of sci-
entific documents. LaTeX is available as free software.

It has been used for writing the documentation.

48 Chapter 6. Studies and decisions

Figure 6.16: LATEX logo. Source: the LATEX project.

Chapter 7

Analysis and design

This chapter is devoted to analyze which parts of the project are of deep
importance, such as the source of data or which parameters must be taken
into account for training, and to design a diagram or solution that provides
answers to these matters. This chapter is strongly related to the methodology
explained previously, but provides more details about the implementation.

7.1 Data set

A data set of 2,000 images (Figure 7.1) is used for training and evaluating
the deep learning models presented in this project. The set of 2,000 colonscopy
images contains 1,000 images of unique polyps, of all sizes and morphologies,
and 1,000 images without polyps. The data set is perfectly balanced. The
data set includes both white light and NBI images, and covers all portions of
the colorectum, including retro-views in the rectum and cecum, appendiceal
orifice, and ileocecal valve. We deliberately and randomly included features
such as forceps, snares, cuff devices, debris, melanosis coli, and diverticula
in both polyp and non-polyp images in a balanced fashion, to prevent the
machine learning system from associating the appearance of tools with the
presence of polyps. The images were stored at a resolution of 640x480 pixels.

Figure 7.1: Examples of our data set. Top row: images containing a polyp,
bottom row: non-polyp images. Three pictures on the left were taken using
NBI (narrow band imaging) and three pictures on the right contain tools
(e.g. biopsy forceps, cuff devices, etc.) that are commonly used in screening
colonoscopy procedures.

50 Chapter 7. Analysis and design

In addition, pre-trained models, i.e. VGG16, ResNet50, DenseNet121, used
the ImageNet challenge data set implicitly to pre-train the weights. The Im-
ageNet challenge data set contains 1.2 million natural images of objects like
boats, cars, and dogs, but no medical images. We reasoned that many of the
fundamental features learnable on this data set will be transferable to the task
of detecting polyps and thus use it to pre-initialize the weights of the models.

7.2 Pipeline

Figure 7.2: Pipeline of our system.

Figure 7.2 illustrates the pipeline we designed for this project, which was
used as a guide to organize the steps of the experimental process. The dif-
ferent steps can be summarized in three parts. The first one is about data
processing; reading the images and treating them before training. The second
group encloses the training process for classifying images, which is the most
elaborate part. And finally, the third one is about analyzing the results and
creating an ensemble that boosts the performance of the pre-trained models.

7.3. Hyperparameter optimization 51

The data set of 2,000 colonoscopy images provided by the University of
California, Irvine, is stored locally, in other words, in our computer. It means
that there is no existence of a data base to retrieve such images, but it is
necessary to structure the data in different directories. This way is easier to
load the data to the working station. Once the images are organized, the next
step is to read them and pre-process them. By pre-processing we understand
resizing the images and normalizing their pixels to a range of 0 to 1. Sequen-
tially, the data must be split into train set and test set. Thus, the algorithm
of K-fold cross validation is run. The k selected for cross validation is five
because, despite that the default is usually ten, it was the limit threshold that
the GPU memory could support.

The training consists of 4 architectures which are trained independently
among the same train set under the task of classifying polyps and non-polyp
images. One of these CNNs is created by scratch thanks to the layers, functions
and other components provided by the Keras library that make it possible to
build a model. The other three models are pre-trained by unfreezing some of
their layers. These layers are then trained using the images belonging to our
data set, and the models are saved locally for later. When training, the train
test is expanded by applying the data augmentation technique. There are four
types of transformations: vertical and horizontal flip, rotation and zoom.

The final blocks are devoted to visualize the results after evaluating the
models on the test set and, if they are acceptable, create an ensemble that
merges the three pre-trained models into one with better accuracy. The ways
of visualizing data are the confusion matrix and the AUC-ROC curve.

7.3 Hyperparameter optimization

When training a model, the values of the hyperparameters play a big role.
Hyperparameters are the variables which determine the network structure
and how the network is trained. These hyperparameters are independent of
the model and they cannot be directly trained from the data. They are learnt
during training when we optimize a loss function. Therefore, there are tech-
niques to optimize the hyperparameters that help to achieve better results.

There are many hyperparameters that can be chosen for optimization, and
they vary depending on the type of neural network:

52 Chapter 7. Analysis and design

• Number of neurons

One hyperparameter is the number of neurons in every hidden layer, ex-
cept the last one, which is related to the number of classes. The number
of neurons should be adjusted to the solution complexity. Adding more
neurons to a layer increases the complexity of the model. However, it
has two sides. On one hand, the model is prone to predict better since
it has more capability. On the other hand, the number of trainable pa-
rameters can explode and make it impossible to train the model because
of a matter of time and memory.

• Activation function

The activation function in each layer can be also considered a hyper-
parameter. The input values moving from a layer to another layer keep
changing according to the activation function. The activation function
decides how to compute the input values of a layer into output values.
Generally, the rectifier activation function is the most popular, combined
with Sigmoid or Softmax in the last layer.

• Optimizer

The layers of a neural network are compiled and an optimizer is assigned.
The optimizer is responsible for changing the learning rate and weights
of neurons in the neural network to reach the minimum loss function.
The optimizer is very important to achieve the highest possible accuracy
or minimum loss.

• Learning rate

One of the hyperparameters in the optimizer is the learning rate. Learn-
ing rate controls the step size for a model to reach the minimum loss
function. A higher learning rate makes the model learn faster, but it
may miss the minimum loss function. A lower learning rate gives a bet-
ter chance to find a minimum loss function. As a tradeoff lower learning
rate needs higher epochs, or more time and memory capacity resources.

