

Treball final de grau

Estudi: Grau en Enginyeria Informàtica

Títol: Aplicació per la gestió de reserves d’un gimnàs

Document: Memòria

Alumne: Miquel de Domingo i Giralt

Tutor: Josep Soler Masó

Departament: Informàtica, matemàtica aplicada i estadística

Àrea: Llenguatges i sistemes informàtics

Convocatòria (mes/any): Juny 2022

Hubbl, a gym bookings manager

Miquel de Domingo i Giralt

To my family, who have given me inconditional support. To Joana, for helping me

and being part of the application aswell.

Contents

1 Introduction,motivation, purpose and project goals 1

1.1 Introduction . 1

1.2 Motivation . 1

1.3 Project goals . 1

2 Viability 3

2.1 Techical resources . 3

2.2 Echonomical costs . 3

3 Methodology 4

3.1 Introduction . 4

3.2 Project management: PMBOK . 4

3.3 Development methodology . 4

4 Framework and previous concepts 7

4.1 Introduction . 7

4.2 Gym overview . 7

4.3 Development overview . 7

5 Requirements specifications 9

5.1 Introduction . 9

5.1.1 Purpose . 9

5.1.2 Definitions . 9

5.2 Overall description . 10

5.3 Functional requirements . 10

5.3.1 Introduction . 10

5.3.2 Landing app - Product information 10

5.3.3 Core app - User registration 11

5.3.4 Core app - Home page . 11

5.3.4.1 Virtual gyms . 11

5.3.4.2 Gym zones . 12

5.3.4.3 Class gym zone schedule 12

5.3.5 Core app - Events page . 13

5.3.6 Core app - Workers page . 13

5.3.7 Core app - Trainers page . 13

5.3.8 Core app - Clients page . 14

5.3.9 Core app - Settings page . 14

5.3.10 Core app - Analysis page . 14

5.3.11 Client app . 15

5.3.12 Client app - Settings page . 15

5.4 Non-functional requirements . 16

5.5 Requirements dependency matrix . 16

6 Planning 18

6.1 Working packages . 18

6.1.1 Project management . 18

- iii -

Contents

6.1.2 Requirements . 20

6.1.3 Analysis and design . 21

6.1.4 Testing . 22

6.1.5 Development . 22

6.1.5.1 Development env . 22

6.1.5.2 Api application . 24

6.1.5.3 Core application . 36

6.1.5.4 Client application . 44

6.1.5.5 Landing application 48

6.2 Traceability matrix . 48

6.3 Roadmap . 50

7 Studies and decisions 52

7.1 Introduction . 52

7.2 Project structure . 52

7.2.1 TDD and CI . 52

7.2.2 Nx . 53

7.3 Technology stack . 54

7.3.1 TypeScript . 54

7.3.2 Front end - Web applications 55

7.3.2.1 NextJS . 55

7.3.2.2 Mui . 57

7.3.3 Back end - Server application 57

7.3.3.1 Database . 57

7.3.3.2 ExpressJS . 58

7.3.3.3 TypeORM . 58

7.3.4 Tests . 58

7.3.4.1 Unit testing - Jest . 59

7.3.4.2 Unit testing - @testing-library 59

7.3.4.3 Client e2e testing - Cypress 60

7.3.4.4 Server e2e testing - Jest and Supertest 60

8 Analysis and system design 61

8.1 Use case diagram . 61

8.2 Database diagram . 63

8.2.1 Introduction . 63

8.2.2 Diagram . 63

8.2.2.1 Introduction . 64

8.2.2.2 Person . 65

8.2.2.3 Owner . 65

8.2.2.4 Worker . 65

8.2.2.5 Trainer . 67

8.2.2.6 Client . 67

8.2.2.7 Gym . 68

8.2.2.8 VirtualGym . 68

8.2.2.9 GymZone . 69

8.2.2.10 Calendar . 69

8.2.2.11 CalendarDate . 70

- iv -

Contents

8.2.2.12 EventType . 70

8.2.2.13 EventTemplate . 70

8.2.2.14 Event . 71

8.2.2.15 EventAppointment and CalendarAppointment 72

8.3 User interfaces . 73

9 Implementation and trials 80

9.1 Introduction . 80

9.2 Organizing the idea . 80

9.3 Application development . 80

9.3.1 Continuous integration . 81

9.4 Trials . 83

10 Deployment and results 84

10.1 Deployment . 84

10.2 Results . 84

10.2.1 Core application . 84

10.2.1.1 Authentication . 85

10.2.1.2 Dashboard page . 86

10.2.1.3 Virtual gyms . 87

10.2.1.4 Gym zone . 88

10.2.1.5 Events . 91

10.2.1.6 Workers . 92

10.2.1.7 Trainers . 94

10.2.1.8 Clients . 95

10.2.1.9 Settings . 95

10.2.2 Client application . 96

10.2.2.1 Authentication . 96

10.2.2.2 Dashboard page . 97

10.2.2.3 Virtual gyms . 98

10.2.2.4 Gym zone . 99

10.2.2.5 Appointments . 99

10.2.2.6 Settings . 101

11 Conclusions 102

12 Future work 103

- v -

List of Figures

3.1 5 steps of the Jira workflow . 5

6.1 Structure of the working packages at the root level 18

6.2 Api application working packages diagram 23

6.3 Api application working packages diagram 24

6.4 Core application working packages diagram 37

6.5 Client application working packages diagram 45

6.6 Expected application development roadmap. 51

7.1 Nx logo . 53

7.2 JavaScript and TypeScript logos . 55

7.3 NextJS logo . 55

7.4 Mui library’s logo . 57

7.5 PostgreSQL’s logo . 57

7.6 ExpressJS’s logo . 58

7.7 TypeORM’s logo . 58

7.8 Jest’s logo . 59

7.9 Testing library’s logo . 59

7.10 Cypress’s logo . 60

8.1 Owner’s core application use case diagram 61

8.2 Workers’s core application use case diagram 62

8.3 Client’s client application use case diagram 62

8.4 Database diagram . 64

8.5 First step of the sign up page . 74

8.6 Second step of the sign up page . 74

8.7 View of the login page . 75

8.8 Dashboard page, displaying a summary of the gym’s information . . 75

8.9 Virtual gym’s page, which is accessed using the left navigation bar . 76

8.10 Single virtual gym view, accessed by clicking on a virtual gym 76

8.11 Class gym zone page, accessed by clicking on any class-type gym

zone . 77

8.12 Event’s page, which is accessed using the left navigation bar 77

8.13 Trainer’s page, which is accessed using the left navigation bar . . . 78

8.14 Worker’s page, which is accessed using the left navigation bar . . . 78

8.15 Client’s page, which is accessed using the left navigation bar 79

8.16 Settings page . 79

9.1 Example of the comment generated by the CodeCov command . . . 82

10.1 Step one of the sign up process . 85

10.2 Step two of the sign up process . 85

10.3 Log in page . 86

10.4 First screenshot of the dashboard page 86

10.5 Second screenshot of the dashboard page 87

10.6 Virtual gyms page . 87

10.7 Virtual gym page . 88

- vi -

List of Figures

10.8 Creation of a virtual gym . 88

10.9 View of a calendar with events of the same event type 89

10.10 View of a calendar with events of different event type 89

10.11 Virtual gym page . 90

10.12 Creation of an event for a calendar . 90

10.13 Events page with event types and event templates 91

10.14 Creation of an event type . 91

10.15 Creation of an event template . 92

10.16 Workers view without a worker selected 92

10.17 Workers view with a worker selected 93

10.18 Creation of a worker . 93

10.19 Trainers page . 94

10.20 Creation of a trainer . 94

10.21 Clients page . 95

10.22 Creation of a client . 95

10.23 Settings page . 96

10.24 Sign up page . 96

10.25 Log in page . 97

10.26 Dashboard page . 97

10.27 Virtual gyms page . 98

10.28 Virtual gym page . 98

10.29 View of a gym zone . 99

10.30 Creation of an appointment to an event 99

10.31 Confirmation of an event appointment 100

10.32 Creation of an appointment to a calendar 100

10.33 Confirmation of a calendar appointment 101

10.34 Settings page . 101

- vii -

List of Tables

2.1 Total costs table . 3

6.1 Package one’s table - Project management 19

6.2 Package two’s table - Documentation and memory 19

6.3 Package three’s table - Chronogram 19

6.4 Package four’s table - Planning . 19

6.5 Package five’s table - Functionalities specification 20

6.6 Package six’s table - Functional requirements 20

6.7 Package seven’s table - Non-functional requirements 21

6.8 Package eight’s table - Requirements dependency matrix 21

6.9 Package nine’s table - User interfaces designs 21

6.10 Package ten - Database design . 22

6.11 Package eleven’s table - E2e testing 22

6.12 Package twelve’s table - Repository set up 23

6.13 Package thirteen’s table - Dockerized development environment . . 23

6.14 Package fourteen’s table - Continuous integration 24

6.15 Package fifteen’s table - Database configuration 25

6.16 Package sixteen’s table - Register users 25

6.17 Package seventeen’s table - Update users 25

6.18 Package eighteen’s table - User login 26

6.19 Package nineteen’s table - Create workers 26

6.20 Package twenty’s table - Update workers 26

6.21 Package twenty-one’s table - Delete workers 27

6.22 Package twenty-two’s table - Fetch workers 27

6.23 Package twenty-three’s table - Create trainers 27

6.24 Package twenty-four’s table - Update trainers 28

6.25 Package twenty-five’s table - Delete trainers 28

6.26 Package twenty-six’s table - Fetch trainers 28

6.27 Package twenty-seven’s table - Create virtual gyms 29

6.28 Package twenty-eight’s table - Update virtual gyms 29

6.29 Package twenty-nine’s table - Delete virtual gyms 29

6.30 Package thirty’s table - Delete virtual gyms 30

6.31 Package thirty-one’s table - Create gym zones 30

6.32 Package thirty-two’s table - Update gym zones 30

6.33 Package thirty-three’s table - Delete gym zones 31

6.34 Package thirty-four’s table - Fetch gym zones 31

6.35 Package thirty-five’s table - Create event types 31

6.36 Package thirty-six’s table - Update event types 32

6.37 Package thirty-seven’s table - Delete event types 32

6.38 Package thirty-eight’s table - Fetch event types 32

6.39 Package thirty-nine’s table - Create event templates 33

6.40 Package forty’s table - Update event templates 33

6.41 Package forty-one’s table - Delete event templates 33

6.42 Package forty-two’s table - Fetch event templates 34

6.43 Package forty-three’s table - Create events 34

6.44 Package forty-four’s table - Update events 34

- viii -

List of Tables

6.45 Package forty-five’s table - Delete events 35

6.46 Package forty-six’s table - Fetch events 35

6.47 Package forty-seven’s table - Create appointments 35

6.48 Package forty-eight’s table - Update appointments 36

6.49 Package forty-nine’s table - Delete appointments 36

6.50 Package fifty’s table - Fetch appointments 36

6.51 Package fifty-one’s table - Sign up page 37

6.52 Package fifty-two’s table - Log in page 37

6.53 Package fifty-three’s table - Page structure (Dashboard) 38

6.54 Package fifty-four’s table - Page content and interactivity 38

6.55 Package fifty-five’s table - Page structure (Virtual gyms) 38

6.56 Package fifty-six’s table - List of virtual gyms (Virtual gyms) 38

6.57 Package fifty-seven’s table - List of virtual gyms (Virtual gyms) . . . 39

6.58 Package fitfty-eight’s table - Page structure (Virtual gym) 39

6.59 Package fifty-nine’s table - List of gym zones (Virtual gym) 39

6.60 Package sixty’s table - Create, edit and delete gym zones (Virtual gym) 39

6.61 Package sixty-one’s table - Page structure (Class gym zone) 40

6.62 Package sixty-two’s table - Calendar of events (Class gym zone) . . 40

6.63 Package sixty-three’s table - Create, edit and delete events (Class

gym zone) . 40

6.64 Package sixty-four’s table - Create, edit and delete appointments

(Class gym zone) . 40

6.65 Package sixty-five’s table - Page structure (Events) 41

6.66 Package sixty-six’s table - List of events and event tempaltes (Events) 41

6.67 Package sixty-seven’s table - Create, edit and delete events (Events) 41

6.68 Package sixty-eight’s table - Create, edit and delete events tem-

plates (Events) . 41

6.69 Package sixty-nine’s table - Page structure (Trainers) 42

6.70 Package seventy’s table - Table of trainers (Trainers) 42

6.71 Package seventy-one’s table - Table of trainers (Trainers) 42

6.72 Package seventy-two’s table - Page structure (Workers) 42

6.73 Package seventy-three’s table - Table of workers (Workers) 43

6.74 Package seventy-four’s table - Table of workers (Workers) 43

6.75 Package seventy-five’s table - Page structure (Trainers) 43

6.76 Package seventy-six’s table - Table of trainers (Trainers) 43

6.77 Package seventy-seven’s table - Table of trainers (Trainers) 44

6.78 Package seventy-eight’s table - Page structure (Settings) 44

6.79 Package seventy-nine’s table - Configure user settings (Settings) . 44

6.80 Package eighty’s table - Sign up page 45

6.81 Package eighty-one’s table - Log in page 45

6.82 Package eighty-two’s table - Page structure (Dashboard) 45

6.83 Package eighty-three’s table - Page content and interactivity 46

6.84 Package eighty-fourt’s table - Page structure (Virtual gyms) 46

6.85 Package eighty-five’s table - List of virtual gyms (Virtual gyms) . . . 46

6.86 Package eighty-six’s table - Page structure (Virtual gym) 46

6.87 Package eighty-seven’s table - List of gym zones (Virtual gym) . . . 47

6.88 Package eighty-eight’s table - Page structure (Class gym zone) . . 47

6.89 Package ninety’s table - Calendar of events (Class gym zone) 47

- ix -

List of Tables

6.90 Package ninety’s table - Create, edit and delete appointments (Class

gym zone) . 47

6.91 Package ninety-one’s table - Page structure (Settings) 48

6.92 Package ninety-two’s table - Configure user settings (Settings) . . . 48

6.93 Package ninety-three’s table - Landing page 48

- x -

1. Introduction,motivation,purposeand

project goals

1.1 Introduction

On November 2019 the first cases of a new virus were coming into light. With sim-

ilar symptomps as a regular flu, nobody would have imagined that the humanity

would be at the edge of collapsing. The weeks went by and within few months,

most countries of the world were completely shut down. It was not until the sum-

mer that people was able to go outside, again. Restaurants, hotels and any busi-

ness that relied on the clients for their survival, had to face many restrictions

imposed by the governors. One of such business where the gyms. The owners

had to limit the total capacity of their installations and classes. Most companies

had to find a new systemwhich helped them handle appointents, since nearly any

of them had an appointment system integrated in their respective applications.

1.2 Motivation

As a front-end engenieer and considering myself someone who really enjoys de-

signing and later developing user interfices, I realised that I had a great oportunity

in front of me in order to test myself. At my current job in Additio, a companywhich

develops applications for the teachers, I have had the opportunity to start learning

more about UI/UX. Nevertheless, I had to attach to creatain rules, in order to re-

spect the design system of the application. Now, however, I had the opportunity

of being responsible for each part of the process of developing an application:

from designing the database and impementing the API, to designing the UI and

implementing such design. Without constraints, I would have try and explore as

many technologies and systems as I felt like.

Furthermore, as a regular user of my gym’s booking application, I had few issues

with it. Even though I have only experienced one side of the application, as a

client, I believe that some parts could be improved, as in anything. One of such

parts are both the user interface and the user experience of it.

1.3 Project goals

The goal of this final degree project is to develop a full stack application, which

includes:

- Designing the database.

- Implementing an API in order to interact with the database.

- Briefly designing the user interface.

- Implement the required front end applications, web based, in order to access

the system.

- 1 -

1.3. Project goals

Fundamentally, the hubbl application will allow the creation of gym zones, which

are explained in the next sections, whichwill allow the clients to create the needed

appointments.

As a future implementation yet not being a priority, the system will also have:

- An analytics page which would provide information about the statistics of

the gym.

- A subscription system for the clients.

- 2 -

2. Viability

The study of the viability of the project will take into account from the technical

resources to the echonomical cost of the project.

2.1 Techical resources

Since the application is a web-based application, it only requires a computer.

Such computer should have installed all the required software, which is covered

in further sections, so that the development of the project can be done without

running into any issue.