As shown in Figure 7.3, a low learning rate slows down the learning pro-
cess but converges smoothly. Larger learning rate speeds up the learning
but may not converge.

• Number of epochs

The number of times a whole dataset is passed through the neural net-
work model is called an epoch. One epoch means that the training data

7.3. Hyperparameter optimization 53

set is passed forward and backward through the neural network once.
A too-small number of epochs results in underfitting because the neural
network has not learned enough. The training data set needs to pass
multiple times or multiple epochs are required. On the other hand, too
many epochs will lead to overfitting where the model can predict the
data very well, but cannot predict new unseen data well enough. The
number of epochs must be tuned to gain the optimal result.

• Batch size

The batch size is a hyperparameter that defines the number of samples
to work through before updating the internal model parameters. For
instance, if our model is trained on 1,000 images and the batch size is
ten, it means that ten images will be passed as a group, or as a batch,
at one time to the network.

It has been observed in practice that when using a larger batch there is
a significant degradation in the quality of the model, as measured by its
ability to generalize [Keskar 2016].

The hyperparameters mentioned are only a few. The number of dropout
layers, the weight initialization, the pool size or the configuration of early stop-
ping are also hyperparameters that can be included in the optimization. Thus,
we realize that the total number of hyperparameters, together with the values
that they can adopt, result in a huge space of combinations which makes it
almost impossible to do it manually.

A wise way of optimizing these hyperparameters is using an algorithm
called “Grid search”. Essentially, we divide the domain of the hyperparame-
ters into a discrete grid. Then, we try every combination of values we previ-
ously chose on this grid, calculating some performance metrics using cross-
validation. The point of the grid that maximizes the average value in cross-
validation, is the optimal combination of values for the hyperparameters. How-
ever, Grid search is an exhaustive algorithm that spans all the combinations
so it can find the best point in the domain. Hence, it is very slow, and some-
times it is more convenient to use Random search, a variation of gird search
that only evaluates some random combinations.

54 Chapter 7. Analysis and design

Figure 7.3: Comparison between learning rates.

Our research group created “Sherpa” [Hertel 2020], a software exclusively
developed for optimizing hyperparameters. Nevertheless, tuning hyperparam-
eters is a complex task that requires time. This time can be reduced if the
algorithm is split into different processes and run in parallel. In order to run
the algorithm in parallel, it is necessary to have a cluster of GPUs, something
we do not have access to. Therefore, this option was discarded.

In light of the above, we decided to choose a sub set of hyperparameters
and a range of values to combine them manually and test them on fold 1.
Table 7.1 provides a summary of the hyperparameters for optimization and
their range of values.

Hyperparameters Range
Learning rate 10−3, 10−4, 10−5

Optimizer Adam, SGD
Batch size 8, 16, 32
Epochs 15, 30, 60

Table 7.1: Hyperparameters that were selected for optimization, together with
the range of values they could take.

The resulting hyperparameters with which each model is trained are shown
in Table 7.2. In contrast to the customized CNN, it is not necessary to train
any of the pre-trained models until epoch 60 because they already started
with a higher accuracy on both train and test set. Thus, after epoch 30, the
accuracy on the test set barely improved.

7.3. Hyperparameter optimization 55

Hyperparameters own CNN VGG16 ResNet50 DenseNet121
Learning rate 10−4 10−4 10−4 10−4

Optimizer Adam Adam Adam Adam
Batch size 16 16 16 16
Epochs 60 30 30 30

Table 7.2: Hyperparameters selected for each model

Chapter 8

Implementation and results

This chapter describes the experiments carried out with the finality of elab-
orating a CAD system, based on CNNs, which has the capability of detecting
whether a colonoscopy image contains a polyp or not. Firstly, we introduce
how the images are read and pre-processed before they are fed to a model.
After that, the training implementation is explained in detail, focusing in each
architecture, and describing which techniques and parameters have been cho-
sen to improve the performance of each CNN. Finally, the results are presented
in a illustrative way, and compared between all the models tested.

8.1 Data loading and preprocessing

The department of Medicine at the University of California, Irvine, pro-
vided a data set of 2,000 colonoscopy images well balanced of polyps and
non-polyps [1,000, 1,000], as described in 7.1. These images were received
in two directories named “polyp” and “non_polyp”, and saved locally in our
computer.

8.1.1 Preparing data for K-fold cross validation

The first step was to divide locally the data set into k folders containing
the same amount of images from each class. The reason behind this is to train
the models doing k-fold cross validation. Despite the fact that sklearn already
provides some methods to do so, our purpose was to always use the same
folders. Otherwise, the models would be trained using a different distribution
of images for training and testing, which would make it impossible to compare
models. It could have been done manually, but since we wanted to test differ-
ent k in K-fold cross validation, it was clever to create a script that could do
that for us.

The script receives as parameters the number of folds and the path to the
data set directory:

8.1. Data loading and preprocessing 57

./kfold_split -f 5 -d ./data

and it creates a fold in the father’s directory of the data set with the
structure shown in Figure 8.1. All the images are distributed randomly.

Figure 8.1: Structure of the sub-directories requested to perform 5-fold cross
validation. This is the result after runing the script kfold_split

Considering that k-fold cross validation takes one fold as test set for each
iteration, the data was distributed in the way presented in Table 8.1 and Table
8.2.

POLYP NON-POLYP TOTAL
TRAIN 800 800 1600
TEST 200 200 400
TOTAL 1000 1000 2000

Table 8.1: Distribution of images in train and test set.