2.2 Echonomical costs

The echonomical costs of the projects will only take into account the amount of

hours the developer and designer have needed to develop the application, since

the hardware requirements are already owned by the developer. However, an ap-

plication can never be considered as finished, since therewill always be bugs, new

features and client requests that will keep improving the software. Therefore, in

order to evaluate the total cost of the project, the estimated hours required both

to design and develop the application will be multiplied by a fixed €/hr quantity1.

In Spain, where the project is being developed, JavaScript developers earn

around 13.97€/hour (≈ 14.00€/hour). For the ui designers, the average is around

15.38€/hour (≈ 15.50€/hour). Therefore, the total costs of the project can be de-

scribed in the following table

Process Hours Price Total

Design 96h 15.50€/hour [1] 1488€

Development 629h 13.97€/hour [2] 8806€

Total 725h - 10294€

Table 2.1: Total costs table

1Amore specific description of the tasks with their time can be found in theWorking packages

section

- 3 -

3. Methodology

3.1 Introduction

In this chapter, it will be briefly explained what project management will be utilised

and the developmentmethodology. Both decisions are crucial andwill have effect

in how the project is planned and evolves.

3.2 Project management: PMBOK

The methodology used to develop the overall project has been the PMBOK which

has been explained in one of the subjects of the degree. Such methodology ha

become a standard in the project management world. Since it is considered as

the book of books when it comes to project management, it is definitely useful to

be used in any project, which, most likely, will require some sort of management.

The PMBOKmethodology is explained in the Project Management Body of Knowl-

edge book, in which such standards and guidelines are explained more in depth.

The book is produced and updated by the Project Management Institute (PMI)

and it currently has 6 editions, the latest one released in 2017.

The procedure is based in five process groups, which are:

1. Initiating: the initiating processes are those which are performed in order to

define the project or an upcoming phase of an existing project, and obtain

permission to execute the project or phase.

2. Planning: the planning processes are those which are required to clearly

define the scope, the objectives and the course of action of the project.

3. Execution: the planning processes are those which are performed to com-

plete the work that has been defined in the previous processes in order to

satisfy the project specifications.

4. Monitoring and controlling: the processes involved in this group, are re-

quired to track, regulate and review the progress and performance of the

project. It identifies areas in which the plan has to change and initiates the

corresponding changes.

5. Closing: the closing processes are those which are performed in order to

finalize all activities across the above process groups so the project or phase

can be closed.

3.3 Development methodology

To structure and organise the project, working packages1 have been used in or-

der to ensure a temporised and structured development. Following such structure

1See Working packages for more information.

- 4 -

3.3. Development methodology

has been extremely useful to simplify how are tasks managed and temporised. In

order to organise the tasks, an AGILE approach has been used, even though the

project has been done all by myself. Each subgroup of the development branch

has been considered as an epic and each working package as a story, which has

as many tasks as required. This approach has been used for each project and has

made the development of the project easier to manage.

In order to simplify the process of epic, story and task creation, the Jira soft-

ware from Atlassian has been used. Jira is a project management software de-

veloped by Atlassian which helps from teams to single users to easily manage

their projects. Even though it is oriented to AGILE methodologies, it can be used

by any type of project [3]. It has been extremely useful as it can be integrated

with many tools, one being GitHub, where the code is hosted. The GitHub inte-

gration provides a lot of utilities, yet one of the most important is the fact that

it tracks your branches, commits and pull requests. Using the three elements, I

have been able to automate the process of starting and completing tasks, along-

side of the Jira automation. The following diagram, describes the workflow of the

tasks inside Jira:

Figure 3.1: 5 steps of the Jira workflow

All the tasks would have to go from step 1 to step 5 in order to be considered as

finished. Each step and the automation is as follows:

1. All the tasks that have been selected for the sprint start at the first step, at

the to-do column.

2. For each task, a new git branch has to be created with the name of the Jira

task tag, for instance HBL-1852.

When the branch is created and pushed to GitHub, Jira will move the task

automatically to the in progress column. [4]

3. While in progress, each commit made is tracked in Jira. Additionally, Jira also

supports smart commits which are words prefixed with a hash (#). With the

smart commits, task properties can be changed. In this case, only the #time

has been used which increments the amount of time spent in each task.

Tracking time has been useful to know more precisely how much time has

been spent overall.

4. Once the task is finished, a new pull request is made which triggers the

continuous integration workflows set up at the GitHub repository. These

workflows can also be watched by Jira and automate operations in function

2The HBL prefix is assigned when a new Jira project is created.

- 5 -

3.3. Development methodology

of the workflow result. If the task does not pass one of the workflows, the

task is moved back to the in progress tab. Alternatively, if the checks pass,

it is moved to the approved column.

5. Finally, in order to be considered done, the pull request of the task in ques-

tion has to be merged. The merge will trigger another automated process

which moves the task from approved to done.

In order to stick to the process as much as possible, tasks moved to done, should

not be moved back. Instead, a new bug type task was created which would start

the process again.

- 6 -

4. Framework and previous concepts

4.1 Introduction

This chapter will cover the knowledge that is required in order to properly develop

a booking application. In short terms, it is required to know how1 gyms work, re-

garding class and room (or non-class) appointments. Furthermore, it is important

to have some knowledge on software artchitecture and development, in order to

provide value with the application.

4.2 Gym overview

There are few issues to address regarding the appointment system of a gym. In

general, there are two types of appointments to be made. The first is the most

simple and basic, which is an appointment made to a class or event organised

by the gym. Such appointment will have a maximum capacity, for example, the

gym may have a fixed number of spinning machines, and it would be nonsense to

allow more appointments that spinning bikes are in a spinning class. The second

appointment would be an appointment that is made to access the gym for an

interval of time. Most gyms have zones in which their clients can access anytime,

and exercise themselves using the mahcines or equipment they feel like using.

Therefore, the gym has to provide their clients the possibility of accessing their

infrastructures within the interval the client wants to work out.

4.3 Development overview

The application will be a web-based application, meaning that it is expected to be

used within a browser, accessing a specific URL. Using a web environment com-

pletely avoids the native app implementation. One of the most common issues

developers face is the fact that, in order to develop an app for different OS, they

can rarely use a common code base. Each OS may require a different language

or a different implementation, difficulting the addition of new elements or even

maintaining the app itself.

Therefore, developing an application for the browser removes such issues. That

itself does not solve all the problems, as once again there are multiple browsers,

all with their different implementation. It appears a new difficulty for developers,

who have to know if the application will be cross-browser functional. Nonethe-

less, most modern browsers have support for JavaScript, which simplifies the

development process as the application can be built with the same language, in-

dependently of the browser.

JavaScript is far from being a perfect language, plus developing a complex appli-

cation with vanilla JavaScript can be a tough task and very time demanding. Luck-

1It is obvious that the may be different implementations, for different gyms. However, the

implementation that has been chosen is the one that I thought was most accurate, based on my

experience in different gyms.

- 7 -

4.3. Development overview

ily, there exist multiple frameworks which are production-ready and extremely

simplify the process of developing applications. One of the most wellknown

frameworks is React. React itself does not solve all issues, since, for example,

it does not provide a browser routing solution, yet it is simple to understand.

Once again, companies or even developers who saw what was React lacking,

as the routing solution, started developing what is known as a meta-framework,

which is a framework built upon another framework. This is the case of NextJS, a

Javascript meta-framework (as it is a React framework), which tries to solve most

of React flaws. There exist many more JavaScript frameworks or even other so-

lutions such as WebAssembly, which allows running non-JavaScript applications

in browsers. To sum up, a developer whose goal is to create an application for

the browser should be comfortable with such concepts.

On the other side of the application, there is the persistence layer. The persis-

tence layer is none other that the part of the application that allows the system

to persist the data of the users. The user will interact with the system, and such

interaction will, most likely, output a result. Such result should be stored in the

form that the application requires it, as it will add value to the product (it is rarely

difficult to find an application that does not have the need of storing any data). It

appears a new field of knowledge which is how the data is stored and how such

data is exchanged with the client application,

Nowadays, there are hundreds of solutions for such problems. Again, it is a matter

of convenience when it comes to choosing the languages and databases which

will allow the communication and persistence of the data. For the database, it re-

lies on the application type. For example, if the application relies on fast queries,

a ram-based database would be a good solution. On the other hand, an appli-

cation that contains many tables, each with different relationships, such as the

one developed in this project, an SQL database would be a better solution. From

here, a comparison with the different SQL tools should be made, as each tool has

different benefits and drawbacks. Next, the developer would need knowledge in

server-client communication. Using a REST API is sometings the go-to solution,

however, once again, the server architecture should be chosen taking into ac-

count the application requirements and needs. To sum up, the developer should

be comfortable knowing different solutions and architectures, in order to find the

solution that fits most the application.

- 8 -

5. Requirements specifications

5.1 Introduction

This chapter will cover the system requirements specification (SRS) for the soft-

ware being developed. The goal of this chapter is to establish the basis for what

will be developed, taking into account user needs, functional and non-functional

requirements.

5.1.1 Purpose

The application’s objective is to provide a simple, scalable and powerful platform

to handle gymnasium appointments. Gym owners will be able to create their gym

zones and modify the constraints such as total capacity, available hours, and so

on. On the other side, gym clients will be able to book an appointment to the

gyms they have access to.

Therefore, in a single application, gym owners and their workers will be able to

control everything that happens inside the gym; while at the same time being able

to apply changes and modifications as wanted.

5.1.2 Definitions

There are some definitions to be explained before moving to the next section:

- Gym. The gym will represent the company overall, not the infrastructure.

Such infrastructure is called virtual gym.

- Virtual gym. A virtual gym will be the representation of a gymnasium in the

application. A virtual gym can have multiple gym zones.

- Gym zone. A gym zone will be the places where clients will book appoint-

ments. A more specific definition for gym zones can be found in further

sections.

- User. The user is the main person who uses the software. In this case, it is

the owner and their workers.

- Template events. Even though the class concept is explained in further

sections, it is important to make a distinction between a class and class

template, template events or template events (as they are named in the

database). On the one hand, events will be assigned to a gym zone and

scheduled. On the other hand, template events will be used to schedule

and link to a zone.

- Archiving vs Deleting. The purpose of archiving anything in the database

means it will be stored but not visible. In order to edit it again, the archived

element has to be recovered. On the other hand, a deleted element will

permanently be deleted from the database.

- 9 -

5.2. Overall description

5.2 Overall description

5.3 Functional requirements

5.3.1 Introduction

In this section, the above described requirements will be explained more in depth.

The functional requirements are defined as the core functionalities of the system.

All requirements exposed in the section are considered essentials and the system

would be considered incomplete if it did not satisfy such requisites.

The requisites will be exposed with their code name and a number (as FR-1), their

priority and a brief description. Three levels of priority have been defined:

1. Highpriority (3). Such requisites must be fulfilled by the application in order

to provide a proper user experience.

2. Mediumpriority (2). Such requisites should be fulfilled by the application in

order to provide an above average user experience.

3. Lowpriority (1). Such requisiteswould provide an excellent user experience,

yet they are not mandatory.

Furthermore, the overall application will be separated in three different front end

applications:

1. Landingapp. Applicationwhich contains the landing application of the prod-

uct.

2. Core app. Main application of the product, where the user does most of the

work.

3. Appointments app. Application used by the gym client in order to book their

appointments.

5.3.2 Landing app - Product information

The application must have a landing page in which the potential user can find the

different features offered by the application.

- FR-1 (3). The user needs to know the different features of the product in a

single page.

- FR-2 (3). The user needs to be able to be redirected to the register and

login page, from the landing page. Such page is the core page.

- FR-3 (2). The user needs to be able to find a contact page in the landing

page and ask for the desired information by providing personal information.

- FR-4 (3). The user needs to find information about the data privacy. No

personal data and information is intended to be sold, nor shared.

- 10 -

5.3. Functional requirements

5.3.3 Core app - User registration

The user, in this case the owner, has to be able to register. In the beginning,

the application will be completely free, so the gym owners will have complete

access only by registering. A future implementationwould be to provide additional

features only to the users with a subscription.

- FR-5 (3). The user has to provide personal information in order to register.

- FR-6 (3). The user has to provide information about the gym in order to

register.

- FR-7 (3). The user has to provide an email and a password to access the

application (log in).

- FR-8 (3). The user needs to be able to see how their data is kept (personal

data privacy).

- FR-9 (1). The user should see the information for the different premium and

free plans.

- FR-10 (1). The user could have a free trial for the premium features.

5.3.4 Core app - Home page

In the home page view, the user will manage their virtual gyms and gym zones.

Furthermore, it will be able to create, update and remove the template events

which will be then linked to gym zones schedule.

5.3.4.1 Virtual gyms

The user will enter the home page and will see the list of their virtual gyms. If no

virtual gym has been created, they will be asked if they want to create a virtual

gym (which will be optional). From the same view, they will be able to create,

modify and archive the different virtual gyms, aside from accessing the gym zones

of that virtual gym.

- FR-11 (3). The view has to display a list or a grid with the different virtual

gyms of the user.

- FR-12 (3). Each virtual gym item has to provide an option to visualise and

update all the information of that virtual gym. This means changing both the

virtual gym metadata, and the virtual gym constraints.

- FR-13 (3). The user has to access the virtual gym view by clicking on a

virtual gym.

- FR-14 (3). The user has to access the gym zones view by clicking on a

virtual gym.

- FR-15 (2). The user has to be able to search for a virtual gym by its name.

- FR-16 (1). Each virtual gym item has to provide an option to archive that

virtual gym (and, consequentially, all the gym zones).

- 11 -

5.3. Functional requirements

- FR-17 (1). There virtual gym list has to provide an option to programmatically

sort the virtual gyms (e.g. by ascending or descending capacity).

- FR-18 (1). There virtual gym list has to provide an option to manually sort

the virtual gyms.

5.3.4.2 Gym zones

Once a virtual gym has been created and the user has clicked on the card rep-

resenting it, the user will be redirected to another view in which the zones of the

gym will be displayed. Similarly, as in the virtual gyms view, if the user has not

created any gym zone, they will be prompted to do so, if wanted.

- FR-19 (3). The view has to display a list or a grid with the different gym

zones of the selected virtual gym.

- FR-20 (3). Each gym zone has to provide an option to visualise and update

all the information of that gym zone. This means changing both the gym

zone metadata, and the gym zone constraints.

- FR-21 (3). The view has to display which zones are class type and wich not.

- FR-22 (2). The user has to see the gym zone view by clicking on it.

- FR-23 (1). Each gym zone has to provide an option to archive the zone.

5.3.4.3 Class gym zone schedule

When the user has created a class gym zone, that zone will have a schedule (or a

calendar). Inside this view, the user will be able to see the schedule or calendar

from the selected gym zone.

- FR-24 (3). The view has to provide an option to visualise the scheduled

events.

- FR-25 (3). From the calendar, the user has to be able to create a guided

session (an event template can be used in order to make the process faster).

Such scheduled event must include: a start and end time, the trainer which

will be the guide, a maxiumum capacity and other information.

- FR-26 (3). From the calendar, the user has to be able to create an event.

- FR-27 (2). From the calendar, the user has to be able to see future sched-

uled events.

- FR-28 (1). From the calendar, the user has to be able to see past scheduled

events.

- FR-29 (1). The user has to be able to create guided sessions which are

repeated when wanted, from the chosen interval.

- FR-30 (1). After creating a new class on a gym zone, the application has to

recommend a trainer for that class.

- 12 -

5.3. Functional requirements

5.3.5 Core app - Events page

Even though this view is simple, it is important to separate the schedule view

of a gym zone from the template events. The current view will only provide the

necessary tools to create, edit, delete or archive the different event templates.

- FR-31 (3). The user has to be able to see the list of event types of the gym.

- FR-32 (3). There has to be an option in the menu which allows the user to

create, update and delete event types.

- FR-33 (3). The user has to be able to see the list of template events of the

gym.

- FR-34 (3). There has to be an option in the menu which allows the user to

create, update and delete template events.

- FR-35 (2). The user has to be able to archive the event types.

- FR-36 (1). The user has to be able to archive template events.

5.3.6 Core app -Workers page

This view has to allow the user to manage the workers of the gym enterprise and

set the different permissions.

- FR-37 (3). The user has to be able to create a new worker, providing per-

sonal information and credentials for such worker to user the app. Further-

more, it has to allow the user to set the permissions for that worker.

- FR-38 (3). The same view has to provide an option to update the permis-

sions and the personal information of the worker.

- FR-39 (3). The view has to provide a table to list all the workers.

- FR-40 (1). The user has to be able to set the working hours of each worker.

- FR-41 (1). The view has to provide an input to search the by name, last name

or other characteristics the different workers.

5.3.7 Core app - Trainers page

This view has to allow the user to manage the trainers of the gym enterprise.

- FR-42 (3). The user has to be able to create a new trainer, providing per-

sonal information and credentials for such worker to user the app.

- FR-43 (3). The same view has to provide an option to update the trainer

personal information.

- FR-44 (3). The view has to provide a table list all the trainers.

- FR-45 (1). The user has to be able to set the working hours of each trainer.

- FR-46 (1). The view has to provide an input to search the by name, last

name or other characteristics the different trainers.

- 13 -

5.3. Functional requirements

5.3.8 Core app - Clients page

This view has to allow the user to manage the clients of the gym enterprise.

- FR-47 (3). The user has to be able to create a new client, providing personal

information and credentials for such worker to user the app. Alternatively,

the client can register himself (FR-65) with a gym code.

- FR-48 (3). The same view has to provide an option to update the client

personal information.

- FR-49 (3). The view has to provide a table list all the clients.

- FR-50 (1). The view has to provide an input to search the by name, last

name or other characteristics the different clients.

5.3.9 Core app - Settings page

This view has to provide enough settings to customizer the behavior of the be-

havior and the gym information.

- FR-51 (3). The view has to allow the user to log out.

- FR-52 (3). As an owner, the settings menu has to allow the user to change

the gym name and gym characteristics.

- FR-53 (3). As an owner or worker, the settings page has to allow the user

to change their personal information.

- FR-54 (3). As an owner or worker, the settings page has to allow the user

to change their password.

- FR-55 (1). The settings menu has to provide an option to change the appli-

cation theme (light and dark) and persist it.

- FR-56 (1). The settings menu has to provide an option to customise the

main colours of the user interface.

5.3.10 Core app - Analysis page

The goal of this view is to provide some metrics to what is happening at the gym.

However, as it is not the main purpose of the application, all the requirements

from each will be marked with low priority.

- FR-57 (1). The view has to provide a select option to choose what virtual

gym wants to be analised.

- FR-58 (1). After having selected a virtual gym, the view has to display in

which intervals the virtual gym is most crowded at the current date.

- FR-59 (1). After having selected a virtual gym, the view has to display in

which intervals the virtual gym is most crowded during an interval.

- 14 -

5.3. Functional requirements

- FR-61 (1). After having selected a virtual gym, the view has to display what

events will have more clients during an interval.

- FR-62 (1). After having selected a virtual gym, the view has to display what

events will have more clients during at the current date.

- FR-63 (1). After having selected a virtual gym, the view has to provide a

filter to check what gym zones are more crowded during an interval.

- FR-64 (1). After having selected a virtual gym, the view has to provide a

filter to check what gym zones are more crowded at the current date.

5.3.11 Client app

The client application will reuse most of the content from the Core application.

However, as it is a client, all the functionalities of modifying and deleting will not

appear, as the client does not have access to such views.

- FR-65 (3). The client has to provide personal information and a gym code

in order to register.

- FR-66 (3). The client has to provide an email and password to access the

application (log in).

- FR-67 (3). The home page has to display a list or a grid with the different

virtual gyms of the gym they are subscribed.

- FR-68 (3). On clicking any virtual gym, the home view has to display the

gym zones of the selected virtual gym.

- FR-69 (3). The calendar should display the scheduled events, week by

week.

- FR-70 (2). On clicking a scheduled event, the client will be able to book a

place, if the event is not full.

- FR-71 (3). If the user clicks on a non-class gym zone, a form has to be shown

to choose the interval in which they want to make the appointment. This

includes the date of the appointment, the duration and the starting hour.

- FR-72 (3). On selecting a date and a duration, the server has to return what

available starting hours there are. If there is no capacity for such selections,

the user will not be able to create the appointment.

5.3.12 Client app - Settings page

The personal information, which is nearly the settings page for the client, has to

display most of their information. Additionally, it can show some user stats for the

geeks.

- FR-73 (3). The view has to allow the user to log out.

- 15 -

5.4. Non-functional requirements

- FR-74 (3). The view has to allow the client to change their personal infor-

mation.

- FR-75 (3). The view has to allow the client to change their password.

- FR-76 (3). The view has to display a list with all the upcoming appointments

of the user.

- FR-77 (1). If wanted, the user has to be able to see a list with all the past

appointments.

- FR-78 (1). The settings menu has to provide an option to change the appli-

cation theme (light and dark) and persist it.

- FR-79 (1). The view has to display an analytics table to see which days have

they accessed a virtual gym.

5.4 Non-functional requirements

A non-functional requirement is a requirement that defines system attributes such

as security, reliability, maintainability, scalability and usability. Therefore, such

requisites do not describe information to keep nor functionalities to implement,

rather characteristics of such functionalities. In the system, the following non-

functional requirements can be defined:

- NFR-1 (3). The system has to provide a secure authentication method.

- NFR-2 (2). The application has to provide different authentication methods

in order to differentiate the gym owner, the gym worker and the gym client.

- NFR-3 (2). The landing and client web applications must provide a respon-

sive interface, so that the application can be seen both in small and large

screens.

- NFR-4 (1). The core application has to provide a responsive interface up to

a point. In smaller screens such as phones, some functionalities would not

be easy to implement nor to use.

- NFR-5 (2). The three web applications have to provide an accessible and

semantic HTML structure.

5.5 Requirements dependency matrix

Due to the large quantity of requirements that have been determined for the de-

velopment of the project, and due to the low relationship between them, the de-

pendencies will be shown individually, in order to avoid displaying a nearly empty

table. Using the following notation, the result is more consise and can be under-

stood better.

Each dependency will use the following format: [FR-1, FR-2, FR-3] ^-> [FR-4, FR-

5]. It states that the functional requirements 1, 2 and 3 depend on the 4 and the

- 16 -

5.5. Requirements dependency matrix

5.

[FR-11, FR-13, FR-14, FR-16, FR-17, FR-18] ^-> [FR-12]. In order to visualise, edit

or delete a virtual gym, such virtual gym has had to be created previously.

[FR-19, FR-20, FR-21, FR-22, FR-23] ^-> [FR-12]. The gym zones are required to

exist inside a virtual gym. If such virtual gym has not been created, the user can

not visualise, edit or delete the gym zone.

[FR-19, FR-21, FR-22, FR-23] ^-> [FR-20]. In order to visualise, edit or delete a

gym zone, such gym zone has had to be created previously.

[FR-24, FR-25, FR-26, FR-27, FR-28, FR-29, FR-30] ^-> [FR-20]. A calendar is

required to exist inside a gym zone. If such gym zone has not been created, the

user can not visualise, edit or delete the events of the calendar.

[FR-31, FR-35] ^-> [FR-32]. In order to visualise, edit or delete an event type, such

event type has had to be created previously.

[FR-33, FR-36] ^-> [FR-36]. In order to visualise, edit or delete an event template,

such event template has had to be created previously.

[FR-38, FR-39, FR-40, FR-41] ^-> [FR-27]. In order to visualise, edit or delete a

worker, such worker has had to be created previously.

[FR-43, FR-44, FR-45, FR-46] ^-> [FR-42]. In order to visualise, edit or delete a

trainer, such trainer has had to be created previously.

[FR-48, FR-49, FR-50, FR-51] ^-> [FR-47]. In order to visualise, edit or delete a

client, such client has had to be created or registered previously.

[FR-66, FR-67, FR-68, FR-69, FR-70, FR-71, FR-72] ^-> [FR-65]. In order to inter-

act with the application, the client must have had registered previously.

- 17 -

6. Planning

This chapter will cover the planning of the project. After having defined the re-

quirements and the matrix of dependencies of such requirements, working pack-

ages will be defined, which will ensure an organised development using tasks.

6.1 Working packages

Each’s table corresponds to one of the working packages. Since the Development

branch of the working packages tree the most extensive, its tables are explained

after the Testing branch, and so are the package numbers.

Figure 6.1: Structure of the working packages at the root level

The image above shows how the working packages have been organised. Each

column represents a module, which are:

- Project management.

- Requirements.

- Analysis and design.

- Development.

- Testing.

Since the development branch is very extensive, each project has been extracted

in smaller working packages.

6.1.1 Project management

The project management branch contains all the working packages that are re-

lated any task that involves the specification of how the project will be managed

in order to be successful.

- 18 -

6.1. Working packages

Package name WP1: Project management

Description Working package description.

Estimated time 8h

Tasks T1: Project document writing.

T2: Project document review.

Results Project document to be submitted to the jury.

Table 6.1: Package one’s table - Project management

Package name WP2: Documentation and memory

Description Wording of some chapters of the memory.

Estimated time 8h

Tasks T1: Wording of the project introduction.

T2: Wording of the requirements.

T3: Wording of the analysis and design.

T4: Wording of the studies and decisions.

T5: Wording of the project development.

Results Project document to be submitted to the jury.

Table 6.2: Package two’s table - Documentation and memory

Package name WP3: Chronogram

Description Define the working chronogram for the project development.

Estimated time 4h

Tasks T1: Temporal planning of the working packages.

Results Gantt’s project diagram.

Table 6.3: Package three’s table - Chronogram

Package name WP4: Planning

Description Structure the working packages.

Estimated time 4h

Tasks T1: Planning of the working packages.

Results Chapter 6 of the memory document.

Table 6.4: Package four’s table - Planning

- 19 -

6.1. Working packages

Package name WP5: Functionalities specification

Description Analysis of the functionalities of the application.

Estimated time 8h

Tasks T1: Users identification.

T2: Define user needs (owner/worker and client).

T3: Define product functionalities

Results Sections 5.2 and 5.3 of the memory document.

Table 6.5: Package five’s table - Functionalities specification

6.1.2 Requirements

The requirements branch contains all the tasks that are related with the analysis

and definition of all the requirements and functionalities of each application.

Package name WP6: Functional requirements

Description Analysis and definition of the functional requirements of the

application.

Estimated time 12h

Tasks T1: Use case diagram.

T2: Functional requirements’ specification for the core appli-

cation.

T3: Functional requirements’ specification for the client ap-

plication.

T4: Functional requirements’ specification for the landing ap-

plication.

T5: Functional requirements review and make changes if

needed.

Results Section 5.4 of the memory document.

Table 6.6: Package six’s table - Functional requirements

- 20 -

6.1. Working packages

Package name WP7: Non-functional requirements

Description Analysis and definition of the non-functional requirements of

the application.

Estimated time 4h

Tasks T1: Initial non-functional requirements’ specification.

T2: Non-functional requirements review and make changes if

needed.

Results Section 5.5 of the memory document.

Table 6.7: Package seven’s table - Non-functional requirements

Package name WP8: Requirements dependency matrix

Description Definition of the requirements’ dependency matrix.

Estimated time 4h

Tasks T1: Matrix dependency specification once the functional and

non-functional requirements have been specified.

Results Section 5.6 of the memory document.

Table 6.8: Package eight’s table - Requirements dependency matrix

6.1.3 Analysis and design

The analysis and design branch contains all the working packages that are related

with the design and analysis of the system interface and architecture.

Package name WP9: User interface designs

Description Definition of the requirements’ dependency matrix.

Estimated time 96h

Tasks T1: Design system specification.

T2: Prototype most of the user interfaces.

T3: Design review. Ensure it satisfies the requirements pre-

viously specified.

Results User interface prototypes which provide a vague view of the

application’s look and feel.

Table 6.9: Package nine’s table - User interfaces designs

- 21 -

6.1. Working packages

Package name WP10: Database design

Description Definition of the application’s database.

Estimated time 4h

Tasks T1: Design of the applications’ database structure.

T2: Schema and structure review.

T3: Analysis of the database structure using PostgreSQL.

Results Database structure in which the application’s data will be per-

sisted.

Table 6.10: Package ten - Database design

6.1.4 Testing

The testing branch contains the working package that is related with the testing

of the application.

Package name WP11: E2e testing

Description End-to-end testing implementation for the applications.

Estimated time 96h

Tasks T1: API aplication e2e testing.

T2: Core application e2e testing.

T3: Client application e2e testing.

T4: Landing application e2e testing.

Results End-to-end tests which ensure the correct behaviour of each

application, and that any futher new features and updates do

not break the application.

Table 6.11: Package eleven’s table - E2e testing

6.1.5 Development

The development branch is probably the most extensive, as it is the most impor-

tant part of the project. The branch consists of 73 working packages in total.

Nevertheless, most of the packages follow the same structure. For instance, as it

is seen in the Api application, each web service package follows the same struc-

ture: a working package to create an entity, another one to update it, a third one

to delete it, and a final one to fetch the entity. The structure is the same for each

web service, which easily increases the number of working packages.

6.1.5.1 Development env

The first group that is in the development branch is the development env (or de-

velopment environment). This part is as important as any other application, since

- 22 -

6.1. Working packages

it will define the structure of the project. Furthermore, the continuous integration

has to be set up. Using the Nx build system, such feature becomes extremely

simple and scalable. One of the options it offers is to run a command to as many

projects as wanted. Not only so, that you can run the commands to the affected

projects. Such feature reduces even more the CI execution time.

Figure 6.2: Api application working packages diagram

The development environment group is composed of the following working pack-

ages:

Package name WP12: Repository set up

Description Prepare the Nx monorepo.

Estimated time 4h

Tasks T1: Generate a nx-workspace ready to develop.

Results Initial structure of the monorepo.

Table 6.12: Package twelve’s table - Repository set up

Package name WP13: Dockerized development environment.

Description Dockerize the database, the test database and the API appli-

cation.

Estimated time 4h

Tasks T1: Dockerize the main database and the test database.

T2: Dockerize the API application using a NodeJS image.

Results The dockerization of the databases and the REST API.

Table 6.13: Package thirteen’s table - Dockerized development environment

- 23 -

6.1. Working packages

Package name WP14: Continuous integration.

Description Set up GitHub Actions for CI.

Estimated time 8h

Tasks T1: Set up CI for the API application.

T2: Set up CI for the core application.

T3: Set up CI for the client application.

T4: Set up CI for the landing application.

T5: Set up CI for the monrepo libraries.

Results An automated process for testing the code developed.

Table 6.14: Package fourteen’s table - Continuous integration

6.1.5.2 Api application

The working package groups of the api application have been designed so that

each web service of the application is divided in multiple working packages with

tasks that are very specific and simple.

Figure 6.3: Api application working packages diagram

- 24 -

6.1. Working packages

The api group is composed of the following working packages:

Package name WP15: Database configuration.

Description Configure the application, so that is connected the database.

Estimated time 1h

Tasks T1: Configure the API with the dockerized database.

Results Connection of the api with the database.

Table 6.15: Package fifteen’s table - Database configuration

Package name WP16: Register users

Description Allow the users to register.

Estimated time 8h

Tasks T1: Create the services required.

T2: Create the controllers required.

T3: Create the owner register endpoint.

T4: Create the client register endpoint.

Results Creation of a user.

Table 6.16: Package sixteen’s table - Register users

Package name WP17: Update users

Description Allow the users to update their information.

Estimated time 4h

Tasks T1: Create the services required.

T2: Create the controllers required.

T3: Create the user update endpoint.

Results Updation of user’s information

Table 6.17: Package seventeen’s table - Update users

- 25 -

6.1. Working packages

Package name WP18: User login

Description Allow the users to log in to the application.

Estimated time 8h

Tasks T1: Create the services required.

T2: Create the controllers required.

T3: Create the session cookie validation endpoint.

T4: Create the login endpoint.

Results Endpoints to login and validate old user sessions.

Table 6.18: Package eighteen’s table - User login

Package name WP19: Create workers

Description Allow the creation of workers.

Estimated time 6h

Tasks T1: Create the services required.

T2: Create the controllers required.

T3: Create the workers create endpoint.

Results Creation of workers.

Table 6.19: Package nineteen’s table - Create workers

Package name WP20: Update workers

Description Allow the update of workers.

Estimated time 4h

Tasks T1: Create the services required.

T2: Create the controllers required.

T3: Create the update workers endpoint.

Results Updation of workers.

Table 6.20: Package twenty’s table - Update workers

- 26 -

6.1. Working packages

Package name WP21: Delete workers

Description Allow the deletion of workers.

Estimated time 4h

Tasks T1: Create the services required.

T2: Create the controllers required.

T3: Create the delete workers endpoint.

Results Deletion of workers.