POLYP NON-POLYP TOTAL
TRAIN 40% 40% 80%
TEST 10% 10% 20%
TOTAL 50% 50% 100%

Table 8.2: Percentage of images in train and test set.

58 Chapter 8. Implementation and results

8.1.2 Loading data

The second task was loading the data on our software. A first approach
was to create a 2D array, where each row represented a fold, and each image
was stored in a cell. That way, the algorithm of cross validation looped over
the array and chose which fold had to be treated as test set. However, we did
not have enough GPU memory for iterating and running the same model five
times continually. After fold four, the kernel died every time.

Figure 8.2: Function used to load the data set of colonoscopy images

The solution was to run the same code multiple times, changing the fold
that had to be selected for testing. Therefore, a new parameter “k” had to

8.1. Data loading and preprocessing 59

be passed to the function, and instead of using 2D arrays, four vectors were
necessary; two for a train set, and two for a test set. One vector stored the
images and the other one stored the labels to know whether the image at
position x had a polyp or not. Figure 8.2 presents the function for loading
images. Before saving an image, it is resized to a size 224x224, and the pixels
are normalized to a scale between 0 and 1. Figure 8.3 shows a grid of images
from the train test after they were loaded.

Figure 8.3: Set of images extracted from the train set after they were loaded.
Each image has on top the label describing whether it has a polyp or not.

In order to reduce the time of training for each fold, we made use of
four accounts in Google Colab, in addition to the environment set up in our
computer. That way, we could run the same model five times in parallel and
replicate the behaviour of k-fold cross validation by changing the distribution
of the train and test sets.

8.1.3 Data Augmentation

As it was explained in section 5, data augmentation is a technique that
creates more data by applying multiple transformations on an image. Some
examples of data augmentation that can be used in Keras are:

• Horizontal and vertical flips: An image flip means reversing the rows
or columns of pixels in the case of a vertical or horizontal flip respectively.

60 Chapter 8. Implementation and results

• Rotations: A rotation rotates the image clockwise by a given number
of degrees from 0 to 360.

• Zoom: A zoom augmentation randomly zooms the image in and either
adds new pixel values around the image or interpolates pixel values
respectively.

Horizontal and vertical flips, rotations in the range of 90°, and 10% of
zoom are the transformations that were selected (Figure 8.4). We tested other
options, such as cropping the center of the image, which was not a good
idea because polyps are not always in the center of the colonoscopy. Table
8.3 illustrates which transformations were approved or discarded after testing
them.

Figure 8.4: Example of images after data augmentation. Horizontal and ver-
tical flips, rotations in the range of 90°, and 10% of zoom were applied.

DATA AUGMENTATION
Approved Vert/Hor flipping Zoom +/- 10 Rotation 0 - 90°
Discarded Center cropping Color augmentation Gaussian blur

Table 8.3: List of transformations that were applied or discarded during data
augmentation.

8.2. Neural Network Architectures 61

8.2 Neural Network Architectures

From the four models trained in this project, one of the models was built
from scratch, whereas the other three were architectures that had been previ-
ously trained on the ImageNet data set.

8.2.1 Customized CNN

Keras provides an interface for artificial neural networks easy to use and
with a big number of useful components, such as layers, activation functions,
optimizers, etc. The first step is to define the structure of the CNN. It implies
arranging the layers, choosing the filters or neurons per layer, deciding which
activation functions must be used, etc.

Figure 8.5: Architecture of the CNN built from scratch.

62 Chapter 8. Implementation and results

There is no strict rule that must be followed when building a CNN. It
is a matter of trial and failure, but the order of the layers in a CNN must
follow a logical idea (i.e., start with a convolutional layer followed by another
convolutional or max pooling layer), and the complexity of the model must
be equal to the complexity of the problem, otherwise it is likely to overfit or
underfit.

Before reaching a final version, we started with a very simple model which
had only one fully-connected layer, without any dropout layer or regularizer.
The activation functions used were ReLU and Sigmoid. In total the first model
had 185 k trainable parameters, which also explained why the model under-
fitted. That is why more layers were added with the goal of increasing the
complexity of the model. It was a process of adding and removing layers, try-
ing a different number of neurons, etc.

Figure 8.5 shows the resulting model, which has in total over 13 million of
trainable parameters. In order to reduce the overfitting, we placed a dropout
layer with a probability of 10% after each max pooling layer. Moreover, we
introduced another dropout layer with a probability of 50% between the two
fully-connected layers. A l2 regularizer was also applied in the first fully con-
nected layer of 512 neurons.

8.2.2 VGG16

In order to use the VGG16 architecture, we had to import the model from
Keras (Figure 8.6). After that, the next step was to create an instance of the
model, specifying the following parameters:

• weights: the weights with which VGG16 is initialized. We chose Ima-
geNet.

• include_top: whether to include the three fully-connected layers at
the top of the network. In this case, the value is False because the top
layers had to be trained according to our data set.

• input_shape: optional shape tuple, only to be specified if include_top
is False. The shape of our images was (224, 224, 3), the same size of the
images that were used to optimize VGG16.

Figure 8.6: Importing VGG16 model.

8.2. Neural Network Architectures 63

Before tuning the top layers, we decided to unfreeze the four last convo-
lutional blocks of the model. The number of layers or which layers should be
unfrozen can be also considered as a hyperparameter. By unfreezing layers
we permit that more layers are trained using our data set, which can help to
get a better feature extraction and classification. However, there is the risk of
unfreezing too many layers and cause the network to overfit, leading to poor
generalization.