Table 6.21: Package twenty-one’s table - Delete workers

Package name WP22: Fetch workers

Description Allow the fetch of workers.

Estimated time 4h

Tasks T1: Create the services required.

T2: Create the controllers required.

T3: Create the fetch workers endpoint.

Results Fetching of workers.

Table 6.22: Package twenty-two’s table - Fetch workers

Package name WP23: Create trainers

Description Allow the creation of trainers.

Estimated time 8h

Tasks T1: Create the services required.

T2: Create the controllers required.

T3: Create the create trainers endpoint.

Results Creation of trainers.

Table 6.23: Package twenty-three’s table - Create trainers

- 27 -

6.1. Working packages

Package name WP24: Update trainers

Description Allow the update of trainers.

Estimated time 4h

Tasks T1: Create the services required.

T2: Create the controllers required.

T3: Create the update trainers endpoint.

Results Updation of trainers.

Table 6.24: Package twenty-four’s table - Update trainers

Package name WP25: Delete trainers

Description Allow the deletion of trainers.

Estimated time 4h

Tasks T1: Create the services required.

T2: Create the controllers required.

T3: Create the delete trainers endpoint.

Results Deletion of trainers.

Table 6.25: Package twenty-five’s table - Delete trainers

Package name WP26: Fetch trainers

Description Allow the fetch of trainers.

Estimated time 4h

Tasks T1: Create the services required.

T2: Create the controllers required.

T3: Create the fetch trainers endpoint.

Results Fetching of trainers.

Table 6.26: Package twenty-six’s table - Fetch trainers

- 28 -

6.1. Working packages

Package name WP27: Create virtual gyms

Description Allow the creation of virtual gyms.

Estimated time 8h

Tasks T1: Create the services required.

T2: Create the controllers required.

T3: Create the virtual gym creation endpoint.

Results Creation of virtual gyms.

Table 6.27: Package twenty-seven’s table - Create virtual gyms

Package name WP28: Update virtual gyms

Description Allow the update of virtual gyms.

Estimated time 4h

Tasks T1: Create the services required.

T2: Create the controllers required.

T3: Create the virtual gym update endpoint.

Results Updation of virtual gyms.

Table 6.28: Package twenty-eight’s table - Update virtual gyms

Package name WP29: Delete virtual gyms

Description Allow the deletion of virtual gyms.

Estimated time 4h

Tasks T1: Create the services required.

T2: Create the controllers required.

T3: Create the virtual gym deletion endpoint.

Results Deletion of virtual gyms.

Table 6.29: Package twenty-nine’s table - Delete virtual gyms

- 29 -

6.1. Working packages

Package name WP30: Fetch virtual gyms

Description Allow the fetch of virtual gyms.

Estimated time 4h

Tasks T1: Create the services required.

T2: Create the controllers required.

T3: Create the virtual gym fetch endpoint.

Results Fetching of virtual gyms.

Table 6.30: Package thirty’s table - Delete virtual gyms

Package name WP31: Create gym zones

Description Allow the creation of gym zones.

Estimated time 8h

Tasks T1: Create the services required.

T2: Create the controllers required.

T3: Create the gym zone create endpoint.

Results Creation of gym zones.

Table 6.31: Package thirty-one’s table - Create gym zones

Package name WP32: Update gym zones

Description Allow the update of gym zones.

Estimated time 4h

Tasks T1: Create the services required.

T2: Create the controllers required.

T3: Create the gym zone update endpoint.

Results Updation of gym zones.

Table 6.32: Package thirty-two’s table - Update gym zones

- 30 -

6.1. Working packages

Package name WP33: Delete gym zones

Description Allow the deletion of gym zones.

Estimated time 4h

Tasks T1: Create the services required.

T2: Create the controllers required.

T3: Create the gym zone delete endpoint.

Results Deletion of gym zones.

Table 6.33: Package thirty-three’s table - Delete gym zones

Package name WP34: Fetch gym zones

Description Allow the fetching of gym zones.

Estimated time 4h

Tasks T1: Create the services required.

T2: Create the controllers required.

T3: Create the gym zone fetch endpoint.

Results Fetching of gym zones.

Table 6.34: Package thirty-four’s table - Fetch gym zones

Package name WP35: Create event types

Description Allow the creation of event types.

Estimated time 8h

Tasks T1: Create the services required.

T2: Create the controllers required.

T3: Create the event types create endpoint.

Results Creation of event types.

Table 6.35: Package thirty-five’s table - Create event types

- 31 -

6.1. Working packages

Package name WP36: Update event types

Description Allow the update of event types.

Estimated time 4h

Tasks T1: Create the services required.

T2: Create the controllers required.

T3: Create the event types update endpoint.

Results Updation of event types.

Table 6.36: Package thirty-six’s table - Update event types

Package name WP37: Delete event types

Description Allow the deletion of event types.

Estimated time 4h

Tasks T1: Create the services required.

T2: Create the controllers required.

T3: Create the event types delete endpoint.

Results Updation of event types.

Table 6.37: Package thirty-seven’s table - Delete event types

Package name WP38: Fetch event types

Description Allow the fetch of event types.

Estimated time 4h

Tasks T1: Create the services required.

T2: Create the controllers required.

T3: Create the event types fetch endpoint.

Results Fetching of event types.

Table 6.38: Package thirty-eight’s table - Fetch event types

- 32 -

6.1. Working packages

Package name WP39: Create event templates

Description Allow the creation of event templates.

Estimated time 4h

Tasks T1: Create the services required.

T2: Create the controllers required.

T3: Create the event templates create endpoint.

Results Creation of event templates.

Table 6.39: Package thirty-nine’s table - Create event templates

Package name WP40: Update event templates

Description Allow the update of event templates.

Estimated time 4h

Tasks T1: Create the services required.

T2: Create the controllers required.

T3: Create the event templates update endpoint.

Results Updation of event templates.

Table 6.40: Package forty’s table - Update event templates

Package name WP41: Delete event templates

Description Allow the deletion of event templates.

Estimated time 4h

Tasks T1: Create the services required.

T2: Create the controllers required.

T3: Create the event templates delete endpoint.

Results Deletion of event templates.

Table 6.41: Package forty-one’s table - Delete event templates

- 33 -

6.1. Working packages

Package name WP42: Fetch event templates

Description Allow the fetch of event templates.

Estimated time 4h

Tasks T1: Create the services required.

T2: Create the controllers required.

T3: Create the event templates fetch endpoint.

Results Fetching of event templates.

Table 6.42: Package forty-two’s table - Fetch event templates

Package name WP43: Create events

Description Allow the creation of events.

Estimated time 8h

Tasks T1: Create the services required.

T2: Create the controllers required.

T3: Create the events fetch endpoint.

Results Creation of events.

Table 6.43: Package forty-three’s table - Create events

Package name WP44: Update events

Description Allow the update of events.

Estimated time 4h

Tasks T1: Create the services required.

T2: Create the controllers required.

T3: Create the events update endpoint.

Results Updation of events.

Table 6.44: Package forty-four’s table - Update events

- 34 -

6.1. Working packages

Package name WP45: Delete events

Description Allow the deletion of events.

Estimated time 4h

Tasks T1: Create the services required.

T2: Create the controllers required.

T3: Create the events delete endpoint.

Results Deletion of events.

Table 6.45: Package forty-five’s table - Delete events

Package name WP46: Fetch events

Description Allow the fetching of events.

Estimated time 4h

Tasks T1: Create the services required.

T2: Create the controllers required.

T3: Create the events fetch endpoint.

Results Fetching of events.

Table 6.46: Package forty-six’s table - Fetch events

Package name WP47: Create appointments

Description Allow the fetching of appointments. It is important to cre-

ate an algorithm that ensures that a gym zone does not have

more appointments than its capacity.

Estimated time 16h

Tasks T1: Create the services required.

T2: Create the controllers required.

T3: Create the available hours endpoint.

T4: Create the appointments create endpoint.

Results Creation of appointments.

Table 6.47: Package forty-seven’s table - Create appointments

- 35 -

6.1. Working packages

Package name WP48: Update appointments

Description Allow the update of appointments. It should only allow to can-

cel the appointment.

Estimated time 4h

Tasks T1: Create the services required.

T2: Create the controllers required.

T4: Create the appointments update endpoint.

Results Updation of appointments.

Table 6.48: Package forty-eight’s table - Update appointments

Package name WP49: Delete appointments

Description Allow the deletion of appointments. It should only allow to

cancel the appointment.

Estimated time 4h

Tasks T1: Create the services required.

T2: Create the controllers required.

T4: Create the appointments delete endpoint.

Results Deletion of appointments.

Table 6.49: Package forty-nine’s table - Delete appointments

Package name WP50: Fetch appointments

Description Allow the fetch of appointments.

Estimated time 6h

Tasks T1: Create the services required.

T2: Create the controllers required.

T4: Create the appointments fetch endpoint.

Results Fetching of appointments.

Table 6.50: Package fifty’s table - Fetch appointments

6.1.5.3 Core application

The core group of working packages follows a similar approach as the one de-

scribed in Development.

- 36 -

6.1. Working packages

Figure 6.4: Core application working packages diagram

The core group is composed of the following working packages:

Package name WP51: Sign up page

Description Develop the sign up page

Estimated time 16h

Tasks T1: Set up the page structure.

T2: Sign up as an owner.

Results Allow the users to register to the system.

Table 6.51: Package fifty-one’s table - Sign up page

Package name WP52: Log in page

Description Develop the log in page.

Estimated time 16h

Tasks T1: Set up the page structure.

T2: Log in as an owner.

T3: Log in as a worker.

Results Allow the user to log in to the system.

Table 6.52: Package fifty-two’s table - Log in page

- 37 -

6.1. Working packages

Package name WP53: Page structure (Dashboard)

Description Apply the design of the dashboard page.

Estimated time 4h

Tasks T1: Apply the design of the dashboard page.

Results The scaffolding of the dashboard page.

Table 6.53: Package fifty-three’s table - Page structure (Dashboard)

Package name WP54: Page content and interactivity (Dashboard)

Description Add the interactivity to the dashboard page.

Estimated time 12h

Tasks T1: Add virtual gyms’ interactivity.

T2: Add gym zones’ interactivity.

T3: Add trainers’ interactivity.

T4: Add event templates’ interactivity.

T5: Add events’ interactivity.

Results User experience of the dasboard page.

Table 6.54: Package fifty-four’s table - Page content and interactivity

Package name WP55: Page structure (Virtual gyms)

Description Apply the design of the virtual gyms page.

Estimated time 4h

Tasks T1: Apply the design of the virtual gyms page.

Results The scaffolding of the virtual gyms page.

Table 6.55: Package fifty-five’s table - Page structure (Virtual gyms)

Package name WP56: List of virtual gyms (Virtual gyms)

Description Display the list of virtual gyms.

Estimated time 4h

Tasks T1: List the virtual gyms of the gym.

T2: List the gym zones inside each virtual gym.

Results The page of virtual gyms.

Table 6.56: Package fifty-six’s table - List of virtual gyms (Virtual gyms)

- 38 -

6.1. Working packages

Package name WP57: Create, edit and delete virtual gyms (Virtual gyms)

Description Create the modal to create, edit and delete virtual gyms.

Estimated time 8h

Tasks T1: Modal to create, edit and delete virtual gyms.

Results The modal to interact with virtual gyms.

Table 6.57: Package fifty-seven’s table - List of virtual gyms (Virtual gyms)

Package name WP58: Page structure (Virtual gym)

Description Apply the design of the virtual gym page.

Estimated time 4h

Tasks T1: Apply the design of the virtual gym page.

Results The scaffolding of the virtual gym page.

Table 6.58: Package fitfty-eight’s table - Page structure (Virtual gym)

Package name WP59: List of gym zones (Virtual gym)

Description List the gym zones of a virtual gym.

Estimated time 8h

Tasks T1: List all class gym zones.

T2: List all non-class gym zones.

Results The page of a virtual gym.

Table 6.59: Package fifty-nine’s table - List of gym zones (Virtual gym)

Package name WP60: Create, edit and delete gym zones (Virtual gym)

Description Create the modal to create, edit and delete gym zones.

Estimated time 8h

Tasks T1: Modal to create, edit and delete gym zones.

Results The modal to interact with gym zones.

Table 6.60: Package sixty’s table - Create, edit and delete gym zones (Virtual

gym)

- 39 -

6.1. Working packages

Package name WP61: Page structure (Class gym zone)

Description Apply the design of the class gym zone page.

Estimated time 4h

Tasks T1: Apply the design of the class gym zone page.

Results The scaffolding of the class gym zone page.

Table 6.61: Package sixty-one’s table - Page structure (Class gym zone)

Package name WP62: Calendar of events (Class gym zone)

Description Display the calendar of events of the gym zone.

Estimated time 8h

Tasks T1: Design the calendar of events.

T2: Add interactivity to the calendar.

Results The calendar of events for the gym zone.

Table 6.62: Package sixty-two’s table - Calendar of events (Class gym zone)

Package name WP63: Create, edit and delete events (Class gym zone)

Description Modal to create, edit and delete events.

Estimated time 8h

Tasks T1: Modal to create, edit and delete events.

Results The modal to interact with events.

Table 6.63: Package sixty-three’s table - Create, edit and delete events (Class

gym zone)

Package name WP64: Create, edit and delete appointments (Class gym

zone)

Description Modal to create, edit and delete appointments.

Estimated time 8h

Tasks T1: Modal to create, edit and delete appointments.

Results The modal to interact with appointments.

Table 6.64: Package sixty-four’s table - Create, edit and delete appointments

(Class gym zone)

- 40 -

6.1. Working packages

Package name WP65: Page structure (Events)

Description Apply the design of the events page.

Estimated time 4h

Tasks T1: Apply the design of the events page.

Results The scaffolding of the events page.

Table 6.65: Package sixty-five’s table - Page structure (Events)

Package name WP66: List of events and event templates (Events)

Description Display the list of events and event templates.

Estimated time 6h

Tasks T1: List the events.

T2: List the event templates

Results The events page.

Table6.66: Package sixty-six’s table - List of events and event tempaltes (Events)

Package name WP67: Create, edit and delete events (Events)

Description Modal to create, edit and delete events.

Estimated time 8h

Tasks T1: Modal to create, edit and delete events.

Results The modal to interact with events.

Table 6.67: Package sixty-seven’s table - Create, edit and delete events (Events)

Package name WP68: Create, edit and delete events templates (Events)

Description Modal to create, edit and delete events templates.

Estimated time 8h

Tasks T1: Modal to create, edit and delete events templates.

Results The modal to interact with events templates.

Table6.68: Package sixty-eight’s table - Create, edit and delete events templates

(Events)

- 41 -

6.1. Working packages

Package name WP69: Page structure (Trainers)

Description Apply the design of the trainers page.

Estimated time 4h

Tasks T1: Apply the design of the trainers page.

Results The scaffolding of the trainers page.

Table 6.69: Package sixty-nine’s table - Page structure (Trainers)

Package name WP70: Table of trainers (Trainers)

Description Table of trainers.

Estimated time 4h

Tasks T1: Display the table of trainers.

Results The table of trainers.

Table 6.70: Package seventy’s table - Table of trainers (Trainers)

Package name WP71: Create, edit and delete trainers (Trainers)

Description Modal to create, edit and delete trainers.

Estimated time 8h

Tasks T1: Modal to create, edit and delete trainers.

Results The modal to interact with trainers.

Table 6.71: Package seventy-one’s table - Table of trainers (Trainers)

Package name WP72: Page structure (Workers)

Description Apply the design of the workers page.

Estimated time 4h

Tasks T1: Apply the design of the workers page.

Results The scaffolding of the workers page.

Table 6.72: Package seventy-two’s table - Page structure (Workers)

- 42 -

6.1. Working packages

Package name WP73: Table of workers (Workers)

Description Table of workers.

Estimated time 4h

Tasks T1: Display the table of workers.

Results The table of workers.

Table 6.73: Package seventy-three’s table - Table of workers (Workers)

Package name WP74: Create, edit and delete workers (Workers)

Description Modal to create, edit and delete workers.

Estimated time 8h

Tasks T1: Modal to create, edit and delete workers.

Results The modal to interact with workers.

Table 6.74: Package seventy-four’s table - Table of workers (Workers)

Package name WP75: Page structure (Trainers)

Description Apply the design of the trainers page.

Estimated time 4h

Tasks T1: Apply the design of the trainers page.

Results The scaffolding of the trainers page.