Finally, the output had to be adapted to our data set. It included four lay-
ers: an average pooling followed by two fully-connected layers with a dropout
layer between them. At the end, the number of trainable parameters was
7,605,761 out of 15,241,025. The code presented in Figure 8.7 shows the ex-
plained steps.

Figure 8.7: Fine-tuning the VGG16 model. First line is for initializing the
model. The next one unfreezes the last four blocks and, after that, the output
of the model is configured according to our data set.

8.2.3 ResNet50

Identically as VGG16, the first step was to import the model from Keras
(Figure 8.8). The way of initializing the model and the block of output layers
were both the same presented in VGG16.

Figure 8.8: Importing ResNet50.

64 Chapter 8. Implementation and results

However, the number of unfrozen layers was quite different. This time
we decided to unfreeze all the batch normalization layers. In addition, layer
165 to layer 174, the last 10 blocks, were also unfrozen after testing different
approximations. From a total number of 25,686,913 parameters, 6,611,841
were trainable. Figure 8.9 provides the code of fine-tuning ResNet50.

Figure 8.9: Fine-tuning the ResNet50 model. First line is for initializing the
model. The next one unfreezes the batch normalization layers. The layers
from 165 to the last one are also unfrozen. Finally, the output of the model is
configured according to our data set.

8.2.4 DenseNet121

For DenseNet121, we also imported the model from Keras (Figure 8.10).
The configuration of the model and the output layers remained the same as
VGG16.

Figure 8.10: Importing DenseNet121.

We adjusted the frozen layers by unfreezing the batch normalization layers
as we did in ResNet50, and this time the number of blocks that were unfrozen
at the top of the model was 110, from layer 317 to 426. The number of trainable

8.3. Training 65

parameters was 3,198,657 out of a total of 8,088,129. Figure 8.11 provides the
code of initializing the model, freezing the desired layers and adding the output
at the top.

Figure 8.11: Fine-tuning the DenseNet121 model. First line is for initializing
the model. The next one unfreezes the batch normalization layers. The layers
from 317 to the last one are also unfrozen. Finally, the output of the model is
configured according to our data set.

8.3 Training

After creating an instance of each model, we proceeded to train our four
models (customized CNN, VGG16, ResNet50, and DenseNet121). The train-
ing process is based on compiling the model and then applying a fit function
with the purpose of training the model in the task of finding patterns on the
data (Figure 8.12).

Figure 8.12: Example of how to compile and train a model in Keras.

66 Chapter 8. Implementation and results

Once trained, the model can be used to predict to which class, polyp or
non-polyp, an image belongs to. Moreover, there is information related to the
training which is returned in the form of a variable by the fit function. With
this variable, it is possible to plot the functions loss against epochs and accu-
racy against epochs for both train and test sets (Figure 8.13).

Figure 8.13: Example of plots for loss vs epochs and accuracy vs epochs
when training the customized CNN (Top) Example of plot of loss vs epochs,
(Bottom) Example of accuracy vs epochs.

Compiling and training functions receive a set of input parameters. These
parameters are considered hyperparameters and they configure how a model
must be trained. In Figure 8.12 we can appreciate which parameters we chose.

8.3. Training 67

The most significant parameters are:

• Callbacks

A callback is an object that can perform actions at various stages of
training. They automatize tasks after every training/epoch and aid in
controlling the training process. This includes stopping training when
reaching a certain accuracy/loss score, saving a model as a checkpoint
after each successful epoch, adjusting the learning rates over time, and
more.

As shown in Figure 8.14, we used early stopping and reduce LR on
Plateau. Early stopping permits us to stop training when a monitored
metric has stopped improving. The metric we selected was validation
loss with a patience of eight, which means that if there are eight epochs
with no improvement, the training stops.

The second callback, reduce LR on Plateau, reduces the learning rate
when a metric has stopped improving. Again, the metric selected was
validation loss, with a patience of three and a reduction factor of 10−3.

Figure 8.14: Declaration of callbacks.

• Optimizer and learning rate

After testing Adam and SGD as possible optimizers, Adam was the one
that showed better learning results for all models. The optimal learning
rate was 104. This learning rate was reduced in case that the validation
loss did not improve in three epochs because we used the callback reduce
LR on Plateau. Figure 8.15 shows the optimizer used in the four models.

Figure 8.15: Declaration of Adam optimizer.

68 Chapter 8. Implementation and results

• Batch size and epochs

As it was mentioned in section 7.3, the batch size was 16 for all the
models, and the number of epochs was 60 for the customized CNN, and
30 for the rest.

8.4 Ensemble

The purpose of fine-tuning and then training three architectures such as
VGG16, ResNet50 and DenseNet121, was to combine their results in to an
ensemble. By doing so we improved the accuracy of the model by 1.51% com-
pared to the model with better metrics. It may not seem significant, but it is
very complicated to achieve higher accuracy when a model surpasses the 90%
threshold.

Before ensembling, we trained each model applying 5-fold cross validation
as it was explained previously, then we saved each trained model locally with
the purpose of ensembling (Figure 8.16). After comparing the performance
of each architecture, we decided to do an ensembling of VGG16, ResNet50
and DenseNet121, excluding the customized CNN which was merely used for
understanding how CNNs and Keras work.

Figure 8.16: Code for saving in local a model that has been trained.

The idea was to create an ensemble for each fold, particularly five ensem-
bles, that combined the three models that were trained with the other folds.
We could not create a single ensemble combining all the models, otherwise
there would be images from the training set in the test set. Table 8.4 provides
an overview of how the ensembling was structured.