Table 6.75: Package seventy-five’s table - Page structure (Trainers)

Package name WP76: Table of trainers (Trainers)

Description Table of trainers.

Estimated time 4h

Tasks T1: Display the table of trainers.

Results The table of trainers.

Table 6.76: Package seventy-six’s table - Table of trainers (Trainers)

- 43 -

6.1. Working packages

Package name WP77: Create, edit and delete trainers (Trainers)

Description Modal to create, edit and delete trainers.

Estimated time 8h

Tasks T1: Modal to create, edit and delete trainers.

Results The modal to interact with trainers.

Table 6.77: Package seventy-seven’s table - Table of trainers (Trainers)

Package name WP78: Page structure (Settings)

Description Apply the design of the settings page.

Estimated time 4h

Tasks T1: Apply the design of the settings page.

Results The scaffolding of the settings page.

Table 6.78: Package seventy-eight’s table - Page structure (Settings)

Package name WP79: Configure user settings (Settings)

Description Set up the form to update user settings.

Estimated time 8h

Tasks T1: Log out the user.

T2: Configure the basic fields of the user.

T3: Update the user password.

T4: Update the gym information as an owner.

Results The settings page.

Table 6.79: Package seventy-nine’s table - Configure user settings (Settings)

6.1.5.4 Client application

The landing group of working packages follows a similar approach as the one

described in Development.

- 44 -

6.1. Working packages

Figure 6.5: Client application working packages diagram

The client group is composed of the following working packages:

Package name WP80: Sign up page

Description Develop the sign up page

Estimated time 8h

Tasks T1: Set up the page structure.

T2: Sign up as a client.

Results Allow the clients to register to the system.

Table 6.80: Package eighty’s table - Sign up page

Package name WP81: Log in page

Description Develop the log in page.

Estimated time 8h

Tasks T1: Set up the page structure.

T2: Log in as a client.

Results Allow the user to log in to the system.

Table 6.81: Package eighty-one’s table - Log in page

Package name WP82: Page structure (Dashboard)

Description Apply the design of the dashboard page.

Estimated time 4h

Tasks T1: Apply the design of the dashboard page.

Results The scaffolding of the dashboard page.

Table 6.82: Package eighty-two’s table - Page structure (Dashboard)

- 45 -

6.1. Working packages

Package name WP83: Page content and interactivity (Dashboard)

Description Add the interactivity to the dashboard page.

Estimated time 6h

Tasks T1: Add virtual gyms’ interactivity.

T2: Add gym zones’ interactivity.

Results User experience of the dasboard page.

Table 6.83: Package eighty-three’s table - Page content and interactivity

Package name WP84: Page structure (Virtual gyms)

Description Apply the design of the virtual gyms page. Should reuse the

core’s page.

Estimated time 4h

Tasks T1: Apply the design of the virtual gyms page.

Results The scaffolding of the virtual gyms page.

Table 6.84: Package eighty-fourt’s table - Page structure (Virtual gyms)

Package name WP85: List of virtual gyms (Virtual gyms)

Description Display the list of virtual gyms.

Estimated time 4h

Tasks T1: List the virtual gyms of the gym.

T2: List the gym zones inside each virtual gym.

Results The page of virtual gyms.

Table 6.85: Package eighty-five’s table - List of virtual gyms (Virtual gyms)

Package name WP86: Page structure (Virtual gym)

Description Apply the design of the virtual gym page. Should reuse the

core’s page.

Estimated time 4h

Tasks T1: Apply the design of the virtual gym page.

Results The scaffolding of the virtual gym page.

Table 6.86: Package eighty-six’s table - Page structure (Virtual gym)

- 46 -

6.1. Working packages

Package name WP87: List of gym zones (Virtual gym)

Description List the gym zones of a virtual gym.

Estimated time 4h

Tasks T1: List all class gym zones.

T2: List all non-class gym zones.

Results The page of a virtual gym.

Table 6.87: Package eighty-seven’s table - List of gym zones (Virtual gym)

Package name WP88: Page structure (Class gym zone)

Description Apply the design of the class gym zone page. Should reuse

the core’s page.

Estimated time 4h

Tasks T1: Apply the design of the class gym zone page.

Results The scaffolding of the class gym zone page.

Table 6.88: Package eighty-eight’s table - Page structure (Class gym zone)

Package name WP89: Calendar of events (Class gym zone)

Description Display the calendar of events of the gym zone.

Estimated time 4h

Tasks T1: Design the calendar of events.

T2: Add interactivity to the calendar.

Results The calendar of events for the gym zone.

Table 6.89: Package ninety’s table - Calendar of events (Class gym zone)

Package name WP90: Create, edit and delete appointments (Class gym

zone)

Description Modal to create, edit and delete appointments.

Estimated time 8h

Tasks T1: Modal to create, edit and delete appointments.

Results The modal to interact with appointments.

Table 6.90: Package ninety’s table - Create, edit and delete appointments (Class

gym zone)

- 47 -

6.2. Traceability matrix

Package name WP91: Page structure (Settings)

Description Apply the design of the settings page. Should reuse the core’s

page.

Estimated time 4h

Tasks T1: Apply the design of the settings page.

Results The scaffolding of the settings page.

Table 6.91: Package ninety-one’s table - Page structure (Settings)

Package name WP92: Configure user settings (Settings)

Description Set up the form to update client settings.

Estimated time 4h

Tasks T1: Log out the client.

T2: Configure the basic fields of the client.

T3: Update the client password.

Results The settings page.

Table 6.92: Package ninety-two’s table - Configure user settings (Settings)

6.1.5.5 Landing application

The landing application is a simple application that displays information about the

system and acces to the main application.

Package name WP93: Design the landing application

Description Set up the form to update client settings.

Estimated time 16h

Tasks T1: Display basic information about the system.

T2: Display information about the data privacy.

T3: Display a contact form.

Results The landing application.

Table 6.93: Package ninety-three’s table - Landing page

6.2 Traceability matrix

Due to the large quantity of requirements and working packageds that have been

determined for the development of the project, and due to the low relationship

between them, the traceability matrix will be shown individually, in order to avoid

displaying a nearly empty table. Using the following notation, the result is more

- 48 -

6.2. Traceability matrix

consise and can be understood better.

Each dependency will use the following format: [FR-1] ^-> [WP-1,WP-2,WP-3]. It

states that the functional requirements 1 will be covered in the working package

1, 2 and 3.

- [FR-1, FR-2, FR-3, FR-4] ^-> [WP-93]

- [FR-5, FR-6] ^-> [WP-51]

- [FR-7] ^-> [WP-52]

- [FR-8, FR-9, FR-10] ^-> [WP-93]

- [FR-11, FR-13, FR-14, FR-15, FR-17] ^-> [WP-56,WP-28,WP-29,WP-30]

- [FR-12, FR-16] ^-> [WP-57,WP-27,WP-28,WP-29]

- [FR-19, FR-21, FR-22] ^-> [WP-59,WP-34]

- [FR-20, FR-23] ^-> [WP-60,WP-31,WP-32,WP-33]

- [FR-24,FR-27, FR-28] ^-> [WP-62,WP-43,WP-44,WP-45,WP-47,WP-48,

WP-49]

- [FR-25, FR-26, FR-29, FR-30] ^-> [WP-63,WP-34,WP-46,WP-50]

- [FR-31, FR-33] ^-> [WP-66,WP-38,WP-42,WP-46]

- [FR-32, FR-35] ^-> [WP-67,WP-35,WP-36,WP-37]

- [FR-34, FR-36] ^-> [WP-68,WP-39,WP-40,WP-41]

- [FR-37, FR-38, FR-40] ^-> [WP-74,WP-19,WP-20,WP-21]

- [FR-39, FR-41] ^-> [WP-73,WP-22]

- [FR-42, FR-43, FR-45] ^-> [WP-70,WP-23,WP-24,WP-25]

- [FR-44, FR-46] ^-> [WP-71,WP-26]

- [FR-47, FR-48] ^-> [WP-77]

- [FR-49, FR-50] ^-> [WP-76]

- [FR-51, FR-52, FR-53, FR-54, FR-55, FR-56] ^-> [WP-79,WP-17]

- [FR-65] ^-> [WP-80,WP-16]

- [FR-66] ^-> [WP-81,WP-17]

- [FR-67, FR-68] ^-> [WP-85,WP-30]

- [FR-69] ^-> [WP-89,WP-46]

- [FR-70, FR-71, FR-72] ^-> [WP-90,WP-43,WP-44,WP-45,WP-47,WP-48,

WP-49]

- 49 -

6.3. Roadmap

- [FR-73, FR-74, FR-75, FR-76, FR-77, FR-78] ^-> [WP-92,WP-17]

- [NFR-1] ^-> [WP-16,WP-18]

- [NFR-2] ^-> [WP-52]

- [NFR-3] ^-> [WP-93]

- [NFR-4] ^-> [WP-53, WP-55, WP-58, WP-61, WP-65, WP-69,WP-72, WP-

75,WP-78]

- [NFR-5] ^-> [WP-53, WP-55, WP-58, WP-61, WP-65, WP-69, WP-72, WP-

75,WP-78,WP-82,WP-84,WP-86,WP-88,WP-91,WP-93]

6.3 Roadmap

The roadmap contains an estimation of how the development of the application

should. Nonetheless, it is just an estimation andmany thingsmay occur that could

change such schedule. The projec that is expected to take up most of the amount

of tiume is the core app, as it is the onw that contains the most amount of logic,

followed by the server. Even though the projects are structured sequentially, bugs

or errors may occur while developing, for instance, a web service does not return

what it should1, which would imply to have it fixed while another app is being

developed.

1The applications will be tested, yet tests do not ensure a 100% correctness of the application.

If the test does not contemplate all corner-cases, there may be a bug.

- 50 -

6.3. Roadmap

Figure 6.6: Expected application development roadmap.

- 51 -

7. Studies and decisions

7.1 Introduction

This chapter will cover the different aspects that have been taken into account in

order to choose the technology stack used to develop the system.

7.2 Project structure

Being able to solve problems rapidly, or even minimizing such errors, it is a must

in order to provide a secure and stable application. Since test driven develop-

ment (or behavior driven development) was designed, more and bigger compa-

nies started incorporating such approach when developing new projects. Nowa-

days, testing the code that is being developed is unquestionable.

Aside from the development method used, it is indisputable to use a version con-

trol system. The VCS that takes the gold medal is git which is used alongside

GitHub. From there, the applications can be structured in two forms:

- Multirepo. The multirepo approach means to have multiple applications in

different repositories. The main benefits of such approach are the fact that

teams can separately work in the repository while at the same time the

repository is kept smaller and cleaner.

- Monorepo. The monorepo approach is the opposite of the multirepo: all the

applications are kept in the same repository. Such approach allows main-

taining build and deployment patterns altogether. However, application ver-

sioning may be harder.

Since all the applications are build using the same language (TypeScript) and the

same package manager (npm), the monorepo approach has been used.

7.2.1 TDD and CI

The test driven development approach has been the method to ensure that what

was being written would do as expected, even when new features are added.

Both client and server applications include unit and end-to-end (e2e) tests.

Unit tests allow the developer to test a feature by isolating all its dependencies.

For instance, each method of a concrete service from the backend has it own unit

tests which completely mock its dependencies and ensure the behaviour is as ex-

pected. On the other hand, the e2e contexts are more complex, since they test,

for example, one of the different use cases. An example would be to simulate the

behaviour of the user in a client app and expect the DOM to properly change.

With testing, comes continuous integration which allows the code to be con-

stantly tested. By constantly checking the newly added code, future errors can

be prevented and post-deployment breaks or bugs can be reduced. The chosen

- 52 -

7.2. Project structure

continuous integration platform is GitHub Actions1

7.2.2 Nx

There exist many systems or libraries that allow the development team to main-

tain a healthy and scalable monorepo (examples are Bazel or Pants). In this sys-

tem, since the language is the same for both web and server applications, the

monorepo build framework used that has been chosen is Nx. As stated in their

repository: Nx is a smart and extensible build framework to help you architect,

test, and build at any scale.

Figure 7.1: Nx logo

Using such tool, managing the applications becomes extremely easy to manage

both JavaScript and TypeScript monorepos. Other key features are:

- The different applications have been generated using the plugins also de-

veloped and maintained by the team behind Nx.

- The fast creation of shared libraries.

- Testing and building only the affected code. Therefore, in unit testing only

the files that have been changed, reduces the amount of tests to be done

on each push.

- All the created libraries and applications include all the dependencies,

scripts and tools to fast serve, test, build and deploy. Additionally, it can

lint and format the projects.

- Provides a rich plugin ecosystem if some utilities are not included in the core

package.

More specifically, it has great support with NextJS, which is the front-end frame-

work used for the web apps. Being able to easily scale, maintain and test the

front-end applications is a crucial requisite in this system. Such tool and its ex-

cellent documentation have simplified all aspects for setting up the different apps.

After using Nx, the application folder structure is as follows:

hubbl

├── apps

│ ├── api

│ ├── client

│ ├── client-e2e

1Theworkflow files of the platform can be found in the .github/workflows folder of the repos-

itory.

- 53 -

7.3. Technology stack

│ ├── core

│ ├── core-e2e

│ ├── landing

│ └── landing-e2e

├── libs

│ ├── data-access

│ │ ├── api

│ │ └── contexts

│ ├── shared

│ │ ├── models

│ │ └── types

│ ├── ui

│ │ └── components

│ └── utils

│ └── src

└── tools

└── generators

└── component

There are other files in the root folder of the repository, yet they have been ex-

cluded as the main folders are apps and libs. On the one hand, the apps folder

contains the source code and additional files to build and compile each one of

them. The client apps have two folders: the source code folders (core, landing

and client) and their respective e2e test folders (core-e2e, landing-e2e and

client-e2e). On the other hand, the folder libs contains all the libraries which

do not belong to an application, but rather used in many of them. As the Nx doc-

umentation states, the libs folder should contain: Libs contain services, com-

ponents, utilities, etc. They have well-defined public API. The front-end applica-

tions have been generated using the @nrwl/next utility, while the back end has

been generated with @nrwl/express. The libraries have been created with the

@nx/workspace which provides a lot of utils for the overall workspace [5]. Finally,

Nx provides an utilities’ library that can help the team with common tasks. Such

tools are kept in the tools folder. In this case, there is only one tool, component,

whih is a generator that when run generates the basic component structured used

in libs/ui/components.

7.3 Technology stack

This section will cover the different technologies that are specifically used to de-

velop the different applications.

7.3.1 TypeScript

These days JavaScript is the most used language around the world for many rea-

sons. Nevertheless, due to the fact of not having types, it makes some applica-

- 54 -

7.3. Technology stack

tions harder to debug and more error-prone. That is one of the reasons why Mi-

crosoft developed TypeScript, which is a strict syntactical superset of JavaScript.

The code written in TypeScript is transcompiled to JavaScript at build time.

Figure 7.2: JavaScript and TypeScript logos

By using TypeScript we provide a highly productive environment when developing

the different apps. Not only reduces the amount of painful bugs due to type errors,

but also provides all the benefits of the ECMA script.

7.3.2 Front end -Web applications

Nowadays, there aremany JavaScript front-end frameworks all with their benefits

and disadvantages. Angular, React, Vue and Svelte are the most known and used

frameworks. Since I am most experienced with React and NextJS is built upon

React, it has been the chosen option. Furthermore, on October 21st of 2021, the

NextJS team released its 12th version which included a Rust compiler that makes

rebuilds and fast refreshes2 extremely faster.

7.3.2.1 NextJS

As stated before, NextJS has been chosen as the front-end framework to build the

applications with. This framework is built on top of Node.js which enables React

based web application functionalities such as server-side rendering (SSR) and

static websites. In the NextJS home page, they provide the following description:

Next.js gives you the best developer experience with all the features you need for

production: hybrid static & server rendering, TypeScript support, smart bundling,

route pre-fetching, and more. No config needed [6].

Figure 7.3: NextJS logo

A NextJS project has to follow a certain structure. The NextJS bundler will create

a new page for the application for each file that is created inside the pages folder.

For example, in the core application, there are the following pages3:

2The fast refresh is an utility provided by JavaScript bundlers which checks for the changes

that have been made with the current bundle, and rebundles only the changed code, allowing the

developer to instantly see the changes in the development environment.
3Not all the folders have been included, as there are pages nested within other pages; it is a

reduced folder structure.

- 55 -

7.3. Technology stack

apps/core/pages

├── pages

│ └── index.tsx

├── 404

├── _app.tsx

├── auth

│ ├── signup

│ │ └── index.tsx

│ └── login

│ └── index.tsx

├── clients

│ └── index.tsx

├── dashboard

│ └── index.tsx

├── _document.tsx

├── events

│ └── index.tsx

├── index.tsx

├── settings

│ └── index.tsx

├── trainers

│ └── index.tsx

├── virtual-gyms

│ └── index.tsx

└── workers

└── index.tsx

In this case, instead of defining files, I opted for the <folder-name>/index.tsx

structure. NextJS will check for each folder and when it finds a file with the

index.tsx4, generates the logic required to display the page in the URL of

<folder-name>. If a folder is nested within another folder, as it is the case

of the auth folder, the URL would be the same, but nested> auth/signup and

auth/login. Aside from folders, there are special files which are specially treated

by the NextJS compiler. For example, the _app.tsx is the entry point of the ap-

plication and the content of it will be the parent of each page5.

One of the other important features NextJS provides is code-splitting [7]. Code

splitting consists in splitting the content provided by the server to the chrome in

different bundles. Therfore, when the user loads the website, instead of providing

all HTML, CSS and JS files, it only recieves what is required. In React applications

this is extremely handy, since the React content is provided as a single gigantic

JavaScript file.

4The files can end with jsx (JavaScript React file), js (JavaScript file) or tsx (TypeScript React

file).
5This is very useful for SEO purposes, as an example.

- 56 -

7.3. Technology stack

7.3.2.2 Mui

Once the web framework have been decided, the applications need to share a

common user interface to provide the user experience of using the same product.

Keeping such similarities can be difficult if the enterprise or company does not

have a well-defined design system. Therefore, creating my own design system

was out of scope, and a components’ library, as they are called, was needed.

Again, there are multiple libraries to be used, yet there is one that shines above

all others, which is the mui library. The library is open-source and maintained by

mui-org [8].

This library is based on the Google Material design system. However, it has an

extremely powerful API to define your own design system, without the need of

starting from 0. The developer has the possibility to inject the customised theme

to all the components of the API included in the library. Furthermore, it includes

an icon pack, which are the same as in the Google Material.

Figure 7.4: Mui library’s logo

7.3.3 Back end - Server application

For the backend application, many languages can be used. However, since

NodeJS provides a runtime environment for JavaScript, which allows building ap-

plications outside the browser. So, with the help onNx, the backend is alsowritten

in TypeScript.

7.3.3.1 Database

The application has many relationships, which would be harder to maintain in a

NoSQL database. Therefore, using a relational database is a better solution. At

the first glance, I opted for the MySQL database since it is one of the most used

SQL databases, nowadays. However, I have more experience with PostgreSQL

and I had no issues with it. In the end, the chosen database has been PostgreSQL

[9].

Figure 7.5: PostgreSQL’s logo

- 57 -

7.3. Technology stack

As explained before the database is run in a docker container. Viewing the data in

the terminal is not an issue, yet pgAdmin is a graphic user interface which simpli-

fies such visualisation. It is the equivalent of MySQL Workbench for PostgreSQL.

With such tool, schemas in general can be simply viewed and edited. Addition-

ally, the JetBrains DataGrip application has been also used, which has allowed to

generate the ERD once the database was defined.

7.3.3.2 ExpressJS

ExpressJS is one of the many back-end frameworks that exist in the JavaScript

world, nowadays. It is a minimal and flexible framework which provides a fast

methodology to develop APIs. It is considered the most popular back-end frame-

work of JavaScript, up to a point that other back-end meta-frameworks are Ex-

pressJS based (an example is NestJS). As stated in their landing page, ExpressJs

is a: Fast, unopinionated, minimalist web framework for Node.js [10].

Figure 7.6: ExpressJS’s logo

7.3.3.3 TypeORM

Finally, the TypeORM library is used to provide a bidirectional connection from the

server to the database. TypeORM is a TypeScript ORM (object relational mapper)

whose goal is to provide an agnostic model-database mapping. By using Type-

Script decorators and defining a connection, TypeORM will generate the entities

or documents specified, depending on the database to which is connected. Such

agnosticism allows to re-use the models with different databases [11].

Figure 7.7: TypeORM’s logo

In conjunction with Nx, the models that are used to generate the entities and their

relations, can be used in the front-end applications. Therefore, such models can

be shared and easily maintained.

7.3.4 Tests

Last but not least, the test stack also had to be defined. In this case, the provided

frameworks for testing by Nx were kept, since they are some of the most common

testing libraries nowadays.

- 58 -

7.3. Technology stack

7.3.4.1 Unit testing - Jest

Both @nrwl/express and @nrwl/next generators set up the application with Jest.

Jest is an open-source unit and mock testing framework developed and main-

tained by Facebook. It is one of the most popular libraries nowadays, since it is

extremely powerful and simple. It offers a powerful CLI tool to control the tests

which has an interactive mode that allows the developer only to run affected

tests6. Other benefits of Jest are that require zero configuration and ensures

isolation between tests. Isolation is extremely important when running tests, to

ensure that each test does not influence other’s results. As stated in their home

page: Jest is a delightful JavaScript Testing Framework with a focus in simplicity

[12].

Figure 7.8: Jest’s logo

Therefore, Jest is used in all the applications to unit tests the services, controllers,

components and so on from all the applications. Furthermore, since there is a

GitHub Action, CI can be easliy acomplished.

7.3.4.2 Unit testing - @testing-library

Aside from unit testing API functions and so on, it is important to also test the

different React components, ensuring they behave as expected. Again, there

are multiple choices to develop component unit tests, yet the solution chosen

is the one which is installed with @nrlw/next: @testing-library. This package

provides an API to easily test React components. It is a very light library which

uses functions on top of react-dom and react-dom/test-utils.

Figure 7.9: Testing library’s logo

6Nx also takes care of running only affected tests.

- 59 -

7.3. Technology stack

7.3.4.3 Client e2e testing - Cypress

Cypress ismore than a tool for testing. It provides a graphical user interface to see

what is being tested, where it fails and other features. It is an extremely powerful

tool for UI testing, which has always been a difficult subject. As stated in their

website, cypress enables you to: write faster, easier and more reliable tests [14].

Figure 7.10: Cypress’s logo

In order to use cypress, the project needs a specific folder structure which can

be a bit confusing to set up. However, the @nrlw/next plugin already sets up this

environment, which is kept in the *-e2e folders7.

7.3.4.4 Server e2e testing - Jest and Supertest

Finally, the libraries that are installed to develop end-to-end test for express, in

@nrwl/express are: Jest and Supertest. The Jest library has already been cov-

ered. The Supertest is an HTTP assertions library that allows the developer to

create Node.js HTTP tests. It uses the SuperAgent library, which is an HTTP client

for Node.js. Using Supertest is one of themost commonmethods to develop such

tests.

7In the system case, the different cypress environments are in: client-e2e, core-e2e and

landing-e2e.

- 60 -

8. Analysis and system design

8.1 Use case diagram

Figure 8.1: Owner’s core application use case diagram

The owner’s use case diagram is the above one. It goes from left to right1, and all

relations are of type include, meaning that you cannot move right without being

in the left position before. It is also important to note, that it is also possible to

move from right to left, for example, after creating a worker, the user is moved

back to the view workers state. The owner has access to all the possible states,

as it is like a superuser of the application (it is another reason on why all relations

are of include type).

Another important point to notice is the CRUD notation. I have opted for this

notation in order to make the diagram smaller and also help with the interaction

of the user. CRUD stands for Create, Read, Update and Delete. For example, the

CRUD Workers state would be the possibility of creating, reading, updating and

deleting workers.

1The first arrows are divided in two colors in order to make it easier to distinguish between

the two processes. If the color black had been used, as in the other relations, it would have been

harder to understand.

- 61 -

8.1. Use case diagram

Figure 8.2: Workers’s core application use case diagram

The worker’s diagram is nearly the same as the owner’s one, with some excep-

tions. The owner is allowed to read, create, update and delete everything without

being required any permissions. The worker, however, will have a subset of per-

missions that will allow it to perform certain tasks. Aside from their limitations, the

workers do not have access to the gym settings, meaining they can only modify

their settings. Furthermore, the only allowed person to access the worker’s page

is, once again, the owner. That is why the above diagram does not show the

worker’s page path, nor the gym’s settings modifications that can be seen in the

owner’s diagram. Just as in the owner’s diagram, all relations are considered of

include type.

Figure 8.3: Client’s client application use case diagram

Finally, the client’s diagram is extensively simpler than the two other diagrams, as

the client application has fewer interactivity. The client will access the applica-

tion through the dashboard, and it will have access to the virtual gym’s page, to

later access the gym zones view. There, they will be able to interact with their

appointments. Finally, they will have access to their settings, in order to modify

- 62 -

8.2. Database diagram

or update them as required.

8.2 Database diagram

8.2.1 Introduction

In a previous section, it has been explained that the DataGrip application has been

used to create the database diagram. The process to create such diagram has

been:

1. Create the entities with TypeORM. The synchronization of TypeORM with

the empty database, will create all the tables, sequences, indexes and so

on that have been defined. Therefore, the use of SQL is minimum and can

easily be debugged, if needed.

2. Set up a connection to the dockerized database with DataGrip.

3. Generate the ERD with the detected tables.

Such tool allows faster diagrams visualisation and avoids the pain of having to

keep ERD diagrams manually updated on any minor change,

8.2.2 Diagram

The resulting diagram is:

- 63 -

8.2. Database diagram

Figure 8.4: Database diagram

8.2.2.1 Introduction

In the following sections each table will be explained and a brief description

of their fields will be given. Each field will be represented using the following

schema:

- <field name> (<field type>) [<field constraints>] ^-> <field description>

There are some fields that are common to the different entities, independently of

their relations. Such fields are:

- created_at (timestamp) [DEFAULT NOW()] ^-> Keeps the timestamp at which

the entity has been created.

- updated_at (timestamp) [DEFAULT NOW()] ^-> Keeps the timestamp at which

the entity has been last updated.

- deleted_at (timestamp) [] ^-> Keeps the timestamp at which the entity has

been dele-ted.

- 64 -

8.2. Database diagram

8.2.2.2 Person

One of the big concepts to define in the database has been how are users stored.

After comparing many approaches, a multiple table inheritance has been chosen.

The base table of the user’s inheritance is the Person. The person entity will have

an id which will be the primary key of the entities that inherit from the table. Such

entity contains the mandatory data each user must have:

- id (integer) [PRIMARY KEY AUTOINCREMENT] ^-> This is the primary key of the

entity.

- email (varchar(255)) [NOT NULL] ^-> Stores the email of the user. The email

is indexed by a unique index (person-email-idx).

- password (varchar(255)) [NOT NULL] ^-> Stores the password of the user

which is encrypted before insert.

- first_name (varchar(255)) [NOT NULL] ^-> Stores the first name of the user.

This field is indexed for faster queries by first name (person-first-name-

idx).

- last_name (varchar(255)) [NOT NULL] ^-> Stores the last name of the user.

This field is indexed for faster queries by last name (person-last-name-idx).

- theme (app_theme) [DEFAULT "LIGHT"] ^-> Stores the theme used by the per-

son in the different applications2.

- gender (char) [NOT NULL] ^-> Stores the gender of the person.

- gym_id (integer) [NOT NULL] ^-> Stores the id of the Gym entity to which the

user belongs.

8.2.2.3 Owner

TheOwner entity is the person who has the most permissions. Therefore, instead

of having all the permissions which are defined in the Worker entity set to true,

the Owner’s are kept in a different table. Additionally, an owner will have more

permissions than the ones stored in theWorker entity. The fields of the table are:

- person_id (integer) [PRIMARY KEY AUTOINCREMENT] ^-> References an id of

the Person entity.

- onwer_id (integer) [] ^-> References the id of the Gym the owner owns.

8.2.2.4 Worker

The next person type is theWorker. A worker has different permissions set by the

owner when created. The Worker entity basically contains boolean fields which

allow the system to know what permissions have been given to the worker. The

permissions of the user are set using the following rule: <operation>_<on>. For

example, the permission of updating the gym zones is update_gym_zone.

The fields of the table are

2This field is an enum defined in the library @hubbl/shared/enums.

- 65 -

8.2. Database diagram

- person_id (integer) [PRIMARY KEY AUTOINCREMENT] ^-> References an id of

the Person entity.

- update_virtual_gym (boolean) [DEFAULT FALSE NOT NULL] ^-> Permission to

update a VirtualGym.

- create_gym_zones (boolean) [DEFAULT FALSE NOT NULL] ^-> Permission to

create a GymZone.

- update_gym_zones (boolean) [DEFAULT FALSE NOT NULL] ^-> Permission to

update a GymZone.

- delete_gym_zones (boolean) [DEFAULT FALSE NOT NULL] ^-> Permission to

delete a GymZone.

- create_trainers (boolean) [DEFAULT FALSE NOT NULL] ^-> Permission to cre-

ate a Trainer.

- update_trainers (boolean) [DEFAULT FALSE NOT NULL] ^-> Permission to up-

date a Trainer.

- delete_trainers (boolean) [DEFAULT FALSE NOT NULL] ^-> Permission to

delete a Trainer.

- create_clients (boolean) [DEFAULT FALSE NOT NULL] ^-> Permission to create

a

Client.

- update_clients (boolean) [DEFAULT FALSE NOT NULL] ^-> Permission to up-

date a Client.

- delete_clients (boolean) [DEFAULT FALSE NOT NULL] ^-> Permission to delete

a

Client.

- create_tags (boolean) [DEFAULT FALSE NOT NULL] ^-> Permission to create a

TrainerTag.

- update_tags (boolean) [DEFAULT FALSE NOT NULL] ^-> Permission to update

a TrainerTag.

- delete_tags (boolean) [DEFAULT FALSE NOT NULL] ^-> Permission to delete a

TrainerTag.

- create_events (boolean) [DEFAULT FALSE NOT NULL] ^-> Permission to create

an Event.

- update_events (boolean) [DEFAULT FALSE NOT NULL] ^-> Permission to up-

date an Event.

- delete_events (boolean) [DEFAULT FALSE NOT NULL] ^-> Permission to

delete an Event.

- 66 -

8.2. Database diagram

- create_event_types (boolean) [DEFAULT FALSE NOT NULL] ^-> Permission to

create an EventType.

- update_event_types (boolean) [DEFAULT FALSE NOT NULL] ^-> Permission to

update an EventType.

- delete_event_types (boolean) [DEFAULT FALSE NOT NULL] ^-> Permission to

delete an EventType.

- create_event_templates (boolean) [DEFAULT FALSE NOT NULL] ^-> Permis-

sion to create an EventTemplate.

- update_event_templates (boolean) [DEFAULT FALSE NOT NULL] ^-> Permis-

sion to update an EventTemplate.

- delete_event_templates (boolean) [DEFAULT FALSE NOT NULL] ^-> Permis-

sion to

delete an EventTemplate.

- create_event_appointments (boolean) [DEFAULT FALSE NOT NULL] ^-> Per-

mission to create an EventAppointment.

- update_event_appointments (boolean) [DEFAULT FALSE NOT NULL] ^-> Per-

mission to update an EventAppointment.

- delete_event_appointments (boolean) [DEFAULT FALSE NOT NULL] ^-> Per-

mission to

delete an EventAppointment.

- create_calendar_appointments (boolean) [DEFAULT FALSE NOT NULL] ^->

Permission to create a CalendarAppointment.

- update_calendar_appointments (boolean) [DEFAULT FALSE NOT NULL] ^->

Permission to update a CalendarAppointment.

- delete_calendar_appointments (boolean) [DEFAULT FALSE NOT NULL] ^->

Permission to delete a CalendarAppointment.

- manager_id_fk (integer) [NOT NULL] ^-> References the manager (Owner) of

the Worker.

8.2.2.5 Trainer

The trainer table is very simple since it has no interaction with the system. It is a

subset of the properties of a worker.

- person_id (integer) [PRIMARY KEY AUTOINCREMENT] ^-> References an id of

the Person entity.

8.2.2.6 Client

Client is a WIP entity.

- person_id (integer) [PRIMARY KEY AUTOINCREMENT] ^-> References an id of

the Person entity.

- covid_passport (boolean) [NOT NULL DEFAULT FALSE] ^-> Allows the gym

owners and workers to know if the user has registered the covid passport.