8.5. Results 69

Ensemble 1 Ensemble 2 Ensemble 3 Ensemble 4 Ensemble 5

Models
VGG16

ResNet50
DenseNet121

VGG16
ResNet50

DenseNet121

VGG16
ResNet50

DenseNet121

VGG16
ResNet50

DenseNet121

VGG16
ResNet50

DenseNet121

Train set

Fold 2
Fold 3
Fold 4
Fold 5

Fold 1
Fold 3
Fold 4
Fold 5

Fold 1
Fold 2
Fold 4
Fold 5

Fold 1
Fold 2
Fold 3
Fold 5

Fold 1
Fold 2
Fold 3
Fold 4

Test set Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Table 8.4: Models, train set and test set for each of the ensembles.

The code for ensembling was divided into three parts: loading the models,
combining the predictions of each model and evaluating the ensemble. The
function for loading the models receives a list of strings containing the name
of the models, loads them and returns a list of models. The sophisticated
part is ensembling. What this function (Figure 8.17) does is predict, for each
loaded model, the class of an image belonging to the test set and combines
the output of the three models by applying majority voting. For evaluating,
we used the confusion matrix and precision, recall and F1. All the results are
explained in next section.

Figure 8.17: Function for ensembling an odd list of models given the list of
images to predict.

8.5 Results

An important part of the research was focused on understanding the results
and visualizing them in a clear way. For this purpose, we used the metrics
explained in previous chapters, and we created the confusion matrix and AUC-
ROC curve to better analyze those values and extract solid conclusions.

8.5.1 Metrics

After training each model, we saved the metrics of interest in an excel file,
and we created a table for each CNN (Figure 8.18).

70 Chapter 8. Implementation and results

(a) Metrics customized CNN

(b) Metrics VGG16

(c) Metrics ResNet50

(d) Metrics DenseNet121

Figure 8.18: Summary of the evaluation metrics for every trained model. The
metrics selected are: Train accruacy, test accuracy, precision, recall, F1-score,
AUC, True positive, False positive, True negative, and False negative.

We calculated the mean and standard deviation of each metric because we
applied 5-fold cross validation, which means that at the end a model finished
having five values per metric. Moreover, we also stored the metrics of the
ensemble (Figure 8.19).

8.5. Results 71

Figure 8.19: Metrics ensemble of VGG16, ResNet50 and DenseNet121.

A helpful method of interpreting the results is comparing the test accuracy,
precision, recall and F1-score between the 5 different approaches, as done in
Figure 8.201.

Figure 8.20: Graphic of the metrics obtained from the customized CNN,
VGG16, ResNet50, DenseNet121 and the Ensemble.

We can appreciate that the metrics of the built CNN fall behind any metric
from the pre-trained models. The accuracy of the test set for our CNN is 89.9%
(∓ 0.63%), while for the other models it is around 93%, with some deviation.
The same happens with the other metrics, for instance recall. The customized
CNN struggles with detecting whether an image has a polyp when it actually
does. In contrast, the ensemble resulting from combining pre-trained models

1The values used in the graphic represent the mean. It is important to bear in mind that
the standard deviation is not represented.

72 Chapter 8. Implementation and results

works very well. It is what we expected since the ensemble is a combination
of the three models with best results.

Between VGG16, ResNet50 and DenseNet151, DenseNet151 is the one
with the highest test accuracy and least deviation, even though all three are
in the same line. Something odd with DenseNet151 is that it has problems
with detecting a polyp in an image since the recall is lower than the rest.

8.5.2 Confusion Matrix

(a) Confusion matrix customized CNN

(b) Confusion matrix ResNet50

(c) Confusion matrix VGG16

(d) Confusion matrix DenseNet121

Figure 8.21: Summary of the confusion matrix for each model that was trained

Figure 8.21 shows the confusion matrix, in the form of mean and standard
deviation, of each trained model. We can observe that VGG16 is the model
with the best rate of true positives, whereas the built CNN is the one with the
worst, 86.8% (∓ 7%). However, the rate of false positives for our own CNN is

8.5. Results 73

quite good, similar to ResNet50 and VGG16.

In the case of DenseNet121, this model has 3.9% (∓ 3.25%) of false posi-
tives, which means that the cases it predicts that an image has a polyp when
it does not are rare. Although DenseNet121 stands out in true negatives, it
is not the same to predict that someone has a polyp and discover later that
it was a false positive, compared to predicting that someone does not have a
polyp when they actually do. Therefore, it is better to utilize a model with a
low rate of false negatives.

Figure 8.22: Confusion matrix of the ensemble.

Figure 8.22 shows the confusion matrix for the ensemble of VGG16, ResNet50
and DenseNet121. On one hand, the rate of false negatives is 5.4% (∓ 5.59%),
almost as low as the best result achieved by VGG16. On the other hand, the
rate of false positives is 4.7% (∓ 4.55%), which is close to DenseNet121 and
less than any of the other models. Therefore, the ensemble is a midpoint be-
tween the best models. It improves the weakness of one model for predicting
one class by adding the vote of another model with better prediction skills.

8.5.3 AUC-ROC Curve

The last metrics we used were ROC curve and AUC2. Figure 8.23 presents
the ROC curves for our own CNN, VGG16, ResNet50, and DenseNet121. Each
graphic has six ROC cruves, five of them belong to the five folds that were
used for testing, while the last one is the mean of the previous ROC curves.
The legend provided also shows the AUC of each ROC curve.

2We can not provide a ROC curve for our ensemble because it is not a trained model, but
a calculus. In other words, some trained models give a prediction and then these predictions
are combined, that is an ensemble.

74 Chapter 8. Implementation and results

The interpretations we can make from the graphics is that our own CNN
has the worst ROC curve, especially for fold four and fold five. In contrast,
the rest of the models are along the same lines. All of them struggle with fold
four and fold five, but the AUC for them is more than 98%.

(a) ROC curve customized CNN

(b) ROC curve ResNet50

(c) ROC curve VGG16

(d) ROC curve DenseNet121

Figure 8.23: Summary of AUC-ROC curve for our own CNN, VGG16,
ResNet50, and DenseNet121.

Chapter 9

Conclusions

This project had the purpose of using deep learning methods to train a
system capable of detecting polyps on colonoscopy images. With that aim,
we trained four different models, one of them was built from scratch, whereas
the other three (VGG16, ResNet50, and DenseNet121) were pre-trained mod-
els that we fine-tuned for this particular project. From the three pre-trained
models, we made a combination of their predictions into an ensemble.

After carrying out the experiments, we concluded that when working with
a small data set it is better to rely on pre-trained models rather than build up a
model. Creating a model took us more time than selecting an architecture and
fine-tuning its layers. Even though we did not exhaust all the hyperparameter
options, the set of pre-trained models achieved a better accuracy and AUC
than our CNN (Table 9.1). That is why our model did not join the others when
creating an ensemble. However, our CNN achieved a precision of 91.97% (±
7.09%), not far from the 92% (± 6.59%) of VGG16.

own CNN VGG16 ResNet50 DenseNet121
Accuracy 88.79% (∓ 0.92%) 93.2% (∓ 2.55%) 93.44% (∓ 3.26%) 93.55% (∓ 2.26%)
AUC 95.82% (∓ 1.93%) 98.68% (∓ 0.68%) 98.45% (∓ 1.12%) 98.62% (∓ 0.84%)

Table 9.1: Accuracy and AUC for our own CNN, VGG16, ResNet50, and
DenseNet121.

Among VGG16, ResNet50 and DenseNet121, DenseNet121 was the model
with the highest accuracy, but only by a matter of decimals. In the case of
AUC, the three models were around 98%. However, the precision of DenseNet121
stood out among the rest with a value of 96.05% (∓ 3.26%), and for VGG16
was 92% (∓ 6.59%). In case of recall, it was the other way around and VGG16
surpassed all the others. The advantage of VGG16 is that it has a low rate of
false positive, less than ResNet50 and DenseNet121. This is very important
in a medical trial because the impact of predicting a false negative or a false
positive is not the same. A false positive means that the model predicts a
polyp when there is not, but a false negative is equal to predict that there is
no polyp when there is.

76 Chapter 9. Conclusions

It is important to consider the total number of paramaters that each of
our models have and how many of them are trainable. Table 9.2 provides a
summary of these values. Our own CNN was the one with more trainable pa-
rameters, but it also had the lowest accuracy. Whereas, DenseNet121 achieved
the highest accuracy with the lowest number of trainable parameters. There-
fore, there is no a confirmed relation between the number of parameters a
model has and how effective it is.

own CNN VGG16 ResNet50 DenseNet121
Params 13.5M 15.2M 25.6M 8M
Trainable params 13.5M 7.6M 6.6M 3.1M
Non-trainable
params 0 7.6M 19M 4.9M

Table 9.2: Comparison between parameters for our own CNN, VGG16,
ResNet50, and DenseNet121.

Regarding ensemble learning, we found combing models to be a useful
method to achieve a more accurate and predictive output. The accuracy of
our ensemble was 94.95% (∓ 2.28%), the highest among the others. Moreover,
the F1-score, a metric that combines precision and recall, was also the best
one with a value of 94.9%. Hence, we can say that ensemble learning was the
way to go in order to compensate the weakness of a model and obtain better
predictive performance than could be obtained from any of the algorithms
alone.

9.1 Summary of difficulties

Even though this work shows good results for the task of detecting polyps,
there are many other ideas or experiments that are worth researching. Here is
a brief description of some of them:

• The first problem was setting up the environment. NVIDIA drivers gen-
erally can cause problems when they are installed in Ubuntu. After in-
stalling the latest version of our drivers, the gnome was affected and it
was not possible to log in the system. Finally, after installing a the 470
version, everything worked fine.

• The main difficulty was the memory of our GPU. Even though the hyper-
parameters were adapted to the available memory, the kernel constantly
died. We tried to do k-fold cross validation in the same session but after
some epochs the process ran out of memory and stopped the execution,

9.1. Summary of difficulties 77

making it very hard to train a model. Therefore, we had to use Google
colab with the aim of achieving somehow “paralelalism”.

• At the beginning we added a resizing layer on every model. We soon
experimented that the model did well on classifying images belonging to
train set, but quite bad when they belonged to the test set. The reason
is because the images on the train set were totally different from the
ones in the test set because they were resized twice.

Chapter 10

Future work

The work done in this project has accomplished the objectives proposed
at the beginning. Nevertheless, there is some room left for improvement or
other paths that could be explored as a continuation to the present work.

This chapter contemplates which of these improvements could be done.
Here are some of them:

Firstly, hyperparameter optimization was done manually with a small
range of hyperparameters and values. This cast doubt as to whether or not
our selection was good enough or if there was a space of hyperparameters that
could have increased the predictive capability of a model. Hence, it would be
worth to spend time and resources on exploring more combinations by includ-
ing a hyperparameter optimization algorithm, such as Grid search.

Secondly, one improvement could be to test the model on colonoscopy
videos in a clinical setting. Despite how advanced artificial intelligence is, one
of the challenges that CAD systems face is their integration in the clinical
environment. Thus, an aggregation to this project could be to train the best
models with more data to later be tested on real time videos. If the results
were significant, the work could develop in a publication.