- 67 -

8.2. Database diagram

8.2.2.7 Gym

The Gym entity is relates to the company, not the infrastructure of a gym. There-

fore, it works as a bridge entity that knows the preferences of the gym, such as

the interface, gym location and other data. These properties can only bemodified

by an owner person. The table consists of the following fields:

- id (integer) [PRIMARY KEY AUTOINCREMENT] ^-> Unique id of the Gym.

- name (varchar(255)) [NOT NULL] ^-> Name of the Gym, which will be dis-

played to the client and workers.

- email (varchar(255)) [NOT NULL] ^-> Contact email of the Gym.

- phone (varchar(255)) [NOT NULL] ^-> Contact phone of the Gym.

- code (varchar(8)) [NOT NULL] ^-> Unique Gym code used to identify the gym

so the Client can use it when registering to the application.

- color (theme_color) [DEFAULT "#2196F3" NOT NULL] ^-> Primary color of the

gym which is the same with all the users3.

8.2.2.8 VirtualGym

Once the Gym has been defined, the company may have multiple different in-

frastructures, for example, if it is a franchise. These virtual gyms are stored in

the VirtualGym table. The virtual gym will have different constraints which can

change if the workers or owners do change them. The fields of the VirtualGym

table are:

- id (integer) [PRIMARY KEY AUTOINCREMENT] ^-> Unique id of the VirtualGym.

- name (varchar(255)) [NOT NULL] ^-> Name of the VirtualGym.

- description (text) [NOT NULL] ^-> Description of the VirtualGym.

- location (varchar(255)) [NOT NULL] ^-> Location of the VirtualGym.

- capacity (integer) [NOT NULL] ^-> Maximum capacity of the VirtualGym.

- phone (integer) [] ^-> Optional phone of the VirtualGym.

- open_time (time) [NOT NULL] ^-> Time at which the VirtualGym opens.

- close_time (time) [NOT NULL] ^-> Time at which the VirtualGym closes.

- gym_id (integer) [NOT NULL] ^-> Gym to which the VirtualGym belongs.

3This field is an enum defined in the library @hubbl/shared/enums.

- 68 -

8.2. Database diagram

8.2.2.9 GymZone

After having created the VirtualGym, now gym zones can be created for the dif-

ferent virtual gyms of a gym. There are two types of zones: class and non-class

zones. The class zones will have a schedule with Event’s create by the gym per-

sonnel, while non-class zones will have a schedule without events. At the same

time, it has the constraints set by the owner and workers, similar to the Virtual-

Gym.

The columns of the entity are:

- id (integer) [PRIMARY KEY AUTOINCREMENT] ^-> Unique id of the GymZone.

- name (varchar(255)) [NOT NULL] ^-> Name of the GymZone.

- description (text) [NOT NULL] ^-> Description of the GymZone.

- is_class_type (boolean) [DEFAULT FALSE] ^-> Whether it is a class or non-

class zone.

- capacity (integer) [NOT NULL] ^-> Maximum capacity of the GymZone.

- mask_required (boolean) [NOT NULL DEFAULT TRUE] ^->Whether wearing the

mask is mandatory to access the GymZone.

- covid_passport (boolean) [NOT NULL DEFAULT TRUE] ^-> Whether having

registered the covid passport is mandatory to access the GymZone.

- open_time (time) [NOT NULL] ^-> Time at which the GymZone opens.

- close_time (time) [NOT NULL] ^-> Time at which the GymZone closes.

- time_intervals (time_interval[]) [DEFAULT 30, 60, 90, 120] ^-> This field

will only be used if the GymZone is a non-class zone. It defines the time

intervals, in minutes, that the clients will be able to make the appointments.

- calendar_id (integer) [NOT NULL] ^-> Calendar identifier of the GymZone.

- virtual_gym_id (integer) [NOT NULL] ^-> VirtualGym to which the GymZone

belongs.

8.2.2.10 Calendar

The Calendar entity is linked to a GymZone and is used to link the events and to

know how many clients have made an Appointment during a time interval. The

Calendar will always be linked with Event’s, and the Event entity will be used to

determine if the Appointment is for a class or a non-class zone.

The fields of the table are:

- id (integer) [PRIMARY KEY AUTOINCREMENT] ^-> Unique id of the Calendar.

- 69 -

8.2. Database diagram

8.2.2.11 CalendarDate

A CalendarDate is a simple entity that will contain the year, month and day of a

date. It will be created on demand, meaning that each entry is unique, yet it will

not exist until there is another entity that requires of it. With this approach, the

system avoids the need to fill the table with hundreds of entries for each date.

The fields are:

- year (integer) [NOT NULL] ^-> Year of the CalendarDate.

- month (integer) [NOT NULL] ^-> Month of the CalendarDate.

- day (integer) [NOT NULL] ^-> Day of the CalendarDate.

In order to ensure each entry is unique, a composite unique index has been set

which contains the three fields of the table.

8.2.2.12 EventType

The system allows the user to create events are of a specific type. For instance,

the types can be: spinning, zumba, yoga and so on. There will be predefined

EventType’s when the owner first creates the gym. However, in order to allow

more flexibility while using the application, the system also allows the user to

create custom EventType’s.

The EventType entity is composed by the following columns:

- id (integer) [PRIMARY KEY AUTOINCREMENT] ^-> Unique id of the EventType.

- name (varchar(255)) [NOT NULL] ^-> Name of the EventType.

- description (text) [NOT NULL] ^-> Description for the EventType.

- label_color (app_palette) [DEFAULT "#2196F3" NOT NULL] ^-> Color of the

EventType when displayed.

- gym_id (integer) [NOT NULL] ^-> References the id to which the EventType

belongs.

8.2.2.13 EventTemplate

In order to reduce the repetitive process of creating Event’s for a gym zone, the

system provides the utility of creating EventTemplate’s, which allow the owners or

workers to create Event’s faster. With the EventTemplate utility, in order to create

an Event becomes faster and less repetitive.

The fields of this entity are:

- id (integer) [PRIMARY KEY AUTOINCREMENT] ^-> Unique id of the EventTem-

plate.

- name (varchar(255)) [NOT NULL] ^-> Name of the EventTemplate.

- description (text) [NOT NULL] ^-> Description for the EventTemplate.

- 70 -

8.2. Database diagram

- capacity (integer) [NOT NULL] ^-> Optional description for the EventTem-

plate.

- covid_passport (integer) [NOT NULL DEFAULT FALSE] ^->Whether the event

will require the client to have the covid passport or not.

- mask_required (integer) [NOT NULL DEFAULT FALSE] ^-> Whether the event

will require the client to wear a mask.

- event_type_fk (integer) [] ^-> References the EventType of the EventTem-

plate.

- gym_id (integer) [NOT NULL] ^-> References the EventType of the EventTem-

plate.

8.2.2.14 Event

Finally, the Event can be defined. An Event is a bridge table that contains: the

Trainer, theCalendarDate, theCalendar to which is scheduled and the EventTem-

plate. All these identify the Event, that is what the entity to which the user will be

able to create an appointment.

The table is defined as:

- id (integer) [PRIMARY FIELD NOT NULL] ^-> Unique identifier of the Event.

- name (varchar(255)) [NOT NULL] ^-> Name of the Event.

- description (text) [NOT NULL] ^-> Description for the Event.

- capacity (integer) [NOT NULL] ^-> Optional description for the Event.

- covid_passport (integer) [NOT NULL DEFAULT FALSE] ^->Whether the event

will require the Client to have the covid passport or not.

- mask_required (integer) [NOT NULL DEFAULT FALSE] ^-> Whether the event

will require the Client to wear a mask.

- start_time (time) [NOT NULL] ^-> Time at which the Event starts.

- end_time (time) [NOT NULL] ^-> Time at which the Event ends.

- trainer_person_id (integer) [NOT NULL] ^-> References the Trainer of the

Event.

- calendar_id (integer) [NOT NULL] ^-> References the Calendar of the Event.

- template_id (integer) [] ^-> References the EventTemplate of the Event, if

any.

- event_type_id (integer) [] ^-> References the EventType of the Event.

- date_year (integer) [NOT NULL] ^-> References the year of a CalendarDate

of the Event.

- 71 -

8.2. Database diagram

- date_month (integer) [NOT NULL] ^-> References the month of a Calendar-

Date of the Event.

- date_day (integer) [NOT NULL] ^-> References the day of a CalendarDate of

the Event.

8.2.2.15 EventAppointment and CalendarAppointment

Finally, the only requirement left is the appointments from the Client’s. The Client

has to be able to book a session for a guided class, which means to an Event, or

for a non-guided class, that is for a Calendar. So, the two entities represent each

case respectively. They both share some attributes, such as the startTime and

the openTime. However, the EventAppointment is related with an Event, as it will

be an Appointmentmade to an Event. On the other hand, a CalendarAppointment

would be anAppointmentmade in a time interval, chosen by the user, for a specific

GymZone.

The fields of the EventAppointment entity are:

- id (integer) [PRIMARY KEY NOT NULL] ^-> Unique identifier of the EventAp-

pointment

- client_person_id (integer) [NOT NULL] ^-> References the Client that has

made the EventAppointment.

- event_id (integer) [NOT NULL] ^-> References the Event to which the Even-

tAppointment has been made.

- start_time (time) [NOT NULL] ^-> Time at which the EventAppointment starts,

which will be the same as the Event.

- end_time (time) [NOT NULL] ^-> Time at which the EventAppointment ends,

which will be the same as the Event.

- cancelled (boolean) [NOT NULL DEFAULT FALSE] ^-> Used to know if the

EventAppointment has been cancelled.

The fields of the CalendarAppointment entity are:

- id (integer) [PRIMARY KEY NOT NULL] ^-> Unique identifier of the Calen-

darAppointment

- client_person (integer) [NOT NULL] ^-> References the Client that has made

the CalendarAppointment.

- calendar_id (integer) [NOT NULL] ^-> References the Calendar to which the

CalendarAppointment has been made.

- start_time (time) [NOT NULL] ^-> Time at which the CalendarAppointment

starts.

- end_time (time) [NOT NULL] ^-> Time at which the CalendarAppointment

ends.

- 72 -

8.3. User interfaces

- cancelled (boolean) [NOT NULL DEFAULT FALSE] ^-> Used to know if the Cal-

endarAppointment has been cancelled.

- date_year (integer) [NOT NULL] ^-> References the year of a CalendarDate

of the CalendarAppointment.

- date_month (integer) [NOT NULL] ^-> References the month of a Calendar-

Date of the CalendarAppointment.

- date_day (integer) [NOT NULL] ^-> References the day of a CalendarDate of

the CalendarAppointment.

8.3 User interfaces

The design of the user interfaces has been a priority before diving into the front

end development. Such interfices, provide a preliminar view of what show the

application look and feel. The following figures, are the designs of the user inter-

faces that have been designed using the Figma software4.

Designing every possible state of the application is far from achievable with such

little time. However, since the core and client application will share much of their

user interface, only the core views have been designed. When developing the

client application, most of the components have been reused, modifying they be-

haviour as needed, since the client interactions are limited (for instance, the client

sees the same dashboard page, yet the button to add a virtual gym is hidden).

Needless to say, some views do not correspond exactly as they are in the appli-

cation, mainly because some features have been modified or added as required.

Finally, the following aspects have been considered when designing the views:

- The views should also be displayed as an owner used. This is due to the

fact that the only differences between the views of an owner, a worker or a

client, will be minimal. Some things will be hidden or not allowed, which has

little effects to the final design.

- Each element that can be created (virtual gyms, gym zones, trainers and so

on) must have their corresponding dialog or view in which such items are

created, edited or deleated.

- In case a dialog is used, it has to contain how it looks when: it is be-

ing created, it is being edited, and it is being loaded, for each of the

previous states.

With these requirements, there are views modals that contain 4 images, each

one for the described states.

4The figma application is a free software which can be found in: www.figma.com

- 73 -

www.figma.com

8.3. User interfaces

Figure 8.5: First step of the sign up page

Figure 8.6: Second step of the sign up page

- 74 -

8.3. User interfaces

Figure 8.7: View of the login page

Figure 8.8: Dashboard page, displaying a summary of the gym’s information

- 75 -

8.3. User interfaces

Figure 8.9: Virtual gym’s page, which is accessed using the left navigation bar

Figure 8.10: Single virtual gym view, accessed by clicking on a virtual gym

- 76 -

8.3. User interfaces

Figure 8.11: Class gym zone page, accessed by clicking on any class-type gym

zone

Figure 8.12: Event’s page, which is accessed using the left navigation bar

- 77 -

8.3. User interfaces

Figure 8.13: Trainer’s page, which is accessed using the left navigation bar

Figure 8.14: Worker’s page, which is accessed using the left navigation bar

- 78 -

8.3. User interfaces

Figure 8.15: Client’s page, which is accessed using the left navigation bar

Figure 8.16: Settings page

- 79 -

9. Implementation and trials

9.1 Introduction

The goal of this chapter is to explain the development process, from the thinking

of the application and its structure, to the actual development of it. It will also

include and explanation of how the application has been constantly tested1.

9.2 Organizing the idea

When I came upwith the idea for the application, I ended upwith amix of thoughts

that had to be organised and connected. Therefore, the first step was to write

an extensive explanation of the application, the goal of the application, what it

would do and what it would not do, trying to cover as many details as I could. Af-

ter revising and rethinking the idea, I ended up with a potential project that made

sense and could provide value to future clients.

Once the application had been described, defining the functionalities of suchwere

easier. However, I needed to define a possible structure for such application. It

was then when I decided to develop three applications: the landing page, the

core application and the client application. I found interesting to distinguish be-

tween the client and the core application in order to simplify the development

process. Mostly, when an application is expected to cover the most amount of

possibilities and users, it ends which an enourmous amounts of checks and even

repeated code. Knowing so, I decided to split it in two applications, while at the

same time reducing the amount of boilerplate code. Knowing the existence of

Nx, I had the logistic problem of maintaining a monorepo with the applications

and libraries solved by such tool.

Even though it would probably change in structure, the initial idea of the archi-

tecture was there, and from it, I could start specifying the functional and non-

functional requirements. It was probably the most time demanding task of the

project, alongside structuring the working packages. Now that such parts were

defined, I was able to visualise a roadmap for the development of the system.

9.3 Application development

I started developing the API application as it helped to define the database. It

ended up being the most repetitive project to develop as there are many end-

points which are quite similar, however others were such a challenge, as involved

complex queries. Once the server had been “finished”2, I started designing the

user interface. knowing available endpoints of the server helped with the thingk-

1Most testing involves unit and integration testing. In the API application, end-to-end testing

has been implemented. For the UI applications, do not have end-to-end testing implemented due

to a lack of time
2It is hard to consider a project finished, as product applications need constant improvements

and changes in order to keep up with the market.

- 80 -

9.3. Application development

ing of the UI, yet at the same time it helped me realise what was lacking in the

server. Therefore, after having finished the design, I got back to the API, adding

what was mssing and cleaning up the code3.

The next step was to start developing the UI applications. The core application

had the most amount of logic and difficulty, which is the reason why I started with

such project. I knew I would have to add a lot of components and views which

would later be reused in the client application. This is the reason why the work-

ing packages for the core application have more estimated time than the client

application. With Nx has been extremely easy and simple to abstract common

code and keep it in the shared libraries, which can be easily used and referenced

in any application. If in the future it is needed to add another application, the de-

velopment process would be extremely simple, since most components could be

reused.

Since then, I have been developing most of the core application. When most of

it had been finished, I started developing the client application. With it, I had to

start abstracting some of the code that was in the core application, so that it can

be reused.

Finally, I have also tracked the time that I have spent in each task, using Jira’s

smart commits. However, I started tracking the time spent at the end of December

2021, meaning that the overall spent time is 100% accurate. Furthermore, it also

contains the time that I have spent develoing the applications, without counting

the time spent with documentation. The following table contains the time spent

with the task types and their priority:

One of the things to note about this table is the fact that not much time has been

spent with bug type tasks. It storngly believe it is due the fact that I have been

testing the code constantly.

9.3.1 Continuous integration

One of the things that I explained in previous sections was the importance of hav-

ing continuous integration, which would help to know if the code developedwould

cause errors or not. Also, with integration tests, it would be easier to verify if the

component or controller work as expected. It was also one of the reasons why I

chose Nx as a build tool, as it allows you to test for a specific project.

Knowing so, I defined multiple workflows [15] which would run if there were

changes in the different project directiories4. The worflows would be run in two

conditions:

1. If there is a push in the develop branch.

2. If a pull request if opened.

The development process would be:

3Such thing was also expected in the roadmap, as it was my intention to revise the server after

designing the UI.
4GitHub worflows allow you to trigger worflows on changes made in a given folder path.