Finally, we selected pre-trained models that fit inside our time and compu-
tational power limitations. However, there are other architectures that have a
higher top-accuracy than any of the ones we tested, like EfficentNet. A pos-
sible line to continue this research from is to investigate which architectures
have been tested in similar works, and study the cost of training them versus
their accuracy.

Bibliography

[Bernal 2015] J. Bernal, F. J. Sánchez et al. WM-DOVA maps for accurate
polyp highlighting in colonoscopy: Validation vs. saliency maps from
physi- cians. Computerized Medical Imaging and Graphics, vol. 43,
pages 99–111, 2015. (Cited on page 4.)

[Bond 2015] A. Bond and S. Sarkar. New technologies and techniques to im-
prove adenoma detection in colonoscopy. World journal of gastroin-
testinal endoscopy, vol. 7(10), pages 969–980, 2015. (Cited on page 3.)

[D.A. Corley 2014] C.D. Jensen D.A. Corley et al. Adenoma detection rate
and risk of colorectal cancer and death. The New England journal of
medicine, vol. 370(14), pages 1298–1306, 2014. (Cited on page 3.)

[Grosse 2020] Roger Grosse. Lecture 9: Generalization, February 2020. (Cited
on page 25.)

[He 2016] K. He, X. Zhang, S. Ren and J. Sun. Deep Residual Learning for
Image Recognition. 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 770–778, 2016. (Cited on page 31.)

[Hertel 2020] Lars Hertel, Julian Collado, Peter Sadowski, Jordan Ott and
Pierre Baldi. Sherpa: Robust Hyperparameter Optimization for Ma-
chine Learning. SoftwareX, 2020. In press. (Cited on page 54.)

[H.Sung 2021] H.Sung, J. Ferlay et al. Global Cancer Statistics 2020:
GLOBOCAN Estimates of Incidence and Mortality Worldwide for
36 Cancers in 185 Countries. CA: a cancer journal for clinicians,
vol. 71(3), page 209–249, 2021. (Cited on page 2.)

[Huang 2016] Gao Huang, Zhuang Liu and Kilian Q. Weinberger. Densely
Connected Convolutional Networks. CoRR, vol. abs/1608.06993, 2016.
(Cited on page 32.)

[Institute 2021] Project Management Institute. Project management body of
knowledge. 2021. (Cited on page 38.)

[Keskar 2016] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal,
Mikhail Smelyanskiy and Ping Tak Peter Tang. On Large-Batch Train-
ing for Deep Learning: Generalization Gap and Sharp Minima. CoRR,
vol. abs/1609.04836, 2016. (Cited on page 53.)

80 Bibliography

[Kohli 2017] M.D. Kohli, R.M. Summers and J Geis. J. Medical Image Data
and Datasets in the Era of Machine Learning—Whitepaper from the
2016 C-MIMI Meeting Dataset Session. J Digit Imaging, vol. 30, pages
392–399, 2017. (Cited on page 7.)

[Liem 2018] B. Liem and N. Gupta. Adenoma detection rate: the perfect
colonoscopy quality measure or is there more? Transl Gastroenterol
Hepatol, vol. 3, page 19, 2018. (Cited on page 3.)

[Moreno 2018] J.F. León Moreno. ADR evaluation of screening colonoscopies
during 2016-2017 in a private health clinic in Peru. Endoscopy inter-
national open, vol. 6(11), pages E1304–E1309, 2018. (Cited on page 3.)

[Simonyan 2014] K. Simonyan and A. Zisserman. Very Deep Con-
volutional Networks for Large-Scale Image Recognition. CoRR,
vol. abs/1409.1556, 2014. (Cited on page 30.)

[S.J. Winawer 1993] A.G. Zauber S.J. Winawer et al. Prevention of colorec-
tal cancer by colonoscopic polypectomy. The New England journal of
medicine, vol. 329(27), pages 1977–1981, 1993. (Cited on page 3.)

[Society 022] American Cancer Society. Colorectal Cancer Facts
Figures 2020-2022, (Accessed: March 2022). Available at
https://www.cancer.org/content/dam/cancer-org/research/
cancer-facts-and-statistics/colorectal-cancer-facts-and-figures/
colorectal-cancer-facts-and-figures-2020-2022.pdf. (Cited on page 2.)

[Stauffer 022] CM. Stauffer and C. Pfeifer. Colonoscopy. (Accessed:
March 2022). Available at https://www.ncbi.nlm.nih.gov/books/
NBK559274/. (Cited on page 3.)

[Tajbakhsh 2015] N. Tajbakhsh, S. Gurudu and J. Liang. Automated polyp
detection in colonoscopy videos using shape and context information.
Medical Imaging, IEEE Transactions on, vol. PP, no. 99, pages 1–1,
2015. (Cited on page 4.)

[Turing 1950] A. M. Turing. I.—COMPUTING MACHINERY AND INTEL-
LIGENCE. Mind, vol. LIX, no. 236, pages 433–460, 10 1950. (Cited
on page 17.)

[Wittenberg 2020] T. Wittenberg and M. Raithel. Artificial Intelligence-
Based Polyp Detection in Colonoscopy: Where Have We Been, Where
Do We Stand, and Where Are We Headed? Visceral medicine, vol. 36,
pages 428–438, 2020. (Cited on page 4.)

https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/colorectal-cancer-facts-and-figures/colorectal-cancer-facts-and-figures-2020-2022.pdf
https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/colorectal-cancer-facts-and-figures/colorectal-cancer-facts-and-figures-2020-2022.pdf
https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/colorectal-cancer-facts-and-figures/colorectal-cancer-facts-and-figures-2020-2022.pdf
https://www.ncbi.nlm.nih.gov/books/NBK559274/
https://www.ncbi.nlm.nih.gov/books/NBK559274/

Appendix A

Installation manual

This appendix shows how to set up the working environment to run the
code developed in this project. The operating system of our machine is Ubuntu
20.04.2 LTS, thus, the instructions commented in the following sections are
compatible with Ubuntu, but they may vary for other operating systems.