- 81 -

9.3. Application development

1. Creating a branch with the name of the Jira issue. Using such naming con-

vention, when accessing an issue in Jira, it was easier to find the issue

branches.

2. Adding as many changes as wanted, while also adding tests. If the changes

were added in the API application, it should include unit, integration and e2e

tests. If the changes where added in any library of any UI application, it

should include unit and integration tests.

3. Once the task has been finished, a PR should be created which would trigger

the workflows.

4. If all checks pass, the PR can be merged into the wanted branch.

Using the PRs, it becomes really easy to identify issues, and it ensures that not a

single line of coded is merged without knowing it does not pass its tests. As an

addition to the checks, I also integrated CodeCov, which is a freemium tool that

helps to visualise the coverage of the project5. The CodeCov integration adds

a comment to the pull request summarizing the changes made and how such

changes modify the coverage of the project.

Figure 9.1: Example of the comment generated by the CodeCov command

As explained before, the API server runs an e2e test. Such test requires a fake

database and also takes more time to initialise, run and finish. Therefore, the end-

5The CodeCov configuration file can be found in the codecov.yaml in the root folder of the

repository.

- 82 -

9.4. Trials

to-end tests are not run on everymerge to develop or every PR, but when the code

is merged to the main branch. The end-to-end test starts a docker container in

the GitHub action that will contain the database which will be used by the tests.

9.4 Trials

Aside from the implemented tests, the UI application has been manually tested

in order to find bugs that may not have been covered by the automated tests. In

the case of the API, testing the endpoints has been a bit harder, yet the Postman

software has been used in order to test the endpoints. In case of the UI applica-

tions, they have been tested by finding edge cases when running the appliation.

When a bug has been found, I firstly checked the tests to see why it was not being

covered or if it was a bug in the test, as it is something that can happen. If the

bug was found in the tests, I updated the tests and later fixed the actual code. If

not, I would search the bug in the code, to later cover it with the tests.

- 83 -

10. Deployment and results

10.1 Deployment

The deployment of the application would be the latest step once the 3 applica-

tions have been fineshed. Once again, due to the lack of time, I have not been able

to finish all the features I had in mind before the application is deployed. Never-

theless, the current product is enough to be shown to potential clients, meaning

that if I found any gym or company interested in such product, with what has been

developed, I ensure it would be enough to attract them to the app.

Aside from that, a mind map of how the applications would work for the public,

would be by accessing them from a public URL. The applications would be run-

ning in a cloud service, AWS to name one, and most likely deployed as docker

images, which would fasten the deployment, and it would be easier to automate.

However, due to lack of time and money, the application has not been deployed,

meaning it can not be accessed from any device, other than the local machine. In

order to run the application from the local machine, the installation manual can be

found in the code repositiry, as well as in the documentation for each application,

in the repository aswell.

10.2 Results

There are some views that did not fit in the screen, therefore two images have

been made. Furthermore, most of the create and update actions are performed

inside a modal or a dialog. Instead of adding two screenshots with the same

content, only with small text changed, only the create dialog has been attached.

Furthermore, the zoom applied is of 90%, allowing more content to be displayed

in the screenshot.

10.2.1 Core application

In order to reduce the amount of screenshots that are added, the screenshots

have been made when a user is logged as an owner. A worker’s is nearly as the

worker’s one, just with some actions not allowed, depending on their permissions.

- 84 -

10.2. Results

10.2.1.1 Authentication

Figure 10.1: Step one of the sign up process

Figure 10.2: Step two of the sign up process

- 85 -

10.2. Results

Figure 10.3: Log in page

10.2.1.2 Dashboard page

Figure 10.4: First screenshot of the dashboard page

- 86 -

10.2. Results

Figure 10.5: Second screenshot of the dashboard page

10.2.1.3 Virtual gyms

Figure 10.6: Virtual gyms page

Whenever a virtual gym has been clicked (by clicking at its name), the user is

redirected to the above page, which displays all the gym zones of the chosen

virtual gym.

- 87 -

10.2. Results

Figure 10.7: Virtual gym page

Figure 10.8: Creation of a virtual gym

10.2.1.4 Gym zone

This view is only limited to the class type gym zones. That is becasue the non-

class type do not have an events calendar.

- 88 -

10.2. Results

Figure 10.9: View of a calendar with events of the same event type

Figure 10.10: View of a calendar with events of different event type

Gym zones can be created from different views, which are the dashboard, the

virtual gyms list page and the single virtual gym’s page.

- 89 -

10.2. Results

Figure 10.11: Virtual gym page

Figure 10.12: Creation of an event for a calendar

- 90 -

10.2. Results

10.2.1.5 Events

Figure 10.13: Events page with event types and event templates

Figure 10.14: Creation of an event type

- 91 -

10.2. Results

Figure 10.15: Creation of an event template

10.2.1.6 Workers

Figure 10.16: Workers view without a worker selected

- 92 -

10.2. Results

Figure 10.17: Workers view with a worker selected

Figure 10.18: Creation of a worker

- 93 -

10.2. Results

10.2.1.7 Trainers

Figure 10.19: Trainers page

Figure 10.20: Creation of a trainer

- 94 -

10.2. Results

10.2.1.8 Clients

Figure 10.21: Clients page

Figure 10.22: Creation of a client

10.2.1.9 Settings

The settings page for a worker would look the same, without having the gym

properties available.

- 95 -

10.2. Results

Figure 10.23: Settings page

10.2.2 Client application

10.2.2.1 Authentication

Figure 10.24: Sign up page

- 96 -

10.2. Results

Figure 10.25: Log in page

10.2.2.2 Dashboard page

In comparison to the core application, the dasboard page contains fewer actions,

and it is more simple.

Figure 10.26: Dashboard page

- 97 -

10.2. Results

10.2.2.3 Virtual gyms

Figure 10.27: Virtual gyms page

Whenever a virtual gym has been clicked (by clicking at its name), the user is

redirected to the above page, which displays all the gym zones of the chosen

virtual gym.

Figure 10.28: Virtual gym page

- 98 -

10.2. Results

10.2.2.4 Gym zone

Figure 10.29: View of a gym zone

10.2.2.5 Appointments

Figure 10.30: Creation of an appointment to an event

- 99 -

10.2. Results

Figure 10.31: Confirmation of an event appointment

Figure 10.32: Creation of an appointment to a calendar

- 100 -

10.2. Results

Figure 10.33: Confirmation of a calendar appointment

10.2.2.6 Settings

Figure 10.34: Settings page

- 101 -

11. Conclusions

The goal of the project was to provide a tool that helped both gym owners to

manage the appointments their clients made, durign the COVID restrictions. This

objective has been accomplished with the Hubbl web application, which allows

users to manage appointments in a gym environment. Nevertheless, it is hard to

define an app as completely finished, as there may exist a bug that the develop-

ers have not seen, or the clients will require new features which will have to be

implemented.

It is important to note that one of the objectives of the application was to provide

an elegant and sofisticated user experience, at least better than my experience

as a user of a similar software. Therefore, the Hubbl application not only provides

value with its functionality, but also with the interface and use experience it ships

with.

Furthermore, the Hubbl application tries to cover as many aspects as possible,

while simplifying the usage of the application. As explained in the Future work

section, there are many other things to improve and to add as new features.

Nonetheless, the version that is provided has more than what the app is expected

to do. Due to the lack of time, inexpertise in some fields or tools used, and the

fact that I have only been developing the application, it has not been possible to

develop all that was expected for the wanted deadlines.

The project has required me to use pieces of knowledge acquired in the degree.

At the same time, I have been pushed outside my comfort zone, dedicating time

to reading documentation pages and similar.

To sum up, the project has provided a sense of how difficult and complex can it be

from brainstorming the idea of the application, to finding the proper architecture

to later develop it.

- 102 -

12. Future work

It is barely ever true that a software application can be considered as finished.

Few are the cases in which the software does not need further development. The

Hubbl application it will require of improvements and the addition of new features,

so that the clients see more value in the organisation and application. Such thing

is extremely common in product-bases software. Therefore, in general terms, the

maintenance and improvement of the software will be the future work itself.

Aside from the general points, due to the lack of time and handwork (being me the

only developer) it has not been possible to fulfill all the functional requirements.

The following list contains what is left to be done:

- Appointments. Currently, it is not possible to view the list of appointments

for an event or a gym zone. Therefore, the gym owner or any worker, are not

able to see who is attending the gym zone1. It is the same for the clients,

they are not able to see their past and future appointments.

In the left navigation bar, a new tab will be added in both applications (core

and client) which will allow the user to see the appointments made. In the

case of the core application, it will display all the appointments made, while

allowing the user to filter (by name, gym zone, event, event type and so on).

Such view will require an enourmous amount of time for a singe developer

to develop.

- Archival. Archiving gym zones, events, clients and any item that can be

deleted would allow the user to soft-delete items, meaning that such items

could be recovered in the future. Currently, the server only supports hard-

deletion, the opposite, as it requires less logic in the backed. However, the

goal would be to provide the user with both utilities, being able to perma-

nently remove or temporarily remove items.

- Update gym zones and virtual gyms. It is currently not possible to edit the

characteristics (name, description, open and close time, and so on) of a

virtual gym nor a gym zone. I have not found the best place, in terms of user

expercience, to locate such edition. Therefore, I have kept procastinating

the task, yet it would have a high priority in comparison to other tasks.

- Filtering. The woker, trainer and client views will contain a lot of data which

can be hard to visualise sometimes. That is the reason why providing filters

for such views will add enourmous value to such features.

- Analytics. Alongside the archiving feature, having analytics of the gym

would provide tremendous value to the gym owner and their coworkers, but

it requires a vast amount of time to be developed. Therefore, as I have stated

in the Functional requirements section, it was already something that I knew

I wouldn’t have time to develop, and it would be a nice-to-have for the user.

Such feature whould be added as another tab in the lateral menu, and it

would only be accessible to the gym owner and to the workers with permis-

sions to view them.

1In the case of the events, it is possible to see how many clients have made an appoitment,

yet it is not possible to know who.

- 103 -

- Light/Dark theme. It is currently possible in the server to change the theme

from light to dark and vice-versa. However, since I did not have enought time

to define a dark system design, I opted not to add it in the client. Nonethe-

less, it should be an easy to add feature, as themui library provides an easy

tool for such feature.

- Client e2e. Again, due to the lack of time and handwork, I have not been

able to develop end-to-end tests for the client applications. I have little

experience with developing such tests, and I would have required a vast

amount of time to code consistent and valuable end-to-end tests.

- Deployment. Finally, I would have wanted to deploy the applications to a

web server so that they would be accessible to anyone. Such thing will not

be possible until the application includesmost of the above points, excluding

analytics and archival.

To sum up, even though the list may seem large, the application is fully functional

and provides the basic utilities for the owners, workers and clients to properly

organise themselves.

- 104 -

Bibliography

[1] Unspecified author. Unspecified last update. Salario medio para Diseñador

Ui en España, 2022. April 19th 2022. https://es.talent.com/salary?job=

dise%C3%B1ador+ui.

[2] Unspecified author. Unspecified last update. Salario medio para Progra-

mador Javascript en España, 2022. April 19th 2022. https://es.talent.com/

salary?job=programador+javascript.

[3] Atlassian. Unspecified last update. Jira Software homepage. March 20th

2022. https://www.atlassian.com/software/jira.

[4] Unspecified author. Unspecified last update. Use smart commits. March

20th 2022. https://support.atlassian.com/bitbucket-cloud/docs/

use-smart-commits/.

[5] Unspecified author. Unspecified last update. Using Nx at Enterprises. De-

cember 12th 2021. https://nx.dev/l/r/guides/monorepo-nx-enterprise#

apps-and-libs.

[6] Vercel. Unspecified last update. The React Framework for Production. De-

cember 12th 2021. https://nextjs.org/.

[7] MDN contributors. January 28th 2022. Code splitting. December 12th 2021.

https://developer.mozilla.org/en-US/docs/Glossary/Code_splitting.

[8] Unspecified author. Unspecified last update. Move faster with intuitive React

UI tools. December 12th 2021. https://mui.com/.

[9] Unspecified author. Unspecified last update. PostgresQL: The World’s Most

Advanced Open Source Relational Database. December 12th 2021. https://

www.postgresql.org/.

[10] Unspecified author. Unspecified last update. 4.x API. December 13th 2021.

https://expressjs.com/en/api.html.

[11] @pleerock2. April 28th 2022. typeorm/typeorm. December 13th 2021. https:

//github.com/typeorm/typeorm.

[12] Facebook. Unspecified last update. Jest. December 13th 2021. https://

expressjs.com/en/api.html.

[13] @Nick McCurdy3. September 21st 2021. React Testing Library. December

13th 2021. https://testing-library.com/docs/react-testing-library/

intro.

[14] Cypress.io. Unspecified last update. Javascript End-to-End testing frame-

work. December 13th 2021. https://www.cypress.io/

[15] Unspecified author. Unspecified last update. Using workflows. May 22nd

2022. https://docs.github.com/en/actions/using-workflows

2GitHub’s username.
3GitHub’s username.

- 105 -

https://es.talent.com/salary?job=dise%C3%B1ador+ui
https://es.talent.com/salary?job=dise%C3%B1ador+ui
https://es.talent.com/salary?job=programador+javascript
https://es.talent.com/salary?job=programador+javascript
https://www.atlassian.com/software/jira
https://support.atlassian.com/bitbucket-cloud/docs/use-smart-commits/
https://support.atlassian.com/bitbucket-cloud/docs/use-smart-commits/
https://nx.dev/l/r/guides/monorepo-nx-enterprise#apps-and-libs
https://nx.dev/l/r/guides/monorepo-nx-enterprise#apps-and-libs
https://nextjs.org/
https://developer.mozilla.org/en-US/docs/Glossary/Code_splitting
https://mui.com/
https://www.postgresql.org/
https://www.postgresql.org/
https://expressjs.com/en/api.html
https://github.com/typeorm/typeorm
https://github.com/typeorm/typeorm
https://expressjs.com/en/api.html
https://expressjs.com/en/api.html
https://testing-library.com/docs/react-testing-library/intro
https://testing-library.com/docs/react-testing-library/intro
https://www.cypress.io/
https://docs.github.com/en/actions/using-workflows

	Introduction, motivation, purpose and project goals
	Introduction
	Motivation
	Project goals

	Viability
	Techical resources
	Echonomical costs

	Methodology
	Introduction
	Project management: PMBOK
	Development methodology

	Framework and previous concepts
	Introduction
	Gym overview
	Development overview

	Requirements specifications
	Introduction
	Purpose
	Definitions

	Overall description
	Functional requirements
	Introduction
	Landing app - Product information
	Core app - User registration
	Core app - Home page
	Virtual gyms
	Gym zones
	Class gym zone schedule

	Core app - Events page
	Core app - Workers page
	Core app - Trainers page
	Core app - Clients page
	Core app - Settings page
	Core app - Analysis page
	Client app
	Client app - Settings page

	Non-functional requirements
	Requirements dependency matrix

	Planning
	Working packages
	Project management
	Requirements
	Analysis and design
	Testing
	Development
	Development env
	Api application
	Core application
	Client application
	Landing application

	Traceability matrix
	Roadmap

	Studies and decisions
	Introduction
	Project structure
	TDD and CI
	Nx

	Technology stack
	TypeScript
	Front end - Web applications
	NextJS
	Mui

	Back end - Server application
	Database
	ExpressJS
	TypeORM

	Tests
	Unit testing - Jest
	Unit testing - @testing-library
	Client e2e testing - Cypress
	Server e2e testing - Jest and Supertest

	Analysis and system design
	Use case diagram
	Database diagram
	Introduction
	Diagram
	Introduction
	Person
	Owner
	Worker
	Trainer
	Client
	Gym
	VirtualGym
	GymZone
	Calendar
	CalendarDate
	EventType
	EventTemplate
	Event
	EventAppointment and CalendarAppointment

	User interfaces

	Implementation and trials
	Introduction
	Organizing the idea
	Application development
	Continuous integration

	Trials

	Deployment and results
	Deployment
	Results
	Core application
	Authentication
	Dashboard page
	Virtual gyms
	Gym zone
	Events
	Workers
	Trainers
	Clients
	Settings

	Client application
	Authentication
	Dashboard page
	Virtual gyms
	Gym zone
	Appointments
	Settings

	Conclusions
	Future work