A.1 DRIVERS

The first step is to install or update the drivers of your Nvidia GPU.
You can check which is the latest version compatible with your GPU on the
NVIDIA official website or look for the application “Software & updates”. Once
the application is opened, on the tap “Additional drivers”, you should be able
to see a list of the available drivers you can install. In our case, we installed
the release 470, one of the latest production branch releases of NVIDIA RTX
Driver (Figure A.1).

Figure A.1: Example of available drivers to install in a NVIDIA GeForce RTX
3050

After installing the drivers, you must restart your system. Then, if you
open a terminal and type the command nvidia-smi (Figure A.2), you should
be able to see which drivers are installed together with other information
related to the GPU. You can also use the graphic interface “NVIDIA X Server
Settings”.

https://www.nvidia.com/en-us/geforce/drivers/

82 Appendix A. Installation manual

Figure A.2: Drivers installed in our system

A.2 NVIDIA TOOLKIT & CuDNN

CUDA
The next step is to install the CUDA Toolkit by accessing the NVIDIA

website and selecting the options according to your operating system (Figure
A.3).

Figure A.3: Options to install CUDA

After this, you should be able to see the commands that you have to enter
in your terminal in order to install CUDA. To confirm whether CUDA is
working, run nvcc –version (Figure A.4).

https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads

A.2. NVIDIA TOOLKIT & CuDNN 83

Figure A.4: Command to check whether CUDA is installed

CuDNN
Beside CUDA, you also need to install CuDNN. The first step is to go to

the NVIDIA website and select “Download cuDNN”. They will ask you to log
in (having an NVIDIA account is a requirement to download CuDNN). Once
in, select which CuDNN you want to download depending on your CUDA
version. Since we have CUDA 11.4, we would download the v8.4.1, as shown
in Figure A.5.

Figure A.5: Command to check whether CUDA is installed

After downloading CuDNN, unzip the file and copy the contents of the
sub-folders to the path where you installed CUDA:

tar -xzvf cudnn-11.4-linux-x64-v8.4.1.tgz
sudo cp cuda/include/cudnn*.h /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn*.h
/usr/local/cuda/lib64/libcudnn*

https://developer.nvidia.com/cudnn

84 Appendix A. Installation manual

A.3 ANACONDA

We chose Anaconda because it comes with conda, a package, and environ-
ment manager. Anaconda includes Python, and over 150 scientific packages
and their dependencies.

Installing anaconda is very simple. The first step is to download the in-
staller from the Anaconda official website. Secondly, enter the following com-
mand on a terminal:

bash ~/Downloads/Anaconda3-2020.02-Linux-x86_64.sh

After this, Anaconda should be already installed. You can open the graphic
interface by typing anaconda-navigator on a terminal. From there it is pos-
sible to administrate the environments (Figure A.6), and install any library.
The same can be achieved via terminal.

Figure A.6: Anaconda graphic interface and its feature of administrating en-
vironments

The libraries that you should have installed in an anaconda environment
to run this project are:

• sklearn

• seaborn

https://www.anaconda.com/products/distribution#linux

A.3. ANACONDA 85

• matplotlib

• pandas

• opencv

• tensorflow

• keras

• numpy

All that is left is open jupyter notebook, which comes with Anaconda, on
a browser and choose in which environment you want to run the particular
notebook.

Figure A.7: Jupyter notebook opened in a browser.

	List of abbreviations
	List of Figures
	List of Tables
	Introduction
	Problem statement
	Project objectives
	Statement of originality
	Personal motivation
	Outline

	Feasibility study
	Technical study
	Economical study
	Equipment cost
	Human resources
	Legal study

	Methodology
	Methods
	Development

	Thesis planning
	Planned tasks
	Estimated timeline

	Background theory
	Artificial Intelligence
	Machine learning
	Deep learning
	Deep Neural Networks
	Convolutional Neural Networks

	Methods to combat overfitting
	Early stopping
	Regularization
	Dropout layer
	Data augmentation
	Transfer learning
	Ensemble

	Metrics and assessment
	Confusion matrix
	AUC-ROC Curve
	K-fold Cross-validation

	Studies and decisions
	System requirement
	Functional requirements
	Non-functional requirements

	Hardware
	Software
	Python 3.9.7
	Anaconda
	Jupyter Notebook
	Google Colab
	CUDA 11.4
	CuDNN 8.2.4
	TensorFlow 2.8
	Keras
	Numpy
	Matplotlib
	Seaborn
	Pandas
	Sklearn
	cv2
	Gimp
	LaTeX

	Analysis and design
	Data set
	Pipeline
	Hyperparameter optimization

	Implementation and results
	Data loading and preprocessing
	Preparing data for K-fold cross validation
	Loading data
	Data Augmentation

	Neural Network Architectures
	Customized CNN
	VGG16
	ResNet50
	DenseNet121

	Training
	Ensemble
	Results
	Metrics
	Confusion Matrix
	AUC-ROC Curve

	Conclusions
	Summary of difficulties

	Future work
	Bibliography
	Installation manual
	DRIVERS
	NVIDIA TOOLKIT & CuDNN
	ANACONDA

